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Comprehensive functional 
characterization of murine 
infantile Batten disease including 
Parkinson-like behavior and 
dopaminergic markers
Joshua T. Dearborn1, Steven K. Harmon2, Stephen C. Fowler5, Karen L. O’Malley2, 
George T. Taylor6, Mark S. Sands1 & David F. Wozniak3,4

Infantile neuronal ceroid lipofuscinosis (INCL, Infantile Batten disease) is a neurodegenerative 
lysosomal storage disease caused by a deficiency in palmitoyl protein thioesterase-1 (PPT1). The 
PPT1-deficient mouse (Cln1−/−) is a useful phenocopy of human INCL. Cln1−/− mice display retinal 
dysfunction, seizures, motor deficits, and die at ~8 months of age. However, little is known about 
the cognitive and behavioral functions of Cln1−/− mice during disease progression. In the present 
study, younger (~1–2 months of age) Cln1−/− mice showed minor deficits in motor/sensorimotor 
functions while older (~5–6 months of age) Cln1−/− mice exhibited more severe impairments, 
including decreased locomotor activity, inferior cued water maze performance, decreased running 
wheel ability, and altered auditory cue conditioning. Unexpectedly, certain cognitive functions such 
as some learning and memory capabilities seemed intact in older Cln1−/− mice. Younger and older 
Cln1−/− mice presented with walking initiation defects, gait abnormalities, and slowed movements, 
which are analogous to some symptoms reported in INCL and parkinsonism. However, there was no 
evidence of alterations in dopaminergic markers in Cln1−/− mice. Results from this study demonstrate 
quantifiable changes in behavioral functions during progression of murine INCL and suggest that 
Parkinson-like motor/sensorimotor deficits in Cln1−/− mice are not mediated by dopamine deficiency.

Lysosomal storage diseases (LSDs) are a group of >50 distinct disorders characterized by abnormal intra-
cellular accumulation of undegraded substrates. The accumulation of undegraded substrates results from 
defective lysosomal function, often due to reduced or absent activity of a specific enzyme. The neuronal 
ceroid lipofuscinoses (NCLs) are a group of at least 14 distinct disorders that comprise a subset of LSDs 
typified by intracellular accumulation of autofluorescent storage material throughout the brain and body. 
The most rapidly progressing form of NCL is infantile neuronal ceroid lipofuscionosis (INCL), com-
monly referred to as Infantile Batten disease1–6.
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Infantile NCL is associated with an autosomal recessive mutation in the Cln1 gene which encodes 
palmitoyl-protein thioesterase-1 (PPT1), a lysosomal enzyme which catalyzes the cleavage of thioester 
linkage that attaches long-chain fatty acids (predominantly palmitate) with specific cysteine residues in 
polypeptides7,8. Patients with INCL appear unaffected at birth and show normal central nervous sys-
tem (CNS) development until the age of 6–12 months. By 1 to 1.5 years, they exhibit a progression of 
symptoms including visual loss and motor impairments. Intractable seizures appear between 16 and 24 
months, and death occurs as early as 6 years, although some live into their teenage years4,9,10.

In recent years an animal model that closely mimics human INCL has been developed by creating a 
PPT1-knockout mouse (Cln1−/−)10. These mice are completely deficient in PPT1 activity and exhibit ret-
inal dysfunction, progressive motor/sensorimotor abnormalities, spontaneous seizures, and a shortened 
life span of approximately 8 months10,11. Additionally, this animal model recapitulates the microglial acti-
vation, loss of gamma-aminobutyric acid (GABA) neurons, apoptosis, astrocytosis, and cortical atrophy 
seen in the human disease2,12,13.

Sufficient research has accrued to confirm this knockout mouse as a useful animal model for human 
INCL. However, much remains unknown regarding the Cln1−/− mouse, not the least of which is a more 
complete behavioral profile beyond testing simple motor abilities. Therefore, we performed a compre-
hensive behavioral characterization of the Cln1−/− mouse at two ages: one cohort was tested beginning 
at 1 month of age, and the other was tested beginning at 5 months of age. Results of this study identified 
a number of behavioral deficits that will serve as important end points when studying INCL disease 
progression and treatment efficacy. This study also identified Parkinson-like behavioral deficits in the 
Cln1−/− mice. This is consistent with reports showing Parkinson-like motor deficits in the NCLs14–18. 
However, in the current study there is no biochemical or histological evidence of alterations in dopa-
minergic markers in the brains of Cln1−/− mice. These findings highlight the importance of biochemical 
and histological confirmation when making a link between LSDs and parkinsonism.

Results
Younger Mouse Behavior.  The mice were tested on a battery of tests to assess potential deficits in 
cognitive and other behavioral functions in the Cln1−/− mice under controlled conditions across ages 
representing different stages of disease progression. Results from testing the younger cohort of mice 
showed that there were no significant differences between Cln1−/− mice and age-matched WT mice on 
most of the behavioral tests. However, there were subtle but statistically significant differences between 
the groups on a few tests measuring motor/sensorimotor performance. Specifically, Cln1−/− mice showed 
a significant impairment in initiating movement out of a small circumscribed area (walking initiation; 
Fig. 1a) and were slower to climb to the top of the 60° inclined screen (Fig. 1b), both tests being part of 
the battery of sensorimotor measures, [F(1, 25) =  5.856, p =  0.023; F(1, 25) =  14.16, p =  0.001, respec-
tively]. Younger Cln1−/− mice also exhibited decreased swimming speed (Fig.  1c) during place trials  
[F(1, 25) =  6.36, p =  0.018] in the Morris water maze (MWM), but importantly there were no significant 
performance differences between them and the WT group with regard to path length on either type of 
cued trials, suggesting that the younger Cln1−/− mice did not have deficits in visually-guided behavior. 
Cln1−/− mice also traveled a shorter distance on the normal running wheel [F(1, 25) =  7.00, p =  0.014], 
during complex wheel training [F(1, 25) =  4.324, p =  .048], and in the actometer [F(1, 26) =  6.53, 
p =  0.017] (Fig. 1d–f).

Notably, the younger Cln1−/− mice performed similarly to WT mice on 5 of 7 sensorimotor tests and 
with regard to some of the cognitive measures in the MWM such as path length during place (spatial 
learning) trials. WT and Cln1−/− mice also did not differ in terms of platform crossings, time in the tar-
get quadrant, and spatial bias during the probe trial in the MWM suggesting intact retention (data not 
shown). Group performances also were not different on other cognitive measures such as the contextual 
fear and auditory cue components during conditioned fear testing (data not shown). As such, younger 
Cln1−/− mice were mostly indistinguishable from WT mice except for some deficits in speed of move-
ment and distance traveled.

