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Association analyses identify 31 new risk loci for
colorectal cancer susceptibility
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Colorectal cancer (CRC) is a leading cause of cancer-related death worldwide, and has a

strong heritable basis. We report a genome-wide association analysis of 34,627 CRC cases

and 71,379 controls of European ancestry that identifies SNPs at 31 new CRC risk loci. We

also identify eight independent risk SNPs at the new and previously reported European CRC

loci, and a further nine CRC SNPs at loci previously only identified in Asian populations. We

use in situ promoter capture Hi-C (CHi-C), gene expression, and in silico annotation methods

to identify likely target genes of CRC SNPs. Whilst these new SNP associations implicate

target genes that are enriched for known CRC pathways such as Wnt and BMP, they also

highlight novel pathways with no prior links to colorectal tumourigenesis. These findings

provide further insight into CRC susceptibility and enhance the prospects of applying genetic

risk scores to personalised screening and prevention.
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Many colorectal cancers (CRC) develop in genetically
susceptible individuals1 and genome-wide association
studies (GWAS) of CRC have thus far reported 43 SNPs

mapping to 40 risk loci in European populations2,3. In Asians, 18
SNPs mapping to 16 risk loci have been identified4,5, a number of
which overlap with those reported in Europeans. Collectively
across ethnicities GWAS has provided evidence for 53 unique
CRC susceptibility loci. While much of the heritable risk of CRC
remains unexplained, statistical modelling indicates that further
common risk variants remain to be discovered6.

To gain a more comprehensive insight into CRC aetiology, we
conducted a GWAS meta-analysis that includes additional,
unreported datasets. We examine the possible gene regulatory
mechanisms underlying all GWAS risk loci by analysing in situ
promoter Capture Hi-C (CHi-C) to characterise chromatin
interactions between predisposition loci and target genes, exam-
ine gene expression data and integrate these data with chromatin
immunoprecipitation-sequencing (ChIP-seq) data. Finally, we
quantify the contribution of the loci identified in this study,
together with previously identified loci to the heritable risk of
CRC and estimate the sample sizes required to explain the
remaining heritability.

Results
Association analysis. Thus far, studies have identified 61 SNPs
that are associated with CRC risk in European and Asian popu-
lations (Supplementary Data 1). To identify additional CRC risk
loci, we conducted five new CRC GWAS, followed by a meta-
analysis with 10 published GWAS totalling 34,627 cases and
71,379 controls of European ancestry under the auspices of the
COGENT (COlorectal cancer GENeTics) consortium7 (Fig. 1,
Supplementary Data 2). Following established quality control
measures for each dataset8 (Supplementary Data 3), the geno-
types of over 10 million SNPs in each study were imputed, pri-
marily using 1000 Genomes and UK10K data as reference (see
Methods). After filtering out SNPs with a minor allele frequency
<0.5% and imputation quality score <0.8, we assessed associations
between CRC status and SNP genotype in each study using
logistic regression. Risk estimates were combined through an
inverse-variance weighted fixed-effects meta-analysis. We found
little evidence of genomic inflation in any of the GWAS datasets
(individual λGC values 1.01–1.11; meta-analysis λ1000= 1.01,
Supplementary Figure 1).

Excluding flanking regions of 500 kb around each previously
identified CRC risk SNP, we identified 623 SNPs associated with
CRC at genome-wide significance (logistic regression, P < 5 × 10−8).
After implementing a stepwise model selection, these SNPs were
resolved into 31 novel risk loci, with 27 exhibiting Bayesian False
Discovery Probabilities (BFDPs)9 <0.1 (Table 1, Fig. 2, Supplemen-
tary Figure 2). The association at 20q13.13 (rs6066825) had only
been previously identified as significant in a multi-ethnic study10.
Two new associations (rs3131043 and rs9271770) were identified
within the 6p21.33 major histocompatibility (MHC) region, with
rs3131043 located 470 kb 5′ of HLA-C, and rs9271770 located
between HLA-DRB1 and HLA-DQA1. Imputation of the MHC
region using SNP2HLA11 provided no evidence for additional
MHC risk loci.

