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Introduction
Osteoporosis is a widespread disease of bone metabolism, 
manifested mainly by low bone mineral density (BMD). As 
one kind of chronic diseases, osteoporosis requires consistent 
treatment which indicate consequences such as bone turnover 
or fracture if certain categories of its drug is delayed (eg, the 
world wide pandemic, COVID-19).1 Although bone loss is 
preventable by early diagnosis and several measures such as 
providing proper nutrition in childhood and keeping physical 
activity,2 osteoporosis is still a problem worldwide.

One of the key pathophysiological mechanisms of osteo-
porosis is excessive bone resorption (caused by osteoclasts) 
over bone formation (caused by osteoblasts).3 Peripheral 
blood mononuclear (PBMs) cells may act as precursors for 
osteoclasts (bone resorbing cells)4 especially for the adult 

peripheral skeleton (eg, femur as one of the most important 
skeletal sites) where circulating mononuclear cells provide the 
only source of osteoclast precursors, making PBMs a suitable 
cellular model for the study of osteoporosis.5 There have been 
a massive number of studies analyzing genes for dysregulation 
between high and low BMD,6-9 but there is still a lack of vali-
dated markers, while most of the studies were limited to a 
single dataset without further mechanistic exploration of the 
screened genes. Therefore, in this analysis, we combined mul-
tiple datasets, used LASSO regression for screening of marker 
features between high and low BMD, and used the validation 
set data to construct SVM model to evaluate the diagnostic 
accuracy of the feature genes, and further combined with the 
upstream miRNAs of the feature genes and transcription fac-
tor regulatory mechanisms to explore downstream functions. 
And the flow chart of this study was shown in Supplemental 
Figure S1.
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GSE62402 were identified as the optimal differential genes combination. Moreover, the SVM validation analysis in GSE56814 and GSE56815 
datasets showed that the characteristic gene combinations presented high diagnostic effects, and the model AUC areas for GSE56814 was 
0.899 and for GSE56815 was 0.921. Furthermore, the subcellular localization analysis of the 8 genes revealed that 4 proteins were located 
in the cytoplasm, 3 proteins were located in the nucleus, and 1 protein was located in the mitochondria. Additionally, the related TFs and 
miRNAs by performing TF-target and miRNA-target prediction for 5 genes (AKT1, SHMT1, ZNF473, RNF40 and VASH1) were investigated 
from PPI network.
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Materials and Methods
The collection of transcriptome data

Three datasets (GSE62402, GSE56814, and GSE56815) con-
taining osteoporosis samples’ transcriptome gene expression 
data were obtained from Gene Expression Omnibus (GEO)10 
(https://www.ncbi.nlm.nih.gov/) database of NCBI.

Usually, women over the age of 50 are the most likely people 
to develop osteoporosis (with nearly a 4 times higher rate); 
however, the data of this study were downloaded from GEO 
public data, which did not included the age information of the 
sample, so the study did not analyze the age. Briefly, 10 PBM 
samples (including 5 high hip BMD subjects and 5 low hip 
BMD subjects) from GSE62402, and 73 PBM samples 
(including 42 high hip BMD subjects and 31 low hip BMD 
subjects) from GSE56814 were detected using the GPL5175 
[HuEx-1_0-st] Affymetrix Human Exon 1.0 ST Array [tran-
script (gene) version]. Furthermore, 80 PBM samples (includ-
ing 40 high hip BMD subjects and 40 low hip BMD subjects) 
from GSE56815, were detected using the platform GPL96 
[HG-U133A] Affymetrix Human Genome U133A. Among 
them, GSE62402 was used for mining key characteristic genes, 
while GSE56814 and GSE56815 were validation datasets to 
verify the efficacy of characteristic genes in diagnosing high 
and low BMD.

Data preprocessing

For each of the 3 datasets, Array expression matrix file was pre-
processed and normalized. Then platform probe annotations 
were downloaded directly and probes mapped to gene symbols 
were kept for gene expression. Average expression value was 
taken as one gene’s expression value if different probes mapped 
to one same gene.

Identif ication of significantly differentially 
expressed mRNA

In GSE62402 cohort, “limma” package (version: 3.34.7)11 was 
applied to identify differentially expressed mRNA between 
high hip BMD group and low hip group. mRNAs which shown 
P-value <.05 and absolute log (fold change) >.263 (1.2-fold 
change) were determined to be differentially expressed.