Older Mouse Behavior.  1-h locomotor activity.  To assess general activity levels and exploratory 
behaviors in response to novel environmental stimuli, as well as other processes such as habituation and 
emotionality (center variables), the mice were evaluated on a 1-hr locomotor activity test. In contrast 
to the younger cohort results, older Cln1−/− mice differed significantly from WT mice on every per-
formance variable of this test. For example, analyses of the total ambulations (whole body movements) 
and vertical rearing data (Fig.  2a,b) produced significant main effects of genotype for each variable, 
[F(1, 23) =  15.11, p =  0.001 and F(1, 23) =  5.10, p =  0.034 respectively], indicating that the Cln1−/− mice 
exhibited significantly decreased levels for both variables over time. In addition, Cln1−/− mice traveled 
shorter distances in the peripheral zone [F(1, 24) =  6.95 p =  0.015]. With regard to the emotionality 
variables, the Cln1−/− mice traveled decreased distances in the center zone [F(1, 24) =  22.62 p <  0.0005], 
entered the center zone less frequently [F(1, 24) =  26.63 p <  0.0005], and spent less time in the center 
zone [F(1, 24) =  4.49 p =  0.045) compared to WT mice (data not shown). Lastly, older Cln1−/− mice 
spent significantly more time resting during the 1 hr test than the WT mice, [F(1, 24) =  19.77, p <  0.0005] 
(not shown).
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Sensorimotor Battery.  Patients with INCL present with significant pathology in motor cortex, soma-
tosensory cortex, and cerebellum; motor deficits are a well-established symptom of this disease. Our mice 
were evaluated on various sensorimotor tests to measure analogous deficits at different ages. One-way 
ANOVAs yielded significant genotype effects for the ledge, [F(1, 24) =  7.70, p =  0.011], and the 90° 
inclined screen, [F(1, 24) =  5.20, p =  0.032], tests showing that Cln1−/− mice spent less time balancing on 
the ledge and required more time to climb to the top of the 90° screen compared to WT mice (Fig. 2c,d). 
There were no differences between groups on any of the other sensorimotor measures.

Morris Water Maze.  Little is known about the cognitive capabilities of INCL patients, and they are 
difficult to study under controlled conditions. In an effort to provide information on the intactness 
of cognitive abilities as a function of disease progression in our INCL mouse model, we assessed spa-
tial learning and memory in the mice in the MWM at different ages. During traditional cued trials 
(ball +  pole), significant genotype effects indicated that the Cln1−/− mice exhibited longer path lengths 
[F(1, 23) =  7.56, p =  0.011], and slower swimming speeds [F(1, 23) =  33.00, p <  0.0005 ), to find the 
escape platform compared to WT mice (Fig.  3a,d). The Cln1−/− mice also had greater escape laten-
cies in navigating to the platform [F(1, 23) =  36.62, p <  0.0005] (data not shown). The large differences 
in swimming speeds make escape path length a more appropriate variable for evaluating performance 
instead of latency. Contrasts conducted between block 1 versus block 4 in each group indicated that both 
Cln1−/− and WT mice showed significant (p <  0.0005) improvement in escape path length across blocks 
of trials, providing evidence of cued learning. For the cued trials when the platform location was marked 
only by a pole to decrease the salience of the cue and provide a more difficult test for visually-guided 
behavior (second 4 trial blocks), a significant genotype effect was found for path length, [F(1, 23) =  8.97, 
p =  0.006], indicating that the Cln1−/− mice required greater distances in navigating to the platform. A 
significant genotype effect, [F(1, 23) =  23.88, p <  0.0005], and a significant genotype x trial block inter-
action [F(3, 69) =  11.53, p <  0.0005] was found for swimming speeds, with subsequent pair-wise com-
parisons showing that Cln1−/− mice swam more slowly compared to WT mice during trial blocks 5, 6, 
and 7 (p <  0.0005), but performed similarly to WT mice during trial block 8.

During place (spatial learning) trials, there were no significant main or interaction effects involving 
genotype for escape path length (Fig. 3b) or latency (not shown). Comparing performance during block 1  
versus block 5 in each group indicated that both Cln1−/− and WT mice required shorter path lengths 

Figure 1.  Younger Cln1−/− mice exhibited mild behavioral deficits compared to WT control mice. 
Subtle but significant deficits were found in younger Cln1−/− mice, including delayed initiation of walking 
(a), *p =  0.023, slowed climbing on a 60° inclined screen (b), *p =  0.001, and slower swim speeds on average 
across place MWM trials (c), *p =  0.018. Cln1−/− mice also traveled a shorter distance during normal 
running wheel trials (d), *p =  0.014, complex running wheel training (e), *p =  0.048, and during testing in 
the actometer (f), *p =  0.017. Data are expressed as mean ±  standard error, open circles represent Cln1−/− 
mice (n =  16) and filled squares represent WT mice (n =  11).
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(p <  0.0005) and decreased latency to find the platform (p <  0.0005) (not shown) across blocks of trials, 
providing evidence for spatial learning acquisition in both groups. In contrast to the cued data, no signif-
icant main or interaction effects involving genotype were found with regard to the swimming speed data 
(Fig. 3e). During the probe (retention) trial, both groups exhibited a spatial bias for the target quadrant 
thus providing further documentation that both groups learned the location of the hidden platform 
(Fig. 3c). Specifically, each group spent significantly more time in the target quadrant that had contained 
the platform compared to the times spent in each of the other quadrants (p <  0.0005). In addition, no 
significant differences were observed between the groups with regard to platform crossings (Fig. 3f) or 
time spent in the target quadrant.

Visual acuity.  Since loss of vision occurs in patients with INCL, and since the older Cln1−/− mice exhib-
ited impaired performance on the two types of MWM cued trials, we evaluated an independent, 7-month 
old cohort of Cln1−/− and WT control mice on the virtual optomotor system (VOS) to determine visual 
(grating) acuity thresholds. The results indicated that the Cln1−/− group displayed a significantly lower 
acuity (grating) threshold for the optokinetic response compared to WT mice, t(16) =  6.51, p <  0.0005, 
signifying impaired visual system function at 7 months (Fig. 4).

Normal and complex running wheel.  Performance on the normal and complex running wheels was 
evaluated to measure abilities of Cln1−/− mice in a motor learning paradigm. The complex wheel involves 
removing rungs of the wheel at different intervals creating unequal spaces between rungs, thus creating a 
sensitive test that requires fine motor control and integration between the forelimbs and hindlimbs. The 
mice received daily 1 hr trials during both the normal and complex wheel-running conditions. During 
baseline testing on the normal running wheel, Cln1−/− mice traveled a shorter distance [F(1, 23) =  44.44, 

Figure 2.  Older Cln1−/− mice showed significantly reduced levels of general ambulatory activity 
and vertical rearing as well as motor/sensorimotor impairments relative to WT mice. Cln1−/− mice 
demonstrated fewer total ambulations (whole body movements) (a), p =  0.001, and fewer rears (b), p =  0.034 
on average across time blocks during the 1-h locomotor activity test. In addition, Cln1−/− mice showed 
deficits on the ledge test for balance (c), p =  0.011, and 90° inclined screen test (d), p =  0.032. Data are 
expressed as mean ±  standard error, open circles represent Cln1−/− mice (n =  14) and filled squares represent 
WT mice (n =  11), *p <  0.05 between groups, **p <  0.005 between groups at a single time block.
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p <  0.0005] and at a slower average speed [F(1, 16) =  5.73, p =  0.029] than WT mice (Fig.  5a,d). In 
addition, WT mice reached a higher maximum speed [F(1, 23) =  17.27, p <  0.0005) compared to Cln1−/− 
mice (not shown).

