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Abstract: Inflammation is important and has been found to be an underlying cause in many acute
and chronic human diseases. Nuciferine, a natural alkaloid containing an aromatic ring, is found
in the nelumbo nucifera leaves. It has been shown to have potential anti-inflammatory activities, but
the molecular mechanism has remained unclear. In this study, we found that nuciferine (10 µM)
significantly inhibited the lipopolysaccharide (LPS)-induced inflammatory cytokine IL-6 and TNF-α
production in RAW 264.7 cells. In addition, the luciferase reporter assay results of different subtypes
of the peroxisome proliferator-activated receptor (PPAR) showed that nuciferine dose-dependently
activated all the PPAR activities. Specific inhibitors of PPARα and PPARγ significantly abolished the
production of inflammatory cytokines as well as IκBα degradation. However, PPARδ inhibitor did
not show this effect. Our results suggested a potential molecular mechanism of the anti-inflammatory
effects of nuciferine in LPS-induced inflammation, at least in part, by activating PPARα and PPARγ
in RAW 264.7 cells.
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1. Introduction

Inflammatory responses are widely implicated in vast kinds of acute and chronic human diseases,
including cancer, atherosclerosis, and diabetes [1]. Macrophages play a critical role and are involved
in the self-regulating cycle of inflammation, as macrophages produce multiple pro-inflammatory
cytokines and mediators that are involved in inflammation, such as the TNFα and the IL-6 [2].
Interference therapy that target macrophages and related cytokines may be some new approaches for
controlling inflammatory diseases.

Regulation of the inflammatory response depends on a variety of potential mechanisms, including
peroxisome proliferator-activated receptors (PPARs) actions [3]. PPARs are activated by their synthetic
or natural ligands/modulators, which lead to the PPARs to bind to their specific DNA response
elements, as heterodimers, with the retinoid X receptor (RXR) [4]. PPARs have been found to have three
subtypes, which are named PPARα, PPARβ/δ, and PPAR. They play crucial roles in the regulation of
lipid and glucose metabolism. In addition, accumulating evidence reveals that activation of the PPARs
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are involved in the various types of inflammatory processes, due to the inhibition of pro-inflammatory
genes expression and negative regulation of pro-inflammatory transcription factor signaling pathways,
in inflammatory cells [5]. Furthermore, activation of PPARs shows the anti-inflammatory effect by
inhibiting the activation of nuclear factor-κB (NF-κB), leading to a decrease of pro-inflammatory
cytokines and mediators [6]. Therefore, PPARs have been shown to be the drug targets to treat various
related inflammatory diseases, such as vascular diseases, cancer, and neurodegenerative diseases [7].
Searching for the effective ligands or modulators of PPARs, for the prevention and clinical therapeutic
options, is of great interest.

The natural product nuciferine ((R)-1,2-dimethoxyaporphine; Nuci) is an alkaloid found within
the leaves of Nymphaea caerulea and Nelumbo nucifera, which is widely planted in Asia, the Middle
East, and some countries in Africa [8]. Especially in China, lotus leaves are usually commercially
available for tea due to its pharmacologic effects, such as losing weight, heat-clearing, and detoxifying,
according to the traditional theory of Chinese medicine [9]. Recent studies showed that nuciferine, an
important component of lotus leave extracts, can improve hepatic lipid metabolism [10], increase the
glucose consumption, and stimulate insulin secretion [11]. Anti-inflammation activity of nuciferine
was also reported in potassium oxonate-induced kidney inflammation [12], as well as Fructose-induced
inflammatory responses [13], in vivo. However, the underlying molecular mechanisms of its
anti-inflammatory effects are not fully understood. Based on the inflammatory-related functions of
PPARs and the differences of the distinct tissue-specific expression, physiology, and ligand specificity of
the PPARα, PPARβ/δ, and the PPARγ, the aim of this study was to investigate the effect of nuciferine
on inflammation in lipopolysaccharide (LPS)-induced RAW264.7 cells and to observe if this effect is
mediated by the three PPAR subtypes.