Enrichment analysis

For differential expressed mRNAs, online website the database 
for annotation, visualization and integrated discovery 
(DAVID)12 (Version 6.8, https://david-d.ncifcrf.gov/) was 
performed to generate enriched Gene Ontology (GO) biology 
progress (BP)13 and KEGG pathway.14 Terms with P-value 
<.5 and enriched counts >2 were considered enriched.

All mRNA sorted by log (fold change) were loaded into 
“clusterProfiler” package (Version 3.1.6)15 for GSEA analysis 
with MSigDB16 (c2.cp.kegg.v7.1.symbols.gmt) dataset as 

background gene set. “Benjamini & Hochberg” (BH) method 
was applied to generate adjusted P-value and pathways with 
adjusted P-value <.05 were considered to be significant.

Significant markers screening and validation

Firstly, optimization algorithm was performed to screen sig-
nificant markers from GSE62402. Expression values of dif-
ferential genes in each sample combined with the grouping 
information of the samples were obtained, LASSO algorithm 
was used for the screening of the feature genes. LASSO algo-
rithm used L1-norm to punish model parameters, which 
avoided model overfitting. To filter the feature genes, the 
“glmnet” package (Version 4.0-2 https://cran.r-project.org/
web/packages/glmnet/index.html)17 was used for regression 
analysis of the target gene set, with parameters: nfold = 20 
(20-fold cross-validation).

Then the optimal feature gene combinations were validated 
in the other 2 datasets GSE56814 and GSE56815. Briefly, the 
expression levels of the selected feature genes were first 
extracted from GSE62402 and their expression levels in differ-
ent groups were demonstrated.

Next, Support Vector Machine (SVM) method18 in “e1071” 
(Version 1.6-8, https://cran.r-project.org/web/packages/e1071) 
was utilized to construct a disease diagnosis classifier (Core: 
Sigmoid Kernel; Cross: 100-fold cross validation.). The model 
efficacy was evaluated by plotting ROC curves using the 
“pROC” package (Version 1.12.1) in GSE56814 and 
GSE56815, respectively.

Subcellular localization of signature gene proteins

The online tool WoLF PSORT (https://wolfpsort.hgc.jp/)19 
was used to perform subcellular localization of the proteins 
corresponding to the above key feature genes.

To perform subcellular localization, the species was set to 
animal, and the amino acid sequence corresponding to the 
protein was treated as input. In addition, based on the score 
of each gene protein in each cellular location was obtained by 
prediction, the cellular location with the highest score was 
selected as the final cellular location of the corresponding 
protein.

Construction of PPI network

The gene proteins that interact with the proteins encoded by the 
signature genes were predicted and analyzed in STRING 
(Version: 10.0, http://www.string-db.org/) database.20 The input 
gene set was the key signature genes obtained above, the species 
was set to homo and the parameter PPI score was set to 0.9 
(highest confidence). After obtaining the PPI relationship pairs, 
the network graphs were constructed using Cytoscape software 
(version 3.4.0, http://chianti.ucsd.edu/cytoscape-3.4.0/).21 The 
CytoNCA plug-in (Version 2.1.6, http://apps.cytoscape.org/

https://www.ncbi.nlm.nih.gov/
https://david-d.ncifcrf.gov/
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/glmnet/index.html
https://cran.r-project.org/web/packages/e1071
https://wolfpsort.hgc.jp/
http://www.string-db.org/
http://chianti.ucsd.edu/cytoscape-3.4.0/
http://apps.cytoscape.org/apps/cytonca
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apps/cytonca)22 was used to perform node connectivity analysis 
with parameters set to “without weight.”