Similar significant effects of genotype were found for distance traveled, [F(1, 23) =  30.89, p <  0.0005], 
average speed, [F(1, 14) =  5.143, p =  0.040], and maximum speed, [F(1, 23) =  15.070, p =  0.001], during 
training on the complex wheel (first 5 days). This documents that the Cln1−/− mice traveled a shorter 
distance (Fig. 5b), had a slower average running speed (Fig. 5e), and achieved a slower maximum speed 
(not shown) compared to WT mice on average across trials. Both Cln1−/− and WT mice showed a sig-
nificant increase in distance traveled during trial 1 versus trial 5, (Fig. 5b; p <  0.001), indicating motor 
learning occurred in both groups. Although there was a significant genotype effect for average speed 
during training on the complex wheel (Fig. 5e), the groups did not differ significantly on any given trial, 
and only WT mice exhibited an increase in average speed from trial 1 to trial 5, (p <  0.0005).

The pattern of between-group differences was essentially repeated during performance testing on 
the complex wheel (second 5 days). Overall, Cln1−/− mice ran a shorter total distance in the wheel,  
[F(1, 23) =  36.92, p <  0.0005] (Fig. 5c), at a slower average speed, [F(1, 17) =  11.99, p =  0.003] (Fig. 5f), 
and reached a slower maximum speed, [F(1, 23) =  25.11, p <  0.0005] (not shown) compared to WT 
mice. Neither group showed a reliable increase in average speed or maximum speed from trial 1 to trial 
5 (data not shown).

Conditioned fear.  To provide additional information on nonspatial learning and memory capabilities of 
our INCL model mice, we assessed their performance on a Pavlovian-based conditioned fear test which 
involves quantifying freezing as a behavioral response. Analysis of the data during the first 2 min of testing 
on day 1 to establish baseline freezing levels (Fig. 6a, baseline data) revealed that the Cln1−/− mice froze 
significantly more than WT mice, [F(1, 23) =  5.49, p =  0.028]. Similarly, a significant genotype effect was 

Figure 3.  Older Cln1−/− mice demonstrated intact spatial learning ability during place MWM trials 
although they showed deficits during the preceding cued trials. During cued trials, Cln1−/− mice took 
significantly longer paths to find the platform on average across blocks of trials whether it was cued by the 
pole +  ball or the pole alone (a), p <  0.0005 for both, and they swam significantly more slowly compared to 
WT controls regardless of how the platform was cued (d), p <  0.0005. However, during place trials, these 
deficits were no longer apparent. Older Cln1−/− mice required comparable path lengths in navigating to the 
platform (b), and swam at similar speeds compared to WT mice (e). During the MWM probe trial, groups 
performed similarly with regard to number of platform crossings (c) and spatial bias for the target quadrant 
that had contained the platform (f). Data are expressed as mean ±  standard error, open circles represent 
Cln1−/− mice (n =  14) and filled squares represent WT mice (n =  11), *p <  0.05 between groups and 
**p <  0.005 between groups at a single time block for the cued path length and swimming speeds, *p <  0.006 
for comparisons between the target quadrant and each of the other pool quadrants.
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found during the subsequent 3 min of tone-shock (T/S) training [conditioned stimulus-unconditioned 
stimulus (CS-US) pairings] on day 1, [F(1, 23) =  19.92, p <  0.0005] documenting increased levels of 
freezing in the Cln1−/− mice on average across minutes (Fig.  6a, T/S data). Pair-wise comparisons 
showed that the Cln1−/− mice had significantly elevated freezing levels during minutes 3 (p <  0.0005) and  
5 (p =  0.012) compared to the WT group.

Analyses of the freezing data from the contextual fear test conducted on day 2 did not reveal any 
main or interaction effects involving genotype suggesting that contextual fear conditioning was rela-
tively intact in Cln1−/− mice (Fig.  6b). In contrast to these data were the differences in freezing levels 
observed between groups on day 3 (Fig. 6c). Specifically, Cln1−/− mice exhibited significantly increased 
levels of freezing during the 2-min altered context baseline compared to the WT group overall,  
[F(1 ,23) =  11.96, p =  0.002] and also during min 1 (p =  0.004). Interestingly, analysis of the auditory cue 
data (min 3–10) on day 3 revealed very different patterns of freezing levels between the groups across 
the 8-min period. Specifically, a significant genotype effect, [F(1, 23) =  28.07, p <  0.0005] and genotype 
x minute interaction, [F(5, 60) =  128.78, p <  0.0005] indicated that differences between groups varied 
across the 8-min interval. Subsequent pair-wise comparisons showed that the older Cln1−/− mice had 
significantly decreased freezing levels relative to WT controls for minutes 3, 4, 5, and 6 (p <  0.0005) while 
freezing levels were similar throughout the rest of the interval. In addition, freezing levels of the Cln1−/− 
mice remained relatively stable across minutes, whereas the WT mice showed a dramatic decrease in 
freezing over time suggesting that habituation had taken place. This is documented by WT mice freezing 
significantly less during minute 10 compared to minute 3 (p <  0.0005).

Actometer.  A growing body of literature connects Parkinson-like symptoms to LSDs. To assess whether 
spontaneously-occurring gait abnormalities and/or Parkinson-like behavior were present in the INCL 
model mice, we analyzed several movement-related variables by testing the mice in the force-plate actom-
eter. There were no main effects of genotype with regard to distance traveled, frequency of low mobility 
bouts or stride rate during the actometer test (Fig. 7a–c). However, Cln1−/− mice ambulated across the 
test chamber using a shorter stride length compared to WT mice, [F(1, 23) =  37.64, p <  0.0005] (Fig. 7d). 
Shortened stride length, as measured by the actometer apparatus, is a characteristic reliably found in the 
MPTP mouse model of parkinsonism19.