2. Results

2.1. Cytotoxicity of Nuciferine on RAW264.7 Cells

To test the effect of nuciferine on the cell viabilities of RAW264.7 cells, 3-(4,5-dimethyl-2-thiazolyl)-
2,5-diphenyltetrazolium bromide (MTT) assay was performed in RAW264.7 cells, using different
concentrations of nuciferine, ranging from 1 to 50 µM. After treatment for 24 h, cell viabilities were
measured, and the results are shown in Figure 1. Compared with the control group (without nuciferine),
no significant difference (p > 0.05) were found between control and all the treatment groups, indicating
that nuciferine had no direct cytotoxicity, in this cell line. To avoid using a concentration of nuciferine
higher than the normal physiological concentration, 10 µM was used in all of the following experiments.
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Figure 1. Cytotoxicity of Nuciferine on macrophage RAW264.7 cells. Cell viabilities of RAW264.7 cells
treated with Nuciferine (0, 1, 3, 10 or 50 µM), for 24 h, were measured by MTT assay.
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2.2. Nuciferine Inhibited IL-6 and TNFα Production in LPS-Induced RAW264.7 Cells

In order to evaluate whether the nuciferine has potential anti-inflammatory activity in RAW264.7
cells, the cells were pretreated with nuciferine (1~50 µM), for 24 h, before exposure to LPS, and the
pro-inflammatory cytokines IL-6 and TNFα were examined (Figure 2). Without the LPS stimulation,
the concentrations of TNFα and IL-6, in the cell medium, by ELISA were 380.5 ± 51.3 pg/mL and
352.1 ± 60.1 pg/mL, respectively (Figure 2A,B). The LPS treatment significantly increased (p < 0.05)
both TNFα and IL-6 levels by 679.2% and 472.6%, respectively. Importantly, the nuciferine decreased
both these cytokine levels induced by the LPS, in a dose-dependent manner. Meanwhile, gene
expression of these cytokines, by RT-qPCR, showed the same trends as the ELISA results (Figure 2C,D).
Pearson correlation analysis of both the protein and the mRNA levels of TNFα and IL-6, with the
nuciferine concentrations, are shown in Table 1. With the LPS treatment, it showed significant negative
correlation of the ratio of nuciferine concentration versus IL-6 protein level (Pearson r = −0.62, p = 0.004,
n = 20) or mRNA level (Pearson r = −0.50, p = 0.02, n = 20). Similarly, significant negative correlations
were found between nuciferine concentration and TNFα protein level (Pearson r = −0.58, p = 0.02,
n = 20) or mRNA level (Pearson r = −0.69, p = 0.01, n = 20). All these results indicated that nuciferine
had a potential anti-inflammatory effect, by reducing inflammatory cytokines production.
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Figure 2. Nuciferine inhibits the LPS-induced TNFα and IL-6 production in RAW264.7 cells. RAW
264.7 cells were pretreated with nuciferine (0, 1, 10 or 50 µM for 24 h) and then stimulated with the LPS
(500 ng/mL for 12 h), with a nuciferine withdrawal. (A,B) TNFα and IL-6 releases and (C,D) mRNA
level of TNFα and IL-6, respectively. * p < 0.05 ** p < 0.01 vs. control, # p < 0. 05 ## p < 0.01 vs.
LPS treatment.

Table 1. Nuciferine inhibits the LPS-induced TNFα and IL-6 production in RAW264.7 cells.

Nuciferine
(µM)

LPS
(ng/mL)

TNFα IL-6

Protein (pg/mL) mRNA Protein (pg/mL) mRNA

0 0 380.51 ± 51.27 0.99 ± 0.01 352.01 ± 60.02 1.01 ± 0.01
0 500 2584.46 ± 179.60 * 1.64 ± 0.21 ** 1663.71 ± 137.20 * 3.34 ± 0.39 **
1 500 2315.98 ± 146.64 1.39 ± 0.17 1643.94 ± 209.69 2.59 ± 0.28
10 500 2139.87 ± 275.53 1.05 ± 0.13 # 1216.91 ± 88.18 # 1.92 ± 0.20 ##