KEGG pathway enrichment analysis was then performed 
with the R package “clusterProfiler” for each of the above pro-
tein genes that have interactions with key feature genes

Upstream transcription factor and miRNA 
prediction of signature genes

Upstream transcription factor (TF) prediction analysis of the 
signature genes in PPI network was performed using the 
“iRegulon” plug-in (Version 1.3, http://iregulon.aertslab.
org/)23 of Cytoscape software, with default parameter settings 
as following: Motif collection: 10K (9713 PWMs); Track col-
lection: 1120 ChIP-seq tracks (ENCODE raw signals); 
Minimum NEScore: 3; Rank threshold for visualization: 5000; 
ROC threshold for AUC calculation (%): 0.03; Minimum 
identity between orthologous genes: 0; Maximum false discov-
ery rate (FDR) on motif similarity: 0.001; Motif rankings 
database: 20 kb centered around TSS (7 species); Track rank-
ings database: 20 kb centered around TSS (ChIP-seq-derived). 
Then, the transcriptome factors that bind at least 3 target pro-
teins were selected, and TF-target pairs were used to construct 
transcription factor regulatory networks.

For upstream miRNA, mirwalk2.0 (http://zmf.umm.uni-
heidelberg.de/apps/zmf/mirwalk2/)24 combined with results 
from 6 commonly used databases (miRWalk, Microt4, 
miRanda, PITA, RNA22, and Targetscan) was performed for 
miRNA prediction for the obtained key feature genes. If the 
predicted miRNA-mRNA relationship pairs appeared in the 
prediction results of ⩾5 databases mentioned above, this 
miRNA was considered to regulate the corresponding target 
gene, and miRNA-mRNA relationship pairs were kept for 
constructing network using Cytoscape software.

Statistical analysis

All packages used in this study was R (version: 3.6.1) package. 
For P-value or adjusted P-value, we considered .05 as statisti-
cally significant.

Results
Differentially expressed genes were enriched in 
metabolism related pathways

Using “limma” package with described method, 23 up-regu-
lated and 233 down-regulated differentially expressed mRNAs 
between high hip BMD group and low hip BMD group was 
identified in GSE62402 (Figure 1A, Supplemental File 1). 
Pattern in heatmap of differential mRNAs also shown most of 
the differential mRNAs were significant down-regulated in 
high hip BMD group (Figure 1B). Functional annotation of 
these differentially expressed genes showed that a total of 18 
GO BP terms and 13 KEGG pathways were enriched (Figure 

1C and D; Supplemental File 2), respectively. More interesting, 
these genes were enriched in multiple metabolism-related bio-
logical processes and pathways, such as metabolic pathways, 
carbon metabolism, glyoxylate and dicarboxylate metabolism 
and so on.

In addition, GSEA pathway enrichment analysis showed 
that 7 and 27 KEGG pathways were enriched in high hip 
BMD group and low hip BMD group ( Figure 1E and F; 
Supplemental File 3,), of which many terms reflect different 
kinds of important signature such as hedgehog signaling path-
way and protein export pathway.

Screening and validation of marker genes

Based on the expression levels of the differential genes in 
GSE62402, the LASSO regression algorithm was used for 
the screening of the optimal differential genes combination, 
and the parameter plot of the algorithm is shown in Figure 
2A. For the accuracy of the model, we chose lambda.min as λ 
for model construction, and finally detected 8 differential 
genes: SH3BP1, NARF, ANKRD34B, RNF40, ZNF473, 
AKT1, SHMT1, and VASH1. Furthermore, the expression of 
the 8 genes in the high bone density group were all down-
regulated in comparison to that in the low bone density group 
(Figure 2B).

Based on the 8 optimized feature differential genes, a 
sample risk diagnosis model to identify samples with high 
and low bone density was firstly constructed in GSE56814 
and GSE56815 datasets, respectively. And the ROC curves 
were then used to evaluate the sample identification diagno-
sis effect. As shown in Figure 2C, in both datasets, the char-
acteristic gene combinations presented high diagnostic 
effects, and the model AUC areas both reached above 0.8 
(AUC = 0.899 for GSE56814 and AUC = 0.921 for 
GSE56815).

Subcellular localization of marker genes

The proteins corresponding to the above 8 key signature genes 
were subcellularly localized using the online tool WoLF 
PSORT as described in methods.

As shown is Figure 2D, 4 proteins (ANKRD34B, AKT1, 
SHMT1, and NARF) were located in the cytoplasm, 3 proteins 
(SH3BP1, RNF40, and ZNF473) were located in the nucleus, 
and 1 protein VASH1 was located in the mitochondria.

