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Ultra-low-dose aspirin has shown a prothrombotic effect in the laser-induced thrombosis model. Several studies of our laboratory
have shown a positive effect in rats with two different experimental models of portal hypertension: portal vein ligation, a model
with an almost normal liver, and 30 days of bile duct ligation, a model with cirrhosis and presence of ascitis. In both models of
portal hypertensive rats, bleeding time was prolonged and thrombi formation, in a laser-induced model of thrombi production,
decreased. The hypotheses of the presented studies were that ultra-low-dose aspirin could decrease the bleeding complications in
these models and that the mechanism for these effects could act thorough the COX pathway. In different studies, ultra-low dose
of aspirin normalized the induced hemorrhage time, thrombi production, and platelet-endothelial cell interaction. The possible
beneficial role of these doses of aspirin and mechanism of COX 2 inhibition are discussed.

1. Introduction

Hemorrhage in portal hypertension is still a lethal compli-
cation of cirrhosis in patients in whom clinical decompensa-
tion has already developed. Treatment of hemorrhage risk is
pointed to the decrease of elevated portal pressure, mostly
by vasoconstrictors, and in some cases to the decrease of
elevated liver increased vascular resistance [1]. However, the
cause of hemorrhage increased risk is multifactorial. Primary
and secondary haemostases as well as fibrinolysis are altered
[2].

Primary haemostasis alterations are an important com-
ponent of the haemorrhage observed in hepatic cirrhosis
and were firstly described by Thomas et al. as alterations of
platelet aggregation [3, 4]. Since then, multiple platelet prob-
lems have been described: disorders of prostanoid synthesis,
defective signal transduction, defects in platelet glycoprotein
Ib, and a storage pool defect [5–8]. Platelet adhesion, the
first step in platelet function following endothelial damage,
is also altered in liver cirrhosis. Although the nature of
platelet alterations is multifactorial, the impairment in

platelet adhesion was the more evident finding in cirrhotic
patients, even those with compensated cirrhosis in a study
of Ordinas et al. [9]. The method described by this group,
which studies platelet adhesion under flow conditions, shows
platelet adhesion impairments present in cirrhotic patients
that are more consistent than the changes found with
standard aggregometric procedures. Increased endothelial
synthesis of potent inhibitors of platelet aggregation, nitric
oxide (NO), and prostacyclin (PGI2) also takes part in
the impairment of primary haemostasis present in hepatic
cirrhosis. In a previous study done by Albornoz et al.,
platelet adhesion and haemorrhagic time were normalized
after inhibiting NO synthesis with N(G)-nitro-L-arginine
(LNNA) in bile-duct-ligated rats [10]. Despite these studies,
the importance of platelet dysfunction to the haemostatic
disturbance in cirrhosis has not been completely elucidated
nor treatments of hemorrhage in portal hypertension aimed
to correct these problems.

Ultra-low-dose aspirin produces an increased interaction
between platelets and endothelial cells in the normal rat. Por-
tal hypertension produced a decreased interaction between

mailto:christian.doutremepuich@heph.u-bordeaux2.fr


2 Thrombosis

platelets and endothelial cells and a prolonged hemorrhagic
time. These interaction alterations as well as hemorrhage
have been shown to be normalized in experimental portal
hypertension models in the rat. In this paper the effects of
ultra-low-dose aspirin in rats with portal hypertension and
the mechanism underlying this effect will be reviewed.

2. Methods

2.1. Animals. Male Wistar rats (200–250 g) purchased from
Delpre Breeding Center (St. Doulchard, France) were housed
separately and acclimatized before use under conditions of
controlled temperature (25 ± 2◦C) and illumination (12 h
light/dark cycle). They were fed with standard rat chow and
water ad libitum. Animals received care in compliance with
the European Convention of Animal Care.