Dopaminergic Markers.  To determine whether deficits in the dopaminergic system contributed to 
the motor deficits observed in Cln1−/− mice, we measured dopamine (DA) levels as well as its primary 
breakdown products, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the corpus 
striatum by high-performance liquid chromatography. Cln1−/−and WT mice had similar levels of DA, 
DOPAC, and HVA (Fig.  8a). To further investigate the possibility that the DA system plays a part in 
the motor/sensorimotor impairments in Cln1−/− mice, we measured levels of tyrosine hydroxylase (TH) 
and dopamine transporter (DAT) in the corpus striatum via western blot. Similar to the HPLC results, 
Cln1−/− and WT mice had similar levels of TH and DAT (Fig.  8b). Immunohistochemical analyses 

Figure 4.  7-month-old Cln1−/− mice exhibited a significantly impaired visual acuity compared to WT 
mice. The threshold of grating (cycles per degree) of light/dark rotating lines at which older Cln1−/− mice 
(n =  9) failed to display an optokinetic response was significantly lower than that of WT mice (n =  9), 
*p <  0.0005. Data are expressed as mean +  standard error.
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Figure 5.  Older Cln1−/− mice exhibited running wheel performance deficits for all test variables. 
Specifically, Cln1−/− mice traveled a significantly shorter distance during normal (baseline) wheel running 
(a), complex wheel training (b), and complex wheel performance (c) compared to WT mice, (genotype 
effects: *p <  0.0005 for all variables). Also, Cln1−/− mice ran at significantly slower average speeds (genotype 
effects: *p <  0.05) during the same test conditions (d–f). Data are expressed as mean ±  standard error, open 
circles represent Cln1−/− mice (n =  14) and filled squares represent WT mice (n =  11), **p <  0.005 between-
groups (pair-wise) comparisons for individual daily trials.

Figure 6.  Contextual fear conditioning was not impaired in older Cln1−/− mice although they showed 
significant impairment in auditory cue conditioning and an altered freezing response to tone-shock 
(T/S) training compared to WT mice. Cln1−/− mice froze significantly more than WT mice during 
baseline, *p =  0.028, and T/S training on day 1 of conditioned fear testing (a), *p <  0.0005. Groups 
performed similarly during the contextual fear test on day 2 (b). Cln1−/− mice froze significantly more 
than WT mice during the altered context baseline on day 3, *p =  0.002, but then exhibited significantly 
decreased freezing levels during subsequent minutes (c). Data are expressed as mean ±  standard error, 
open circles represent Cln1−/− mice (n =  14) and filled squares represent WT mice (n =  11), *p <  0.05 for 
genotype effects, †p <  0.0005 for genotype x minute interaction, **p <  0.005 between-groups comparisons for 
individual minutes.
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revealed that TH staining density in the substantia nigra was similar between WT and Cln1−/− mice 
(Fig. 8c,d). Taken together, these data indicate that an underlying DA deficiency is not responsible for 
the motor deficits in the Cln1−/− model.

Discussion
The goal of the current study was to evaluate a breadth of behaviors in the Cln1−/− mouse model to 
further our understanding of INCL and provide useful behavioral benchmarks for studying disease 
progression and treatment efficacy. Specifically, we assessed behaviors of 1- to 2-month-old (younger) 
Cln1−/− mice, which have limited INCL-related neuropathology, and of older Cln1−/− mice, which have 
widespread and severe neuropathology12,20.

As expected, younger Cln1−/− mice did not exhibit many gross changes in behavior compared to 
WT mice. However, the younger Cln1−/− mice showed subtle but significant deficits on the 60° inclined 
screen and the walking initiation tests. In addition, these mice traveled a shorter distance than WTs on 
the normal and complex wheel measures and during the actometer test. These results suggest that some 
of the earliest observable behavioral changes in Cln1−/− mice appear to be associated with motor/sensori-
motor function. It is difficult to determine the cause of these deficits since there is little or no pathological 
evidence of disease at this stage. It is possible that Cln1−/− mice do not have the same physical stamina 
as WT mice, leading to reduced behavioral output over protracted testing. However, this seems unlikely 
given the age of the younger mice used here. No differences in smooth muscle or bone tissues have been 
found in 1-month-old Cln1−/− mice, and at 3 months there is minimal cardiac or pulmonary pathology2.

Although younger Cln1−/− mice showed subtle but significant motor deficits, their cognitive abilities 
appeared to be intact. This is evidenced by their control-like levels of performance on the MWM and 
conditioned fear tests. In addition, the performance of Cln1−/− mice on the normal and complex running 
wheels improved with increased training/testing even when they exhibited deficits on these tasks. This 
suggests that the motor learning capabilities of the Cln1−/− mice may have been intact, although some 

Figure 7.  Older Cln1−/− mice demonstrate a gait abnormality typically associated with murine models 
of parkinsonism. During testing in the force-plate actometer apparatus, Cln1−/− mice (n =  14) traveled a 
similar distance (a), exhibited a similar number of low mobility bouts (b), and moved with similar stride 
rates (c) relative to WT mice (n =  11). In contrast, Cln1−/− mice ambulated across the test field using shorter 
stride lengths compared to WT mice (d), *p <  0.0005. Data are expressed as mean ±  standard error.
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of their motor/sensorimotor functions may have been compromised. Interestingly, younger Cln1−/− mice 
showed significant delays in walking initiation. This may be analogous to a movement dysfunction char-
acteristic of parkinsonism which has been reported in a patient with NCL17. However, this finding was 
not replicated in the older mice suggesting that the walking initiation deficit of the younger Cln1−/− mice 
may have been due to altered emotionality such as increased levels of fear or anxiety-like behaviors. 
This interpretation is not straightforward however, since there was an absence of corroborating findings 
involving the center area variables from the 1-h locomotor activity test and during the T/S training 
component of the conditioned fear testing in the younger mice.

Older Cln1−/− mice exhibited performance deficits on many behavioral tests that required intact 
motor/sensorimotor function such as the 90° inclined screen test, general ambulatory activity and verti-
cal rearing frequency, normal and complex wheel running, swimming speeds in the MWM, and stride 
length measured in the actometer. In general, these findings are consistent with and extend the obser-
vations in the younger mice that PPT1-deficiency results in progressive impairment of motor/senso-
rimotor function. It is possible that these differences between older Cln1−/− and WT mice are due to 
disease-related pathology. Kielar et al.12 described significant microglial activation at 5 months of age 
in this animal model. Microglial activation is a reliable marker of neuroinflammation and neurode-
generation, and Kielar et al. (2007) specifically noted this activation in somatosensory barrelfield (SB1) 
and primary motor (M1) cortices, and various thalamic nuclei. Considering the neuronal loss in these 
loci accompanied by widespread granular osmiophilic deposits (GROD) accumulation, as well as sig-
nificant pathology in cerebellar white matter, it is plausible that INCL neuropathology directly accounts 
for decreased motor/sensorimotor capabilities or motivation to explore a novel environment2,12,20. As 