50 500 1772.82 ± 203.58 ## 0.61 ± 0.11 ## 1028.78 ± 74.61 ## 1.85 ± 0.21 ##

Quantitative data are presented as mean ± SEM. * p < 0.05 ** p < 0.01 vs. control, # p < 0. 05 ## p < 0.01 vs.
LPS treatment.
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2.3. Nuciferine Increased the PPARs Activity

PPARs are involved in the various types of inflammatory processes [5]. To study the potential
molecular mechanism of nuciferine on the LPS-induced inflammation, we examined the effects of
nuciferine on PPARs activity by a luciferase reporter assay. The cells were transfected with PPARs
isoforms (PPARα/PPARδ/PPARγ) plasmid and reporter plasmid, followed by the treatment of
nuciferine (1 or 10 µM) or PPARs agonists, for 24 h. All the selective agonists WY14643 for PPARα,
GW501516 for PPARβ/δ, and rosiglitazone (Rosi) for PPARγ, significantly increased the fluorescence
signal in the both the RAW264.7 cells and HEK 293 cells, confirming that the systems for detecting
PPARs transactivation activity were correct. In the RAW 264.7 cells, nuciferine significantly increased
the transcriptional activities of PPARα and PPARγ, in a dose-dependent manner, compared to control
group. However, it did not affect PPARβ/δ activity (Figure 3A–C). Pearson correlation analysis
(Table 2) shows a significant positive correlation of the ratio of nuciferine concentration, versus the
PPARα activity (Pearson r = 0.70; p = 0.004, n = 15) and a significant positive correlation of the ratio of
nuciferine concentration versus the PPARγ activity (Pearson r = 0.51; p = 0.05, n = 15). However, there
was no significant correlation of the ratio of nuciferine concentration versus the PPARβ/δ activity
(Pearson r = 0.29; p = 0.11, n = 15). Meanwhile, the luciferase reporter assay was carried out using the
HEK 293 cells (Supplementary Figure S1) to verify the results. All the results showed that nuciferine
increased the activities of the three PPARs but only significantly increased the PPARα and PPARγ
activity. The mRNA levels of the targets genes of PPARs, such as carnitine palmitoyltransferase 1A
(CPT-1A) for PPARα [14], adipose differentiation related protein (ADRP) for PPARβ/δ [15], CD36 for
PPARγ [16], were further investigated (Figure 3D). All these target genes expressions were up-regulated
by nuciferine, at 10 µM, in the RAW264.7 cells. Together, these results indicated that nuciferine could
enhance PPARs transcriptional activity in mononuclear macrophages.
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Table 2. Effect of Nuciferine on PPARs transcription activities in RAW264.7 cells.

Nuci (µM) PPARα PPARβ/δ PPARγ

0 1.03 ± 0.04 0.99 ± 0.01 1.02 ± 0.01
1 1.34 ± 0.11 * 1.03 ± 0.19 1.31 ± 0.09 *

10 1.44 ± 0.11 * 1.13 ± 0.27 1.35 ± 0.12 *
agonist 1.69 ± 0.06 * 1.17 ± 0.22 * 1.57 ± 0.13 *

Quantitative data are presented as mean ± SEM. * p < 0.05 vs. control.
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2.4. Antagonists of PPARα and PPARγ Abolished the Anti-Inflammatory Effects of Nuciferine

To further clarify whether the anti-inflammatory effect of nuciferine are mediated by PPARs,
antagonists GW5417 for PPARα, GSK0660 for PPARβ/δ, GW9662 for PPARγ were co-administrated
with nuciferine, for 24 h, in the LPS-induced RAW264.7 cells, respectively (Figure 4). As the results
before, when stimulated with the LPS, the content of IL-6 and TNFα were increased. All these
antagonists increased the pro-inflammatory cytokines, compared with the group treated with the
LPS only. However, the effect of nuciferine was abolished in the presence of the PPARα and PPARγ
antagonists, indicating that the anti-inflammatory effect of nuciferine, at least partially, went through
the PPARs activation.
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Figure 4. Antagonist of PPARα and PPARγ abolished the effects of nuciferine on the LPS-induced
TNFα and IL-6 production. RAW264.7 cells were pretreated with GW6417/GSK0660/GW9662, for 12 h,
followed by the nuciferine incubation, for 24 h, and then stimulated with LPS for 12 h. (A,B) production
of the IL-6 and the TNFα in a cell medium supernatant. (C,D) mRNA expression of IL-6 and TNFα.
* p < 0.05 ** p < 0.01 vs. control. # p < 0.05, ## p < 0.01 vs. LPS treatment. $ p < 0.05 vs. antagonist
pretreatment followed by the LPS stimulation.