We confirmed 28 of the 40 risk loci for CRC published as
genome-wide significant in Europeans (i.e. P < 5 × 10−8) (Supple-
mentary Data 1). For four previously reported risk loci2,12–14, we
observed associations that were just below genome-wide signifi-
cance (3q26.2, rs10936599, P= 1.41 × 10−7; 12p13.32, rs3217810,
P= 1.09 × 10−6; 16q22.1, rs9929218, P= 4.96 × 10−7; 16q24.1,
rs2696839, 1.28 × 10−6). In contrast, there was limited support in
our current study for eight of the associations previously reported

by others2,10,15–17 (2q32.3, rs11903757, P= 0.23; 3p14.1, rs812481,
P= 0.44; 4q22.2, rs1370821, P= 3.41 × 10−5; 4q26, rs3987, P=
0.10; 4q32.2, rs35509282, P= 0.24; 10q11.23, rs10994860, P=
3.65 × 10−4; 12q24.22, rs73208120, P= 0.03; 20q11.22, rs2295444,
P= 0.03), all having a BFDP >0.99 (Supplementary Data 1). Of the
16 reported Asian-specific loci4,5, nine harboured genome-wide
significant signals in the current study (all BFDP <0.06), albeit
sometimes at SNPs with low r2 but high D′ with the original SNP
in Europeans, consistent with differences in allele frequencies in
the different populations (Supplementary Data 1). Conditioning on
the reported Asian SNPs, five of the nine European risk SNPs were
independent of the Asian SNP (Pconditional < 5 × 10−8, Supplemen-
tary Data 4). We found no evidence of association signals at the
remaining previously reported Asian SNPs.

Next, we performed an analysis conditioned on the sentinel
SNP (r2 < 0.1 and Pconditional < 5 × 10−8; Table 2) to search for
further independent signals at these new and previously reported
risk loci. We confirmed the presence of previously reported dual
signals at 14q22.2, 15q13.3 and 20p12.318. For the new risk loci,
an additional independent signal was identified at 5p15.3. In
addition, a further seven signals were found at five previously
reported risk loci: 11q13.4, 12p13.32, 15q13.3, 16q24.1, 20q13.13.
Two of these signals were at the 15q13.3 locus, of which one was
5′ of GREM1 and the other intronic to FMN1. A further two
signals were proximal and distal of 20q13.13. At 12p13.32 and
16q24.1, genome-wide associations marked by rs12818766 and
rs899244, respectively, were shown. These were independent of
the previously reported associations2,14 at rs3217810 and
rs2696839 (pairwise r2= 0.0).

In total, we identified 39 new independent SNPs associated
with CRC susceptibility at genome-wide significance in Eur-
opeans. Together with the nine associations previously identified
in Asian populations, and the 31 previously identified SNPs that
were confirmed here, this brought the number of identified CRC
association signals in Europeans to 79. Several of these risk loci
map to regions previously identified in other cancers. In
particular, three regions harbour susceptibility loci for multiple
cancers19, specifically 5p15.33 (TERT-CLPTM1L), 9p21.3
(CDKN2A) and 20q13.33 (RTEL1) (Supplementary Data 5).

Functional annotation and biological inference of risk loci. To
the extent that they have been deciphered, most GWAS risk loci map
to non-coding regions of the genome influencing gene regulation19.
Consistent with this, we found evidence that the CRC risk SNPs
mapped to regions enriched for active enhancer marks (H3K4me1
and H3K27ac) in colonic crypts (permutation test, P= 0.034 and
0.033, respectively) and colorectal tumours (P= 4.2 × 10−3 and
4.0 × 10−5) (Supplementary Figure 3). To determine whether the
CRC SNPs overlapped with active regulatory regions in a cell-type
specific manner20, we analysed the H3K4me3, H3K27ac, H3K4me1,
H3K27me3, H3K9ac, H3K9me3 and H3K36me3 chromatin marks
across multiple cell types from the NIH Roadmap Epigenomics
project21. Colonic and rectal mucosa cells showed the strongest
enrichment of risk SNPs at active enhancer and promoter regions
(H3K4me3, H3K4me1 and H3K27ac marks, P < 5 × 10−4) (Supple-
mentary Figure 3).