Figure 8.  Older Cln1−/− and WT mice did not differ with regard to biochemical markers of Parkinson’s 
disease. As measured by high performance liquid chromatography, there were no differences in the levels  
of dopamine, DOPAC, and HVA between groups (a). Levels of tyrosine hydroxylase and DAT, as measured  
by western blot, were similar between groups (b). Panels show coronal sections stained for TH  
(c). Groups did not differ with regard to TH staining density in the substantia nigra. (d). Data are expressed 
as mean +  standard error, Cln1−/− n =  3 animals (a minimum of 3 sections/animal, total of 21 sections 
evaluated), WT n =  3 animals, (a minimum of 5 sections/animal, total of 24 sections evaluated).
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mentioned previously, systemic pathology in INCL has been described with significant findings in car-
diovascular tissue, bone, and various organs in Cln1−/− mice over 5 months of age2. Peripheral disease 
including neuropathy21, in addition to spinal cord abnormalities18, may also affect exploratory and moti-
vated behaviors. The lower levels of activity in the older Cln1−/− mice may also reflect a general malaise 
caused by the disease. Alternatively, a significant alteration in emotionality could affect activity. For 
example, increased anxiety-like behavior can result in mice making fewer entries into, spending less time 
in, and traveling a shorter distance in the center zone during the 1-hr activity test. Lastly, changes in 
metabolism could account for some differences in overall activity levels. It has been reported that INCL 
mice at 5 months of age present with decreased adiposity (about 75% of WT levels), decreased body 
weight, but increased food intake compared to WT mice22. Metabolic rate, reported as oxygen consump-
tion measured by indirect calorimetry, was also significantly lower in INCL mice, though still 90% of WT 
levels. Future studies will include surveys of metabolic rates as well as adiposity measurements in INCL 
mice in an effort to better understand alterations in overall activity levels.

Although we have provided substantial evidence that older Cln1−/− mice have robust impairments 
in motor/sensorimotor functions, our results suggest that some cognitive functions seem to have been 
spared, at least up until 5–6 months of age. Older Cln1−/− mice performed similarly to WT controls 
during the place (spatial learning) and probe (retention) conditions in the MWM and on the contex-
tual fear component of the conditioned fear test. In contrast to the lack of impairment on these tasks, 
Cln1−/− mice were impaired during both types of cued trials in the MWM and during the auditory 
cue component of the conditioned fear test. The impaired performance of the Cln1−/− mice during the 
MWM cued trials is interesting in that differences seemed to be greatest in the earliest trials for each 
cued condition, although the groups performed almost identically by the end of training on each cued 
task. There are two likely functional disturbances which may account for these deficits considering the 
subsequent normal spatial learning and memory performance of the Cln1−/− mice. First, it is known that 
Cln1−/− mice develop severe retinal dysfunction later in life23 and some decrement in vision was likely to 
have been present in the 5–6 month old Cln1−/− mice of the current study. However, any existing visual 
deficiency was not sufficient to disrupt performance during place and probe water maze trials which 
rely heavily on the identification of distal visual cues. If Cln1−/− mice experienced visual impairments at 
5–6 months, it may not have been severe enough to prevent the use of visual cues after the mutant mice 
learned to adapt appropriately during the cued trials.

To further explore the visual capabilities of Cln1−/− mice, we evaluated the acuity thresholds of 
another independent cohort of 7-month-old mice by quantifying their optokinetic response during the 
VOS test. Briefly, the rationale for including this separate, older cohort was to evaluate whether there was 
a functional correlate to existing ERG findings of diminished rod/cone function at this age using a more 
direct test that did not involve learning and memory. Our MWM results indicate that, although the cued 
trials performance of the Cln1−/− mice was somewhat impaired at the beginning of testing at 5–6 months 
of age, they retained a sufficient degree of visual function to use distal cues in navigating to specific 
locations in the pool. Previous research indicated that Cln1−/− rod/cone function, as measured by elect-
roretinography (ERG), was 70% that of WT mice at 5–6 months of age, which is consistent with the cued 
trials findings. Results from ERG testing at 7 months of age showed a continuing decrease in rod/cone 
function in Cln1−/− mice such that it was only 40% of that for WT mice23 at this age. Our present VOS 
results reveal that 7-month-old Cln1−/− mice demonstrate significantly decreased visual acuity thresholds 
relative to WT mice, thus confirming a degree of functional impairment that would be expected from 
the ERG findings at this age. Given the impaired sensorimotor functions of the Cln1−/− mice at this 
age, one might argue that such deficits could affect the execution of their optokinetic response. While 
this possibility cannot be ruled out completely, we feel that the use of a translucent cylinder to stabilize 
the Cln1−/− mice on the test platform allowed the observer to more accurately detect the optokinetic 
response, and the fact that all mutant and WT mice exhibited the response suggests that the mutant mice 
still maintained the capacity to respond to the rotating grating.

Another possible functional disturbance affecting cued learning performance in older Cln1−/− mice 
might have been slight deficits in procedural learning that dissipated with continued training. Another 
curious, possibly related, MWM finding in the older mice was the difference in swimming speeds 
between groups during the cued trials compared to the lack of group differences observed on this varia-
ble during the place trials. Specifically, the older Cln1−/− mice swam slowly compared to the WT group 
up until the last cued trial and then swam at WT-like speeds during the place and probe trials. The 
cued protocol used in the present study was twice as long as our typical protocol because we wanted to 
provide a more rigorous test of visually-guided behavior given our knowledge about the eventual retinal 
dysfunction in older Cln1−/− mice. The extended cued training apparently provided sufficient time for 
the older Cln1−/− mice to adapt to any visual, motor/sensorimotor, motivational or procedural learning/
memory impairments, such that they could demonstrate intact spatial learning and memory capabilities 
when tested during the subsequent place and probe conditions. This underscores an important proce-
dural issue of developing protocols which may allow mutant mice adequate periods of adaptation to 
possibly overcome peripherally- and/or centrally-mediated deficits which might confound interpretation 
of the main behavioral variables of interest.

Other behavioral results that relate to the cognitive capabilities of older Cln1−/− mice are the data 
from the conditioned fear test. Importantly, analysis of the contextual fear data (day 2) did not reveal any 
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significant effects involving genotype, indicating that this type of fear conditioning was not impaired in 
the older Cln1−/− mice. This is consistent with the finding that spatial learning and memory were intact 
in these mice and the idea that the hippocampus, which is thought to play a major role in mediating 
these types of learning and conditioning, may be relatively spared of the pathophysiology associated 
with PPT deficiency. In contrast to the lack of impairment in contextual fear conditioning observed in 
the older Cln1−/− mice were the robust deficits they exhibited during the stages of auditory cue testing. 
The degree of decreased freezing levels in the older Cln1−/− mice during exposure to the auditory cue 
on day 3 is particularly noteworthy considering that these mice exhibited significantly increased levels 
of freezing during the tone/shock training on day 1 as well as during the 2-min altered context period 
on day 3 preceding the auditory cue test. Two likely sources for the impaired performance of the older 
Cln1−/− mice on this test are compromised auditory cue conditioning and deficits in auditory system 
processing. Neither has been extensively studied in human INCL patients and therefore it is difficult for 
us to speculate without supplementary studies. For example, assessing the acoustic startle response and 
prepulse inhibition of startle along with measuring auditory brainstem evoked potentials would provide 
extensive information on auditory system function in older Cln1−/− mice. Also, auditory cue condition-
ing could be studied further by including additional control groups [e.g., random presentations of the 
tone (CS) and footshock (US); shock alone, or no shock] to the procedure to distinguish “true” condi-
tioning deficits from other artifactual influences. Additionally, possible amygdalar pathology, an area not 
currently examined in the INCL literature, may play a role in the impaired auditory cue performance of 
the Cln1−/− mice.