2.2. Surgical Procedures

2.2.1. Production of Portal Hypertension. After 1 week of
acclimatization, rats were randomized and separated in two
groups: one consisted in sham-operated rats and the other
formed by portal hypertensive rats. Portal hypertension was
induced by a calibrated portal vein stenosis, according to
the procedure described by Vorobioff et al. [11]. Rats were
anesthetized with Ketamine (Panpharma, Fougères, France)
90 mg/kg body weight, i.m., and then a midline abdominal
incision was made. The portal vein was located and isolated
from the surrounding tissues. A ligature of 3-0 silk was
placed around the vein and snugly tied to a 20 gauge blunt-
end needle placed alongside the portal vein. The needle
was subsequently removed to yield a calibrated stenosis of
the portal vein. Sham-operated rats underwent an identical
procedure except that portal vein was isolated but not
stenosed.

Animals were housed during fourteen days after the oper-
ation to develop portal hypertension in the corresponding
group.

2.2.2. Production of Biliary Cirrhosis. Cirrhosis was produced
by bile duct ligation (BDL), similar to the procedure
described by Kountouras et al. [12]. Rats were anesthetized
with Ketamine (Panpharma, Fougères, France) 90 mg/kg
body weight, i.m., and then a midline abdominal incision
was made. In the BDL group, the common bile duct was
isolated, double-ligated with nonresorbable suture (silk 3-
0), and up to a 6-mm section resected between the two
ligatures. The abdominal incision was then closed with
sutures (Vycril 4.0), and the rats were allowed to recover.
In the control group, the abdomen was closed following
minimal manipulation of the abdominal content. BDL and
control rats were then studied thirty days after surgery.

2.3. Thrombus Induction. Animals were anesthetized with
200 mg/kg of thiopental sodium (Pentothal, Laboratoires
Abbott, Rungis, France), and a median laparotomy was
performed. The intestinal loop was placed on the microscope

table, and vascular lesions were induced by Argon laser
(Stabilite 2016, Spectra Physics, France).

The wavelength used was 514 nm, and the energy was
adjusted to 120 mW. The laser beam was applied for 1/15 sec.
The dynamic course of thrombus formation was contin-
uously monitored with an inverted microscope (Axiovert,
Zeiss, France). A schematic view of the apparatus used has
been previously described [13]. Arterioles between 15 and
25 μm diameter were used.

Two parameters were assessed during each procedure:
the number of emboli (NE) removed from the thrombus
by blood flow after an injury produced by the laser shot
and the duration of embolization (DE), defined as the
time between the first and the last emboli occurring after
thrombus formation, expressed in minutes.

2.4. Induced Hemorrhagic Time. An experimental model of
induced hemorrhagic time (IHT) was performed 10 minutes
before thrombosis induction by laser. The tail of the rat was
immersed in water for 5 minutes at 37◦C and sectioned 6 mm
from the extremity. IHT measured corresponded to the time
between the tail section and the end of bleeding, expressed in
seconds.

2.5. Drugs Tested. The amounts of 1 mg/mL and 100 mg/mL
were obtained by diluting a solution of acetylsalicylate
(Aspegic, Sanofi-synthelabo, France) 500 mg/5mL. Aspirin
dilutions were purchased from Boiron Laboratories (Sainte-
Foy-Les-Lyon, France) and were prepared as follows. 1 g
of pure, finely powdered aspirin were suspended in 99 mL
of alcohol (70◦). After being vigorously shaken, 1 mL of
this dilution was then mixed with 99 mL of distilled water
and vigorously shaken (dilution 1). The latter process was
repeated until obtaining desired dilutions 14 times (dilution
15). Alcohol and sterilized water following the above-
mentioned procedures without adding the aspirin was used
as placebo of dilution 15. Aspirin or the corresponding
placebo was subcutaneously administered at a final volume
of 1 mL/kg rat weight. The different placebos were used to
avoid interferences due to the different kinds of preparations
of aspirin used. Dilution 15 of aspirin was reported to have
prothrombotic effect in previous studies [13].

Indomethacin (Indocid, MSD, Merck, Paris, France) and
NAME (nitro-arginine-methyl ester, Sigma Aldrich, Saint
Quentin Fallavier, France) were injected subcutaneously at
doses of 2.5 mg/kg and 30 mg/kg, respectively, prepared in a
final volume of 1 mL/kg of rat weight.