PPI network construction

The STRING database was used to search for the proteins 
associated with the above 8 signature genes’ proteins, and only 
5 proteins, including AKT1, SHMT1, ZNF473, RNF40, and 
VASH1, were finally identified as the key genes’ proteins 
which correspond to 188, 21, 8, 17, and 1 interaction proteins, 
respectively (Supplemental File 4). For the 5 key genes’ 

http://apps.cytoscape.org/apps/cytonca
http://iregulon.aertslab.org/
http://iregulon.aertslab.org/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/
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proteins, we constructed the PPI network (Figure 3A). 
According to the PPI network, 2 differential expressed genes’ 
proteins, including INPPL1 (down-regulated) and PDGFB 
(up-regulated) were found to have close interaction relation-
ship with AKT1.

Further, the KEGG pathway enrichment analysis was 
performed for proteins interacting with the each of key 
genes in PPI network (Supplemental File 5). As illustrated 
in Table 1, the genes interacted with AKT1 were mainly 
enriched in PI3K-Akt signaling pathway, SHMT1 related 
genes were mainly enriched in metabolism related pathway, 
genes interacted with ZNF473 were mainly enriched in 
RNA shearing and transport pathway, genes interacted with 
RNF40 were mainly enriched in protein hydrolysis pathway 
and VASH1 related genes were not enriched to any pathway 
significantly.

Prediction of upstream TFs and miRNAs

The upstream transcription factor prediction analysis on the 
5 signature genes in PPI network were conducted. The 
upstreamTF which binds at least 3 signature genes were 
selected, and finally a total of 75 TFs met the requirements; 
moreover, 239 TF-target relationship pairs with the 5 signa-
ture genes were identified (Supplemental File 6). Finally, the 
transcription factor regulatory network was constructed 
(Figure 3B). According to the network, CEBPG, PRKAA1, 
STAT1, PRKAA2, and BRF1 were found to regulate 5 signa-
ture genes at the same time, which may be the key TFs.

Additionally, the upstream binding miRNAs for 7 signature 
genes (AKT1, ANKRD34B, RNF40, SH3BP1, SHMT1, VASH1, 
and ZNF473) were predicted as described in the method, and 386 
miRNA-target relationship pairs were obtained (Supplemental 
File 7). According to the miRNA-target network (Figure 3C), 

Table 1. TOP10 KEGG pathways enriched for the interacting proteins in protein-protein interaction network.

KEY_GENE ID DESCRIPTION P.ADJuST COuNT

AKT1 hsa04151 PI3K-Akt signaling pathway 9.42E-45 74

hsa04150 mTOR signaling pathway 1.74E-19 34

hsa04071 Sphingolipid signaling pathway 4.18E-19 30

hsa04152 AMPK signaling pathway 4.18E-19 30

hsa04068 FoxO signaling pathway 4.25E-19 31

hsa01521 EGFR tyrosine kinase inhibitor resistance 9.42E-19 25

hsa04066 HIF-1 signaling pathway 2.26E-18 28

hsa04062 Chemokine signaling pathway 5.51E-17 34

hsa04014 Ras signaling pathway 5.51E-17 37

hsa01522 Endocrine resistance 2.42E-15 24

SHMT1 hsa00260 Glycine, serine and threonine metabolism 5.62E-20 12

hsa00670 One carbon pool by folate 2.26E-19 10

hsa00630 Glyoxylate and dicarboxylate metabolism 3.23E-05 4

hsa01200 Carbon metabolism 3.23E-05 6

hsa01523 Antifolate resistance 0.001191394 3

hsa00270 Cysteine and methionine metabolism 0.00411742 3

hsa04146 Peroxisome 0.014655948 3

hsa00250 Alanine, aspartate and glutamate metabolism 0.029354075 2

hsa00280 Valine, leucine and isoleucine degradation 0.043012605 2

ZNF473 hsa03040 Spliceosome 6.27E-08 5

hsa03015 mRNA surveillance pathway 0.005237164 2

hsa03013 RNA transport 0.012205413 2

RNF40 hsa04120 ubiquitin mediated proteolysis 1.03E-08 6

hsa04137 Mitophagy - animal 0.006990339 2
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hsa-miR-1200, hsa-miR-1915-3p, hsa-miR-15a-3p, hsa-miR-
615-5p, hsa-miR-942-5p, hsa-miR-513a-5p, hsa-miR-149-3p, 
and hsa-miR-512-3p had targeting relationships with all 3 signa-
ture genes at the same time, which may be important miRNAs.