We acknowledge that aspects of prior experience including the sequence of the behavioral tests may 
have had an effect on the outcomes of various measures. However, careful consideration was given to the 
experimental design of our studies and to developing a test sequence that would allow us to characterize 
the progression of functional impairments with age in Cln1−/− mice, but minimize the “carry-over effects” 
from one test procedure to others. First, we eliminated any effects of prior handling and test experience 
in the younger mice from affecting behavioral performance in the older mice by using a cross-sectional 
design involving two independent cohorts of mice instead of using a longitudinal approach. Secondly, we 
prevented any stress effects from exposure to the footshock used in the conditioned fear procedure from 
having an impact on any other behaviors by scheduling that test to be the last one conducted for a given 
cohort. Thirdly, we limited the number of behavioral tests to essential control measures (1-h locomotor 
activity; sensorimotor battery) before conducting the first cognitive (MWM) test. In summary, the pro-
file of behavioral results across the two ages of the Cln1−/− mice suggests that our experimental design, 
including the test sequence, was more than adequate in allowing us to demonstrate a frank progression 
of motor/sensorimotor impairment with relative preservation of cognitive function in these mutant mice.

Although there are disturbances in several peripheral and central functions that may account for the 
motor/sensorimotor deficits observed in Cln1−/− mice as previously described, a subset of these (short-
ened stride length, walking initiation deficits, and slowed movement) suggested possible Parkinson-like 
influences. For example, decreased stride length is a characteristic seen consistently in the MPTP mouse 
model of parkinsonism19,24. Gait abnormalities, delayed initiation of movement, and generally slowed 
movements have been described in patients with NCL14–18 and are typical motor deficits associated with 
parkinsonism and Parkinson’s disease (PD). Our observations of Parkinson-like deficits in our INCL 
model provided a rationale for assessing nigrostriatal DA involvement in these movement impairments 
of the Cln1−/− mouse by quantifying levels of TH in the substantia nigra as well as levels of DA, DOPAC, 
HVA, TH, and DAT in the corpus striatum. However, we found no differences between genotypes in 
expression of TH, DA, DOPAC, HVA, or DAT in the nigrostriatal pathway.

There is a growing body of literature associating LSDs with Parkinson’s disease. Shachar and col-
leagues (2011) compiled a review of case studies through 2011 that included a Parkinson association with 
numerous LSDs including Gaucher disease, Niemann-Pick C, juvenile NCL, older NCL, and infantile 
NCL25. Observations included bradykinesia, resting tremor, and rigidity as well as synuclein accumu-
lation in the nigrostriatal pathway and Lewy body inclusions. In addition, a recent case study reported 
that freezing of gait, an abnormality associated with disturbed initiation of movement and altered stride 
pattern, is the first motor manifestation in late infantile variant NCL17. Though we examined multiple 
facets of the nigrostriatal DA system for evidence of Parkinson-like pathology to explain the motor/
sensorimotor deficits in our Cln1−/− mice, our data are not consistent with the notion that dopaminergic 
deficiency underlies the motor disturbances measured in this model. Instead, it seems likely that such 
motor abnormalities are associated with progressive disease pathology in M1, SB1, cerebellum, and thal-
amus. It is imperative that caution be exercised when claiming an association of PD with LSDs, as this 
may affect understanding of the disease as well as treatment and management decisions.

The current study contributes several valuable findings to the INCL literature. First, we have identified 
several useful tools for monitoring the progression of INCL and for evaluating a response to therapy. 
We have also demonstrated that while INCL mice show significant motor/sensorimotor deficits and 
CNS pathology, many of their cognitive capabilities remain intact, at least for the ages evaluated in the 
present study. Finally, the DA/TH data presented here highlight the need for biochemical and histological 
confirmation before an association between PD and INCL can be established.
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Materials and Methods
Animals.  The Cln1−/− mouse was created through a targeted disruption strategy that eliminates the 
last exon of the murine Cln1 gene10. This targeted mutation was backcrossed to C57BL/6 mice for >  10 
generations, and from the final generation colonies of Cln1−/− and Cln1+/+homozygotes were split off and 
maintained by MSS. Male and female mice of each genotype (N =  30 PPT1-deficient; Cln1−/−, N =  22 
wild-type;WT) served as subjects in the experiment. WT and Cln1−/− mice were not littermates. All 
animals were housed in an animal facility at the Washington University School of Medicine (St. Louis, 
MO) under a 12 hr light/dark cycle and were provided food and water ad libitum. Behavioral tests were 
conducted during the light cycle.

Ethics Statement.  All animal procedures were approved by the Institutional Animal Studies Commi- 
ttee at Washington University School of Medicine and were in accordance with the guidelines of the 
National Institutes of Health.

Experimental Design.  A cross-sectional design was used which involved two cohorts of Cln1−/− and 
WT mice. In one cohort, behavioral testing was initiated at a mean age of post-natal day (PND) 27, and 
testing continued through PND 65. Although testing occurred up until early adulthood, this cohort will 
be referred to as the “younger” cohort. In the younger cohort, the sample size for the Cln1−/− group was 
n =  16 (4 females; 12 males), while for the WT mice n =  11, (6 females, 5 males). In an “older” cohort of 
mice, behavioral testing began at PND 147 and continued through to PND 185. In this older cohort, the 
sample sizes were n =  14 for the Cln1−/− group (5 females; 9 males) and n =  11 for the WT control mice 
(7 females; 4 males). The mice were euthanized at the end of testing for each cohort.

A separate, older cohort of mice (7 months of age, N =  18; 9 WT and 9 Cln1−/−) was tested for visual 
acuity using the VOS procedure to evaluate whether there was a functional correlate to existing ERG 
findings showing greatly diminished rod/cone function at this age. The VOS test provided a more direct 
assessment of visual system function that did not involve learning and memory.

Behavioral Testing.  1-hr locomotor activity.  To examine general activity levels and possible dif-
ferences in emotionality, mice were evaluated over a 1-hr period in transparent polystyrene enclosures 
measuring 47.6 ×  25.4 ×  20.6 cm high. Our procedure has been described previously26. Each enclosure 
was surrounded by frames containing pairs of photobeams which were monitored by computer software 
(MotorMonitor, Kinder Scientific LLC, Poway, CA). General activity variables included total ambulations 
(whole body movements), vertical rearing frequency, distance traveled in a 5.5 cm wide peripheral zone, 
and time spent resting. Emotionality measures included time spent in, distance travelled in, and number 
of entries into a 33 ×  11 cm central zone.