Selective inhibitors of COX 1, SC-560 and of COX 2, NS-
398, were purchased from Cayman Chemical (Ann Arbor,
Mich, USA), and suspended in carboxymethyl-cellulose
(CMC) 0.5 g/L at a final volume of 1 mL/kg rat weight. The
CMC solution without adding the inhibitors was used as
placebo. COX selective inhibitors were used at the dose of
10 mg/kg and were administered per os.

SC-560 is a member of the diaryl heterocycle class of
COX inhibitors which includes celecoxib (Celebrex) and
rofecoxib (Vioxx). However, unlike these selective COX 2
inhibitors, SC-560 is a selective inhibitor of COX 1. Using
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human recombinant enzymes, the IC50 value for SC-560
with respect to COX 1 is 9 nM, while the corresponding IC50

value for COX 2 is 6.3 μM. Thus, SC-560 shows 700-fold
selectivity for the COX 1 enzyme. SC-560 is orally active in
the rat, where 10 mg/kg completely abolishes the ionophore-
induced production of thromboxane B2 in whole blood [14–
16].

NS-398 is a selective inhibitor of COX 2. The IC50 values
for human recombinant COX 1 and 2 are 75 and 1.77 μM,
respectively. The IC50 values for ovine COX 1 and 2 are 220
and 0.15 μM, respectively, [17, 18].

3. Results and Discussion

3.1. First Study

3.1.1. Modifications of Laser-Induced Thrombosis and Hem-
orrhage Produced by Experimental Prehepatic Portal Hyper-
tension. Effects of Ultra-Low-Dose Aspirin. The first study
was done in our Laboratory with 4 groups of rats. Two of
them underwent portal vein ligation surgery and developed
portal hypertension. In the other two groups, the portal
vein was identified but not ligated (sham-operated groups).
One of the portal hypertensive groups received ultra-low-
dose aspirin, and the other received placebo. The same was
repeated with the sham-operated groups. Two separated
studies were done to duplicate the observations. The first
pilot study was done with an n = 5 to 9 rats per group and
the confirmatory study with n = 25 to 32 rats per group.
This study was published in 2005 [19]. After 2 weeks of portal
vein ligation, portal hypertensive rats have shown decreased
thrombi formation expressed as a decreased number of
emboli and a decreased embolization time. Induced hemor-
rhagic time was significantly prolonged as well. As a result of
ultra-low-dose aspirin injection, both alterations have been
normalized in both studies. It was clear that the laser-induced
thrombus production was a new, interesting, in vivo model
for observing these alterations in portal hypertension. Ultra-
low-dose aspirin was not only normalizing these platelet-
endothelial cell interaction alterations but was normalizing
the induced hemorrhagic time as well. Further research was
aimed to clarify the mechanism underlying these effects.

3.2. Second Study

3.2.1. Inhibition of NO Synthesis or Inhibition of COX and
Its Modifications of the Normalizing Effects of Ultra-Low-
Dose Aspirin in Experimental Prehepatic Portal Hypertension.
As nitric oxide (NO) and prostacyclin (PGI2) are two
major endothelial vasodilators that play a major role in
the pathophysiology of portal hypertension [20] and both
decrease platelet aggregation, inhibition of their effects or
function were tried in the search of an explanation in the
mechanism of effect of ultra-low-dose aspirin. Besides, NO
and PGI2 synthesis are modified by aspirin [21]. A new
study was then designed with 12 groups of rats. The first 4
groups were identical to the previously described study and
were used to confirm the previous results and as baseline
for the study. The other 8 groups were also sham and portal

hypertensive rats with and without ultra-low-dose aspirin,
but 4 of them received L-nitro-arginin methyl Ester (NAME,
an inhibitor of NO synthesis) and the other 4 indomethacin,
a nonselective COX inhibitor [22]. The NAME group has
not shown clear modifications in the normalizing effect
of ultra-low-dose aspirin. On the contrary, indomethacin
increased the antithrombotic changes observed in portal
hypertensive animals and induced an antithrombotic effect
in sham-operated rats as well. Despite this antithrombotic
effect, the prothrombotic effect of ultra-low-dose aspirin also
increased in sham-operated as well as in portal hypertensive
group. Indomethacin produced also a prolonged Induced
hemorrhagic time that was normalized by ultra-low-dose
aspirin in sham-operated rats but was not modified in portal
hypertensive ones. Indomethacin had an antithrombotic
effect on the rat but increased the prothrombotic effect of
ultra-low-dose aspirin. This paradoxical effect was supposed
to be caused by the differential effect over COX 1 and COX 2.