2.5. Nuciferine Decreased LPS Induced IκB-α Degradation through PPARs Activition

PPARs exert anti-inflammatory effects by regulating the NF-κB signal pathway. To further
investigate the mechanisms of nuciferine on anti-inflammatory effect, the degradation of IκB-α protein
levels were determined with exposure to the nuciferine in the LPS-treated RAW 264.7 cells (Figure 5,
original results see Figure S2). When stimulated only with LPS, the cytosolic IκB-α protein was
markedly degraded, consistent with the THP-1 treatment results [17]. However, nuciferine treatment
attenuated the pro-inflammatory effect of the LPS. Furthermore, the effects of nuciferine were abolished
by a co-incubation with PPARs antagonists. The results suggested that nuciferine dramatically inhibited
the LPS-induced NF-κB activation and its effect was PPARs-dependent.
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3. Discussion

Our present study has shown that treatment with nuciferine ameliorates the LPS-induced
inflammation in RAW264.7 cells. Importantly, it was found that the protective effect of nuciferine
is mediated by PPARs activation. These results highlight the potential use of nuciferine for
preventing inflammation.

Overexpression of the inflammatory mediators is closely associated with systemic injury. There is
evidence that anti-inflammatory treatment has become an important component of inflammatory
diseases [18]. Inflammatory mediator inhibitors can be shown to have beneficial effects in improving
the severity of inflammation-related diseases. A wide variety of phytochemicals derived from natural
plant have anti-inflammatory effects, such as phenolics, terpenolids, and alkaloids [19]. Nuciferine,
an alkaloid found in the lotus leaves, exerted a protective effect against inflammation, in vivo [20] and
in vitro [21]. Our results showed that nuciferine decreased the expression of inflammatory cytokines
IL-6 and TNFα, in both protein and gene levels, dose dependently, in the LPS-treated RAW264.7 cells,
indicating that nuciferine had potential anti-inflammatory effects.

Nuciferine, a natural alkaloid from the lotus leaves, have been reported to exert multiple beneficial
effects, in vivo and in vitro, such as anti-tumor [22] and insulin stimulatory effects [23]. Our recent
results showed that nuciferine improved the hepatic steatosis in high-fat diet/streptozocin-induced
diabetic mice [24]. Some studies reported that nuciferine suppressed the inflammation by regulating
inflammatory signaling through different signal pathways. For example, in hyperuricemia mouse
model, nuciferine inhibited renal inflammation through suppression of Toll-like receptor 4/myeloid
differentiation factor 88/NF-κB signaling and a NOD-like receptor family, pyrin domain containing 3
(NLRP3) inflammasome [12]. Similarly, in vitro studies, nuciferine exerted the anti-inflammatory and
antilipemic effects, as well as the siRNA Per-Arnt-Sim kinase treatment group in oleic acid-induced
hepatic steatosis, in HepG2 cells, indicating a potential molecular pathway of the anti-inflammation
effect of nuciferine [21]. As we know, the three subtypes of PPARs exert anti-inflammatory effects
in vivo and in vitro by several different molecular mechanisms [25–27]. PPARα [28] and PPARγ [29]
were shown to repress some other transcription factors, such as NF-κB signal pathway, to reduce the
release of inflammatory cytokines including IL-6 and TNFα, when they were activated by their ligands.
The anti-inflammatory effects of PPARβ are mediated by ligand-independent repression [30]. Owing
to the anti-inflammatory effect of PPARs, we used the luciferase reporter assay and the target gene
transcription of PPARα/PPARγ/PPARδ to test if the PPAR family is involved in the anti-inflammatory
effect of nuciferine. The results showed that nuciferine activated the PPAR family, especially the PPARα
and the PPARγ. Moreover, the antagonists of the PPAR family GW6417/GSK0660/GW9662 were
treated in the cells to block the PPARs activities, before the nuciferine treatment. What’s interesting
is that all the antagonist treatment increased the inflammation markers. The protective effect of
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nuciferine was remarkably diminished by the inhibition of PPARα and PPARγ, indicating that the
anti-inflammatory effect of nuciferine, at least in part, went through the PPARs receptor activation.
To confirm these results, the protein expression of the activated PPARs and the total PPARs should
also be tested, using immunoblotting, in the further studies. Our recent in vivo results also clarified
that nuciferine-activated PPARα in the liver tissues, in a diabetic mouse model [24]. Nuciferine
is hydrophobic, consistent with the structures of most PPAR agonists. It could interact with the
ligand-binding domain of PPARs, in theory, leading to the stabilization of the configuration of the
hydrophobic core and subsequently the activation of PPARs to regulate the gene transcription [31].
However, more binding mechanisms between the nuciferine and the PPARs should be further studied.