Sensorimotor battery.  Cln1−/− mice were assessed on a battery of sensorimotor tests to evaluate balance, 
strength, and/or coordination. The test included walking initiation, ledge, platform, pole, 60° and 90° 
inclined screens, and inverted screen. All tests have been described previously26 and mice were tested 
twice on each apparatus, and a mean of the two scores was used for analysis.

Morris water maze (MWM).  The MWM test was used to evaluate spatial learning and memory in the 
mice utilizing a slightly modified version of our previously published procedure27. The protocol included 
cued, place, and probe trials. Testing took place in a round pool (118 cm diameter) containing water 
made opaque with non-toxic white tempura paint. All trials were monitored through a live video feed 
by computer software (Any-maze, Stoelting Co., Wood Dale, IL) which calculated swim speed, escape 
path length, escape latency, and time and distance spent in each of the four quadrants of the pool. The 
maximum score for all water maze trials was 60 s.

Cued trials were conducted first to determine whether nonassociative deficits (e.g., visual or sen-
sorimotor disturbances, or alterations in motivation) were likely to affect swimming performance and 
confound interpretation of the acquisition data collected during the place trials. Mice received 4 cued 
trials per day for a total of 4 consecutive days. On days 1 and 2, mice were placed in the quadrant directly 
opposite a submerged platform marked with a visible cue (red tennis ball on top of a pole). The platform 
was moved to a different location for each trial (60 s intertrial interval) within a day and there were very 
few distal cues available during this time, both of which limited spatial learning. The same protocol was 
used during days 3 and 4 of the cued trials except that the tennis ball was removed from the pole, leaving 
only the latter to serve as the cue. This was done to decrease the salience of the cue and provide a more 
difficult test for visually-guided behavior. Escape path length and latency and swimming speeds were 
used to evaluate performance during the cued and place conditions.

Place trials were performed the day after completing the cued trials. In the presence of salient, station-
ary distal cues to facilitate acquisition (spatial learning), mice were evaluated on their ability to learn the 
location of a hidden, unmarked platform. Four place trials per day were administered for 5 consecutive 
days during which the platform remained in the same location for all trials. The mice were released from 
4 different locations each day. The daily protocol involved administering 2 sets of 2 trials each, with sets 
being separated by approximately 1 hr.
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A single probe trial was administered approximately 1 hr after completion of place trials on the 
fifth day. During the probe trial, the platform was removed from the pool and the animals placed 
in the quadrant directly opposite the former platform location. Mice were allowed to explore the 
water maze for 60 s during which time various aspects of their search behaviors for the platform 
were quantified. The number of times a mouse passed directly over the platform location (platform 
crossings), the time spent in the target quadrant that had contained the platform, and spatial bias 
were used to evaluate retention performance during the probe trial. Spatial bias refers to a mouse 
spending significantly more time in the target quadrant compared to the times it spent in each of 
the other quadrants.

Visual acuity.  An independent cohort of 7-month old Cln1−/− and WT mice was evaluated for visual 
acuity using the VOS test as described previously28,29. Briefly, the apparatus consisted of a virtual 
cylinder-like display comprised of a vertical sine wave grating projected in three-dimensional (3-D) 
space on computer monitors. The 4 monitors were arranged in a quadrangle around a central circular 
platform, forming a square arena (46 cm ×  46 cm). A camera (FireWire iSight; Apple Computer Corp., 
Mountain View, CA, USA) was positioned directly above the platform to allow observation of mouse 
behavior. After a mouse was placed on the central platform, light and dark bars were projected on the 
monitors to give the appearance of bars rotating around the mouse. The virtual rotational motion of 
these bars induced optokinetic head/body tracking movements. Thresholds for visuospatial acuity were 
generated by increasing the frequency of the sine waves until the optokinetic response was no longer 
observed, indicating that the animal no longer distinguished the individual bars rotating around it. 
The speed of rotation and geometry of the projected bars were controlled by the system software. The 
dependent variable was the highest grating (in cycles per degree; cyc/deg) at which the animal could 
discriminate between light and dark rotating lines before failing to display optokinetic responses. The 
sensorimotor impairments of the Cln1−/− mice at this age made it difficult for them to remain on the 
test platform. For this reason, a translucent Plexiglas cylinder (6.5 cm diam; 21 cm high) was placed over 
the circular platform when testing both the Cln1−/− and WT mice. This modification allowed the mutant 
mice to remain on the platform during the entire test trial but did not restrict their optokinetic response 
and also facilitated the observer’s judgment concerning the presence of the response.

Normal and complex running wheel.  Mice were evaluated for voluntary wheel running activity as well 
as on their performance of a difficult sensorimotor (complex wheel) task which required fine motor 
coordination between fore- and hind-limbs30.

Mice were first tested on a normal running wheel (Mouse Motor Skill Sequences Activity Wheel, 
Lafayette Instrument, Lafayette, IN) for 1 hr on 5 consecutive days (1 trial/day) to establish baseline 
voluntary wheel running activity. The normal activity wheel contained 38 consecutive rungs (0.4 cm in 
diameter) that were spaced 0.614 cm apart. Mice were allowed to explore the wheel and activity chamber 
for 1 hr on 5 consecutive days. Dependent variables included average speed, maximum speed, time spent 
running on the wheel, distance, and time spent not running on the wheel.

A complex running wheel was created by removing some of the wheel rungs thus creating unequal 
spaces between the rungs of the wheel (0.614, 1.6, or 2.6 cm30). The mice received 5 consecutive days of 
acquisition training on the complex wheel followed by two days of no wheel running and then 5 consec-
utive days of performance testing on the complex wheel, using the same dependent variables that were 
utilized during the normal activity wheel phase.

Conditioned fear.  Fear conditioning capabilities were evaluated in the mice over a 3-day test period 
using a previously described protocol27. This test was administered last in the sequence of behavio-
ral measures in an effort to avoid any “carry-over effects” on other behaviors of interest as a result of 
the mice having been exposed to footshock during the procedure. Testing took place in two Plexiglas 
conditioning chambers, each differing in terms of visual, tactile, and olfactory cues. On the first day 
(tone-shock training), each mouse was placed in one Plexiglas chamber for a 5-min trial during which 
freezing behavior was quantified by computer software (FreezeFrame, Coulborn Instruments, Whitehall, 
PA). The first 2 min served as a baseline period, after which a conditioned stimulus (CS) in the form 
of an 80 dB tone (white noise) was presented for 20 s. During the last second of the CS, a 1.0 mA foot 
shock (unconditioned stimulus; US) was administered. This pairing was repeated for each of the next 
2 min for a total of 3 CS-US pairings. Twenty-four hr later, each mouse was placed back into the same 
chamber used on the first day of testing, for an 8-min trial during which no CS or US was presented. 
Again, freezing behavior was quantified in order to assess the amount of contextual fear conditioning that 
occurred in each group. Twenty-four hr after this trial, mice were evaluated on the auditory cue test. Each 
mouse was placed in the other Plexiglas chamber, which contained different cues, and freezing behavior 
was quantified for 10 min in this “altered context.” The first 2 min served as a baseline period, followed 
by 8 min when the auditory cue (CS) was continuously presented. The dependent variable for each trial 
was the percent of time that the mouse spent freezing.