Given our observation that the risk loci map to putative
regulatory regions, we examined both histone modifications and
transcription factor (TF) binding sites in LoVo and HT29 CRC
cells across the risk SNPs. Using variant set enrichment22, we
identified regions of strong LD (defined as r2 > 0.8 and D′ > 0.8)
with each risk SNP and determined the overlap with ChIP-seq
data from the Systems Biology of Colorectal cancer (SYSCOL)
study and inhouse-generated histone data. We identified an
over-representation of binding for MYC, ETS2, cohesin loading
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factor NIPBL and cohesin-related proteins RAD21, SMC1A and
SMC3 (Supplementary Figure 4). About 87% (69/79) of the risk
SNPs were predicted to disrupt binding motifs of specific TFs,
notably CTCF, SOX and FOX, with 35% located within TF
binding peaks from LoVo, HT29 or ENCODE ChIP-seq data
(Supplementary Data 6).

The upstream mechanisms by which predisposition SNPs
influence disease risk is often through effects on cis-regulatory
transcriptional networks, specifically through chromatin-looping
interactions that are fundamental for regulation of gene expres-
sion. Therefore, to link regulatory regions containing risk SNPs to
promoters of candidate target genes, we applied in situ promoter
capture Hi-C (CHi-C) data in LoVo and HT29 cells (Supplemen-
tary Data 9). About 38% of the risk SNPs mapped to regions that
showed statistically significant chromatin-looping interactions
with the promoters of respective target genes. Notably, as well

as confirming the interaction between rs6983267 and MYC at
8q24.21 (Supplementary Figure 2), the looping interaction from
an active enhancer region at 10q25.2 implicates TCF7L2 as the
target gene of rs12255141 variation (Fig. 3). TCF7L2 (previously
known as TCF4) is a key transcription factor in the Wnt pathway
and plays an important role in the development and progression
of CRC23. Intriguingly, TCF7L2 has been shown to bind to aMYC
enhancer containing rs698326724 and to a GREM1 enhancer near
rs1696968125. Based on ChromHMM, this region is annotated as
a promoter in HCT116 cells, but not in normal colonic and rectal
mucosa. Additionally this locus has been implicated in lung
cancer26 and low-grade glioma27. Similarly, the 9p21.3 chromatin
interaction provides evidence to support CDKN2B as the target
gene for rs1412834 variation, a region of somatic loss.

We sought to gain further insight into the target genes at each
locus, and hence the biological mechanisms for the associations,
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by performing expression quantitative trait locus (eQTL) analysis
in colorectal tissue. We analysed inhouse eQTL data generated
from samples of normal colonic mucosa (INTERMPHEN study,
n= 131 patients) and GTEx data from transverse colon (n=
246). For the previously identified risk loci, there were eQTLs for
rs4546885 and LAMC1 (1q25.3), rs13020391 and lnc-RNA
RP11–378A13.1 (2q35), and rs3087967 and COLCA1, COLCA2
and C11orf53 (11q23.1). Amongst the eQTL associations at the
new risk loci, pre-eminent eQTLs were rs9831861 and SFMBT1
(3p21.1), rs12427600 and SMAD9 (13q13.3), and rs12979278 and
FUT2 and MAMSTR (19q13.33) (Supplementary Data 7). How-
ever, while multiple nominally significant cis-eQTLs were present,
nearly half of all loci had no evidence of cis-eQTLs in the sample
sets used.

In addition to eQTL analysis, we performed Summary-data-
based Mendelian Randomization (SMR) analysis28 as a more
stringent test for causal differences in gene transcription
(Supplementary Data 8). There was support for the 11q23.1
locus SNP influencing CRC risk through differential expression of
one or more of COLCA1, COLCA2 and C11orf53 transcripts
(PSMR < 10−10). There was also evidence that the 3p21.1 and
19q13.33 SNPs acted through SFMBT1 and FUT2, respectively,
(PSMR < 10−5), as well as the 6p21.31 SNP acted through class II
HLA expression (PSMR < 5 × 10−4).