3.3. Third Study

3.3.1. Effects of Previous Inhibition of COX 1 or COX 2 on the
Prothrombotic Effects of Ultra-Low-Dose Aspirin. To clarify
the apparently opposed effects of indomethacin in portal
hypertensive rats treated with ultra-low-dose aspirin, a new
study was designed [23]. In this study, 3 groups (sham
placebo-portal hypertension, placebo-portal hypertension,
ULDA) were used as control. Other two subsets of 3 groups
with the same above described treatments and surgery were
treated with SC 560 (a selective COX 1 inhibitor) or NS 398
(a selective COX 2 inhibitor) previous to the treatment with
ultra-low-dose aspirin. The treatment with selective COX 1
inhibitor induced a tendency to decrease the production of
thrombi in sham-operated animals. Despite this apparently
antithrombotic effect, the effect of ultra-low-dose aspirin of
increasing the number of emboli in portal hypertensive rats
remained equally active. The selective inhibition of COX 2
made the effect of ultra-low-dose aspirin inactive. Dosing 6
PGF1α in this study has shown increased values in portal
hypertension. The use of ultra-low-dose aspirin returned
these values to normal in spite of the presence of portal
hypertension. The inhibition of COX 2 reduced the decrease
in thrombi production observed in portal hypertensive rats.
Beside this prothrombotic effect, similar to the effect of ultra-
low-dose aspirin, the pretreatment with COX 2 inhibitor
blunted the effect of ultra-low-dose aspirin in thrombi
production of portal hypertensive rats. The conclusion of this
study stated that ultra low dose aspirin was acting through
the COX 2 pathway.

3.4. Fourth Study

3.4.1. Effects of Ultra-Low-Dose Aspirin in Rats with Biliary
Cirrhosis. Rats with prehepatic portal hypertension have an
almost normal liver. This experimental model was chosen
to focus the attention on the effects of portal hypertension
on thrombi formation and interaction between platelet and
endothelial cell. In an unpublished study of our laboratory,
the effect of ultra-low-dose aspirin was tested in cirrhotic
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Figure 1: Laser-induced thrombus formation. Study of number
of emboli (expressed in number). Control: sham-operated rats.
Cont. + ULDA: sham-operated rats pretreated with ULDA. Cirrh.:
cirrhotic rats. Cirrh. + ULDA: cirrhotic rats pretreated with ULDA.
a,bP < 0.001 versus control (ANOVA, Bonferroni post-test).

rats with ascites produced by 30 days of common bile duct
ligation. Although patients with primary biliary cirrhosis
(PBC) showed better preservation of hemostasis with less
fibrinolytic activation and platelet function differs between
patients with cholestatic and noncholestatic liver disease
and is stable or even hyperactive in patients with PBC
and primary sclerosing cholangitis [24, 25], common bile
duct ligated rats have shown a clear decrease in thrombi
formation in the laser study and a prolonged induced
hemorrhage time. Hemorrhage can be a complication of
biliary cirrhosis. For example, PBC patients had an earlier
recurrence of esophageal varices compared to non-PBC
patients and variceal bleeding complicates PBC, when it is
histologically advanced [26, 27]. In our study with laser-
induced thrombosis, 54 rats were randomly assigned to 4
groups, two of them underwent common bile duct ligation
and in the other two bile duct was identified but not
ligated. One group of the sham-operated rats and one of
the groups with biliary cirrhosis were treated with ultra-
low-dose aspirin; the other two received placebo. After 30
days of common bile duct ligation induced a decreased
thrombi formation and a decreased time of embolization
(Figures 1 and 2). Induced hemorrhagic time was clearly
prolonged (Figure 3). After treatment with ultra-low-dose
aspirin, sham-operated rats increased the number of emboli
and the duration of embolization and the rats with biliary
cirrhosis normalized thrombosis and hemorrhage. Statistical
results are shown in Figures 1 to 3. Figure 4 shows that the
platelet number remained stable in all the 4 groups. Only a
small hematocrit drop was observed in the group with biliary
cirrhosis and treated with placebo (Figure 5).