Actometer.  To assess exploratory behavior, gait and other movement-related functions, each mouse 
was tested in a force plate actometer31,32. Briefly, the apparatus is a square load plate (42 ×  42 cm) that 
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sits atop 4 load cell transducers (Honeywell/Sensotec, Columbus, OH) and is surrounded by 4 Plexiglas 
walls measuring 43 ×  30.5 cm. A mouse is placed in the center of the chamber and allowed to explore 
for 20 min. Dependent variables included distance travelled, low mobility bouts (number of instances 
the animal remains in the same location for 10 s at a time), and parameters related to gait analysis. 
For gait analysis, each 20-min recording session was visualized with a scrolling graphics program that 
enabled the user to identify the distinctive rhythmic force time-wave forms (acquired at 100 samples/s) 
that accompany locomotion or “runs”32. Also displayed were the spatial coordinates, x and y, of the 
lateral movements as a function of time. With a mouse-controlled cursor the program user marked the 
beginning and ending of 20 separate runs that were 2.5 or more strides long. For each mouse, 10 runs 
were taken from the beginning of the recording session and 10 additional runs were taken from the end 
of the session and counting back toward the middle. The force-time information and corresponding 
spatial information were then subjected to a series of calculations that produced stride length (mm) and 
stride rate (Hz, i.e., strides/s). For a run to qualify for inclusion in the analysis it had to have a nearly 
straight-line trajectory between its starting and ending points, no pausing, and be comprised of 2.5 or 
more strides.

Dopaminergic markers.  Tissue collection.  Mice were deeply anesthetized and transcardially per-
fused with ice-cold phosphate buffered saline. A coronal section through the striatum was cut using an 
ice-cold Zivic rodent brain matrix. The striatum from each hemisphere was isolated and weighed sepa-
rately. For catecholamine analysis, one unilateral striatum was homogenized in 50-fold (weight: volume) 
ice-cold PCA buffer (0.1 N perchloric acid, 0.2 mM sodium metabisulfite). The homogenized tissue was 
briefly sonicated with a Branson Sonifier Cell Disruptor (Danbury, CT) and centrifuged at 14,000 g for 
10 min at 4 °C. The supernatant was stored at − 80 °C. For protein analysis, the remaining unilateral 
striatum was homogenized in Ripa buffer (50 mM Tris, pH 8.0; 150 mM sodium chloride; 1.0% Triton 
X-100; 0.5% sodium deoxycholate; 0.1% sodium dodecyl sulfate) containing Roche ‘Complete’ Protease 
inhibitor cocktail. The homogenate was centrifuged at 10,000 g for 5 min at 4 °C. The supernatant was 
stored at − 80 °C.

Dopamine, DOPAC, and HVA analysis.  High pressure liquid chromatography was performed using 
an ESA Coulochem III electrochemical detector (Bedford, MA) on a MD-150 ×  3.2 mm column with 
MD-TM hplc buffer (75 mM sodium dihydrogen phosphate, monohydrate; 1.7 mM 1-octanesulfonic 
acid, sodium salt; 100 μ L/L triethylamine; 25 μ M EDTA-tetrasodium salt, tetrahydrate; 10% acetonitrile; 
pH 3.0).

The samples were diluted with MD-TM hplc buffer and filtered through a 0.22 μ M syringe filter to 
remove any fine particulates. 100 μ L was injected onto the HPLC and eluted with MD-TM mobile phase 
at a rate of 0.6 mL/min. Concentrations of dopamine, DOPAC, and HVA in the striatal samples were 
obtained by comparing to a series of catecholamine standards. The levels of dopamine and its metabolites 
were normalized to tissue weights.

Tyrosine hydroxylase and dopamine transporter measurements.  Striatal tissue was homogenized 
in Ripa buffer (50 mM Tris, pH 8.0; 150 mM sodium chloride; 1.0% Triton X-100; 0.5% sodium 
deoxycholate; 0.1% sodium dodecyl sulfate) containing Roche ‘Complete’ Protease inhibitor cock-
tail. Protein concentration was determined using the Coomassie blue dye-binding assay (BioRad). 
Striatal lysates were separated using SDS-PAGE and then transferred to polyvinylidene difluoride 
membranes (BioRad, Hercules, CA). Blots were probed with the following primary antibodies: 
mouse anti-tyrosine hydroxylase (TH, MAB318,EMD Millipore), rat anti-dopamine transporter 
(DAT, MAB369, EMD Millipore), and mouse anti-β -actin (A5441, Sigma-Aldrich). The following 
secondary antibodies were used: Cy5-conjugated donkey anti-mouse IgG (Jackson Immunoresearch), 
peroxidase conjugated goat anti-mouse IgG (Sigma-Aldrich), and peroxidase conjugated goat anti-rat 
IgG (Sigma-Aldrich).

Immunohistochemical staining for TH was performed as previously described33. Briefly, 16-micrometer 
floating coronal sections through the substantia nigra were stained for TH (1:500, Abcam). Sections 
were mounted onto slides, blinded, and imaged by light microscopy. Forty-five sections from the rostral 
to caudal aspects of the substantia nigra (1.06 to 4.16 nm caudal of Bregma) were stained and photo-
graphed34. All images were captured using identical settings. The area fraction of TH staining was ana-
lyzed by Image J software35.

Statistical Analyses.  All statistical analyses were conducted using PASW Statistics 18, Release 
Version 18.0.0 (SPSS, Inc., 2009, Chicago, IL). Means and standard errors were computed for each var-
iable. Analyses included, where appropriate, factorial ANOVAs, including repeated measures ANOVAs 
(rmANOVAs), and one-way ANOVAs. All ANOVA models contained genotype as a between-subjects 
variable. The rmANOVA models also typically contained either one within-subjects variable (e.g., 
blocks of trials) or two within-subjects variables (e.g., trials and sessions). Simple main effects were 
calculated in the case of a significant interaction. In the event of a violation of sphericity as measured 
by Mauchly’s sphericity test, the F statistic, degrees of freedom, and p-value were all corrected via the 
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Greenhouse-Geisser or Huynh-Feldt method in accordance with accepted guidelines36. For a significant 
F value for main and simple effects, pairwise comparisons were used to compare means over the repeated 
measure. Probability values of p <  0.05 denoted significance for all analyses, and multiple comparisons 
were Bonferroni adjusted.
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