It is well known that NF-κB is an important target for inflammatory therapeutic strategy [32].
PPARs have recently been shown to exert the anti-inflammatory activity by reducing the DNA-binding
activity of NF-κB and suppressing its nucleus translocation, which attenuates the cytokine production
and reduces tissue injury [32–34]. NF-κB is a crucial factor to activate the inflammatory genes
transcription, including pro-inflammatory cytokines, such as TNFα and IL-6 [35]. In addition, IκBα
expression was accompanied by a decrease in NF-κB DNA binding activity [36]. Our results showed
that nuciferine treatment alters the IκBα cellular content in LPS stimulation. Moreover, the specific
inhibitors for PPARs reversed the effect of nuciferine, partially or completely, indicating that nuciferine
could prevent IκBα degradation via PPARs activation, under the LPS stimulated conditions.

Overall, our studies demonstrated that nuciferine, with a concentration of 10 µM, attenuated the
LPS-induced inflammation through activation of PPARs, especially PPAR-α and-γ, in RAW264.7 cells.
These findings suggest that nuciferine may be a potentially important candidate for inflammatory diseases.

4. Materials and Methods

4.1. Reagents

Nuciferine (purity by HPLC > 98.0%) was purchased from APP-CHEM (YHI-039, Xi’an, Shanxi,
China). Dulbecco’s modified Eagle’s medium-high glucose (DMEM), fetal bovine serum (FBS),
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and Lipofectamine 2000 reagent
were purchased from Invitrogen (Carlsbad, CA, USA). Lipopolysaccharide (LPS), PPARs agonists
WY14643, GW501516, rosiglitazone (Rosi) were purchased from Sigma (St. Louis, MO, USA). TRIzol
reagent was purchased from Invitrogen (Carlsbad, CA, USA). IL-6 and TNF-α Mouse ELISA Kit was
obtained from Elabscience Biotechnology Co. Ltd. (Wuhan, Hubei, China). Super Script II Rnase H
Reverse Transcriptase kit was purchased from Invitrogen (Carlsbad, CA, USA).

4.2. Cell Culture

Murine macrophage RAW264.7 cells (ATCC, Rockville, MD, USA) and human embryonic
kidney cells (HEK293 cells, ATCC, Rockville, MD, USA) were cultured with DMEM containing
10% FBS, 100 U/mL penicillin, and 100 U/mL streptomycin. Cells were maintained at 37 ◦C,
in a humidified atmosphere of 5% CO2 and 95% air. RAW264.7 cells were seeded into plates and
treated at approximately 80% confluence.