4. General Discussion

These studies with the laser-induced thrombosis model have
shown that this in vivo model seems to be useful in the direct
observation of the interaction between the platelets and the
endothelial wall. This interaction is clearly modified in both

Duration of embolisation

0

1

2

3

4 a

b

c

Groups

(m
in

)

Control Cont. + ULDA Cirrh. Cirrh. + ULDA

Figure 2: Laser-induced thrombus formation. Study of Duration of
embolisation (expressed in minutes). Control: sham-operated rats.
Cont. + ULDA: sham-operated rats pretreated with ULDA. Cirrh.:
cirrhotic rats. Cirrh + ULDA: cirrhotic rats pretreated with ULDA.
aP < 0.05 versus control; bP < 0.01 versus control; cP < 0.05 versus
cirrhosis (ANOVA, Bonferroni post-test).
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Figure 3: Study of induced hemorrhagic time (expressed in sec-
onds). Control: Sham operated rats. Cont + ULDA: Sham-operated
rats pretreated with ULDA. Cirrh.: Cirrhotic rats. Cirrh. + ULDA:
Cirrhotic rats pretreated with ULDA. aP < 0.05 versus Control.
(ANOVA, Bonferroni post-test).
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Figure 4: Study of platelet count (expressed in number × 103).
Control: sham-operated rats. Cont + ULDA: Sham-operated rats
pretreated with ULDA. Cirrh.: cirrhotic rats. Cirrh. + ULDA:
cirrhotic rats pretreated with ULDA.
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Figure 5: Study of Hematocrit (expressed in %): Control: Sham
operated rats. Cont + ULDA: Sham operated rats pretreated with
ULDA. Cirrh: Cirrhotic rats. Cirrh + ULDA: Cirrhotic rats pre-
treated with ULDA. aP < 0.01 versus Control. (ANOVA, Bonferroni
post-test).

experimental models of portal hypertension. Although laser-
induced thrombi generation alterations are accompanied by
a prolongation of induced hemorrhagic time, they do not
always move in a parallel way. This model proves itself
as a very sensitive indicator of alterations in the platelet-
endothelial cell interaction. The direct observation of the
mesenteric vascular bed keeps interference with the haemo-
static process to a minimum and does not use perfusion
chambers, perfusion pumps, or anticoagulated blood.

The effects of ultra-low-dose aspirin have shown an
increased thrombi generation in the normal rat. This effect
appears to normalize the decreased thrombi formation
observed in portal hypertension.

The use of two different models of portal hypertension,
one with an almost normal liver and the other with a clear
cirrhosis, ascitis, and edema, shows that the prothrombotic
effect of ultra-low-dose aspirin acts regardless of the liver
function.

Regarding hemorrhage, the same normalizing effects of
these doses of aspirin have been observed in laser-induced
thrombosis and in induced hemorrhage time.

The studies with indomethacin and with selective COX
inhibitors show that this effect seems to act through the COX
2 pathway. This observation has been confirmed in a later
study in COX 1−/− or COX 2−/− knockout mice [28]. COX
1 selective inhibition has an effect opposite to that of ultra-
low-dose aspirin whether COX 2 selective inhibition induces
a prothrombotic effect similar to the effect of ultra-low-dose
aspirin and decreases the effect of a posterior administration
of ultra-low-dose aspirin.

This ultra-low dose of aspirin offers the possibility
of a new approach to the treatment of the hemorrhagic
tendency in patients with portal hypertension, not centered
in hemodynamic factors but on normalizing the interaction
between platelet and the endothelial cell.

In conclusion this paper reviews the prothrombotic
properties of ultra-low-dose aspirin in prehepatic portal
hypertensive rats and in bile- duct-ligated cirrhotic rats,
leading to the normalization of altered thrombi formation
in the mesenteric vascular bed and the normalization of

induced hemorrhagic time. These beneficial effects could
be due to COX 2 inhibition and could be useful in the
treatment of the altered primary haemostasis observed
in this pathology and in the prevention of hemorrhagic
complications of these patients.
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