Discussion
In the past few decades, a massive number of researches have 
been made in exploring key genes in osteoporosis, especially for 

genes which involved in bone metabolism.6-9 Many potentially 
important genes were identified by comparing high hip and 
low hip BMD samples in different cohorts but there still lack 
comprehensive analysis and detailed exploration about marker 
genes for this disease.

Here, we used LASSO regression algorithm analysis to 
detect 8 candidate key genes (SH3BP1, NARF, ANKRD34B, 
RNF40, ZNF473, AKT1, SHMT1, and VASH1) from DEGs 

Figure 3. PPI network and regulatory network of upstream TFs and miRNAs. (A) Protein interaction network: squares indicate the 5 signature genes, 

diamonds indicate the predicted interacting protein genes from the database, green indicates down-regulated genes, red indicates up-regulated genes, 

and connecting lines indicate protein interaction relationships; (B) Transcription factor regulatory network: yellow circles indicate predicted transcription 

factors, green squares indicate 5 signature genes, the darker the color, the larger the absolute value of the difference multiplicity, and gray arrows indicate 

transcription factor regulatory target genes; (C) miRNA-target regulatory network: blue circles indicate predicted miRNAs, green hexagons indicate 7 

signature genes. The darker the color, the larger the absolute value of the difference ploidy, and yellow arrows connect the miRNA regulatory target 

genes.
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in GSE62404. Based on these 8 feature genes, high AUC 
scores (0.899 and 0.921) were observed from sample risk diag-
nosis models in the other 2 datasets GSE56814 and GSE56815. 
These consistent results in independent studies proved the 
robustness of our identification method.

After searching interacted proteins using described method, 
we determined AKT1, SHMT1, ZNF473, RNF40, and VASH1 
as the most robust marker genes from these 8 candidates. Some 
of these 5 candidate marker genes were well known as involved 
in bone mineral density, tumor related genes, metabolism and 
proliferation. For example, expression level and methylation sta-
tus of ZNF473 was reported to be correlated with bone mineral 
density25 and 8 ZNF473-related proteins were found to be 
enriched in spliceosome, mRNA surveillance pathway and 
RNA transport. AKT1 is 1 of 3 members of AKT kinase which 
regulates many processes including metabolism, cell survival, 
proliferation, angiogenesis and growth,26-29 while 188 interact-
ing proteins of AKT1 were also involved in many important 
signaling pathways such as PI3K-Akt signaling pathway, 
mTOR signaling pathway and Sphingolipid signaling. RNF40 
which interact with the tumor suppressor protein RB130 is 
involved in protein-protein and protein-DNA interaction and 
its interacting proteins were related with Ubiquitin mediated 
proteolysis and Mitophagy-animal. Besides them, 12 of 21 pro-
teins interacted with SHMT1 were related with Glycine, serine, 
and threonine metabolism. Considering that most of the 
selected 5 genes have been discovered to play important roles, 
we can hypothesis that these 5 genes might be important candi-
date markers for osteoporosis.

Following TF-target prediction combined with miRNA-
target prediction detected several TFs and miRNAs in regu-
latory networks as potential regulatory candidates. Some of 
the predicted key TFs which regulate 5 key genes simultane-
ously have well known functions. Such as PRKAA1, a cata-
lytic subunit of AMP-activated protein kinase (AMPK) 
which plays a key role in regulating cellular energy metabo-
lism.31 STAT1 is an important signal transducer and tran-
scription activator which could mediates cellular responses to 
growth factors such as interferons (IFNs).32 Besides TFs, 
several miRNAs were also predicted to target at least 3 of 5 
key genes which might have important regulatory functions 
in our study.

Additionally, this study revealed the protein subcellular 
localization of all 8 candidate genes shown that most genes 
were located in cytoplasm or nucleus and only VASH1 was 
located in mitochondria. Although our study has shown 
encouraging results, more external verification and deeper 
exploration of mechanism are required due to our research was 
mainly based on bioinformatics methods.

Conclusion
In summary, our study had identified the optimal differential 
genes combination to predict female osteoporosis risk based on 
the LASSO regression algorithm and SVM method. These 

findings will provide a theoretical basis for the clinical diagno-
sis of osteoporosis.
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