4.3. Cytotoxicity

RAW264.7 cells were seeded at a density of 1.5 × 103 cells/well in 96-well plates. After 24 h,
cells were treated with different concentrations of nuciferine (0–50 µM), for 24 h, followed by an
addition 20 µL MTT solution (5 g/L), to each well, for 4 h. The insoluble formazan product was
dissolved in 150 µL/well dimethyl sulfoxide (DMSO), after washing out the supernatant [37]. Then,
the absorbance at 490 nm was measured using a microplate reader (Olympus America Inc., New York,
NY, USA). The percentage of cytotoxicity was calculated by the equation: Cytotoxicity (%) = (1 − A490

of sample)/A490 of control well.
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4.4. IL-6 and TNFα Levels Determination

RAW264.7 cells were grown into 12-well plates, treated with different concentrations of nuciferine
(0, 1, 10 or 50 µM) and stimulated with LPS (500 ng/mL). Cell-free supernatants were collected
and the levels of pro-inflammatory cytokines, TNFα and IL-6 were measured using ELISA kits,
by a determination of the absorbance at 450 nm, according to the manufacturer’s instructions. Standard
curves were used to calculate the concentration of TNFα and IL-6 in each sample.

4.5. PPARs Luciferase Reporter Assay

HEK293T cells and RAW264.7 cells were plated into 12-well plates at 4 × 105 cells/well without
antibiotics. After 24 h at 60% confluence, cells were transfected according to the manufacturer’s
instructions. Briefly, PPARs isoforms (PPARα/PPARδ/PPARγ) plasmid (0.9 µg), reporter plasmid
PPRE×3-TK-LUC (0.3 µg) and β-gal (0.1 µg) were transfected into the cells, using Lipofectamine
2000 reagents (1:1), for 4 h. Since transfection efficiency is typically low in RAW264.7 cells, more
Lipofectamine 2000 was needed (1:2.5) and the transfection time was extended to 24 h. The medium
was replaced with a complete media containing DMSO, nuciferine, or PPARs agonists, for 24 h.
The cells were harvested and lysed to measure the luciferase activities using a luciferase assay kit,
according to the manufacturer’s instructions. The β-gal was transfected to normalize the transfection
efficiency [38].

4.6. RNA Isolation and Analysis

Cells were cultured into 12-well plate with a density of 4 × 105 cells/well. Total RNA was isolated
using TRIzol reagent and reverse transcribed into cDNA. Real-time quantitative polymerase chain
reaction (RT-qPCR) was performed as described by Yang et al. [39]. Glyceraldehyde-3-phosphate
dehydrogenase (Gapdh) was used as an internal control. Ct values of the sample were calculated,
and the mRNA levels were analyzed by 2−∆∆Ct method and normalized to Gapdh [40]. The primer
sequences were listed in Supplemental Table S1.

4.7. Immunoblotting

RAW264.7 Cell lysates were prepared using a lysis buffer containing 0.1% Triton X-100 and
proteinase inhibitors (Roche, Nutley, NJ, USA). Protein concentrations were determined using the
BCA protein assay kit (Thermo Scientific, PA, USA). Western blot was performed as described by
Yang et al. [39]. After blocking the membranes, primary rabbit antibody against IκBα (Santa Cruz
Biotechnology, Dallas, TX, USA) was incubated with a ratio of 1:1000 overnight. β-actin (1:5000,
Santa Cruz Biotechnology, Dallas, TX, USA) was used as a loading control. Membranes were then
washed with TBST and incubated with the secondary antibodies conjugated to anti-rabbit or anti-mouse
HRP-conjugated secondary antibodies (1:3000, Santa Cruz Biotechnology, Dallas, TX, USA) for 1 h.
Bands were detected by enhanced chemiluminescence using ECL (Amersham Biosciences, Picataway,
NJ, USA) and then visualized by X-ray films.

4.8. Data Statistics

Quantitative data are expressed as mean ± SEM using SPSS 18.0 (IBM Corporation, Chicago, IL,
USA). Student t test and ANOVA followed by Tukey’s post hoc test were used to analyze the significant
difference between two or more groups, respectively. The rank-based test methods were employed
when data were not in a normal distribution or the variances were not homogeneous. All the results
were representative of at least three independent experiments.

Supplementary Materials: The following are available online, Figure S1: Effect of Nuciferine on PPARs
transcription activities in HEK 293 cells. Figure S2: Original western blot films of Figure 5A. Table S1: Sequences
of primers for qRT-PCR.
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