Based on genetic fine-mapping and functional annotation, our
data indicated several candidate target genes with functions
previously unconnected to colorectal tumourigenesis

(Supplementary Data 9). The SFMBT1 protein (3p21.1) acts as
a histone reader and a component of a transcriptional repressor
complex29. TNS3 at 7p12.3 encodes the focal adhesion protein
TENSIN3, to which the intestinal stem cell marker protein
Musashi1 has been reported to bind. Tns3-null mice exhibit
impaired intestinal epithelial development, probably because of
defects in Rho GTPase signalling and cell adhesion30. LRP1
(12q13.3, LDL receptor-related protein 1) (Fig. 3) may be
involved in Wnt-signalling31, although its role in the intestines
has not previously been conclusively demonstrated. FUT2 at
19q13.33 encodes fucosyltransferase II. Variation at this locus is
associated with differential interactions with intestinal bacteria
and viruses. Our data thus provide evidence for a role of the
microbiome in CRC risk32. PTPN1 (20q13.13), also known as
PTP1B, encodes a non-receptor tyrosine phosphatase involved in
regulating JAK-signalling, IR, c-Src, CTNNB1, and EGFR.

We annotated all risk loci with five types of functional data:
(i) presence of a CHi-C contact linking to a gene promoter, (ii)
presence of an association from eQTL, (iii) presence of a
regulatory state, (iv) evidence of TF binding, and (v) presence
of a nonsynonymous coding change (Supplementary Data 9).
Collectively this analysis suggested three primary candidate
disease mechanisms across a number of risk loci: firstly, genes
linked to BMP/TGF-β signalling (e.g. GREM1, BMP2, BMP4,
SMAD7, SMAD9); secondly, genes with roles either directly or
indirectly linked to MYC (e.g. MYC, TCF7L2); and thirdly
genes with roles in maintenance of chromosome integrity (e.g.

Table 1 Summary results for the new colorectal cancer risk loci in Europeans

SNP Cytoband Position (bp,
GRCh37)

Risk/alt
allele

RAF OR 95% CI P-value BFDP I2 (%) Phet Average
info score

rs61776719 1p34.3 38,461,319 C/A 0.45 1.07 (1.05; 1.10) 2.19 × 10−10 1.98 × 10−3 1 0.44 0.89
rs12143541 1p32.3 55,247,852 G/A 0.15 1.10 (1.06; 1.13) 9.44 × 10−10 7.44 × 10−3 16 0.28 0.95
rs11692435 2q11.2 98,275,354 G/A 0.90 1.12 (1.07; 1.16) 1.22 × 10−8 0.079 29 0.14 0.97
rs11893063 2q33.1 199,601,925 A/G 0.47 1.07 (1.04; 1.09) 9.34 × 10−9 0.069 43 0.04 0.96
rs7593422 2q33.1 200,131,695 T/A 0.55 1.07 (1.05; 1.10) 3.56 × 10−11 3.50 × 10−4 15 0.28 0.99
rs9831861 3p21.1 53,088,285 G/T 0.59 1.07 (1.05; 1.09) 4.17 × 10−10 3.72 × 10−3 0 0.87 0.99
rs12635946 3q13.2 112,916,918 C/T 0.62 1.08 (1.06; 1.10) 1.02 × 10−11 1.03 × 10−4 11 0.33 0.97
rs17035289 4q24 106,048,291 T/C 0.83 1.10 (1.07; 1.13) 2.73 × 10−10 2.30 × 10−3 0 0.95 1.00
rs75686861 4q31.21 145,621,328 A/G 0.10 1.12 (1.08; 1.16) 1.76 × 10−9 0.014 0 0.49 0.92
rs2070699 6p24.1 12,292,772 T/G 0.48 1.07 (1.04; 1.09) 3.88 × 10−9 0.031 29 0.14 0.95
rs3131043 6p21.33 30,758,466 G/A 0.43 1.07 (1.05; 1.1) 2.67 × 10−8 0.159 60 0.01 0.91
rs9271770 6p21.32 32,594,248 A/G 0.81 1.08 (1.05; 1.11) 3.60 × 10−8 0.192 0 0.91 0.93
rs6928864 6q21 105,966,894 C/A 0.91 1.13 (1.09; 1.19) 1.37 × 10−8 0.094 0 0.73 0.98
rs10951878 7p12.3 46,926,695 C/T 0.49 1.06 (1.04; 1.09) 1.10 × 10−8 0.080 0 0.65 0.99
rs3801081 7p12.3 47,511,161 G/A 0.68 1.08 (1.06; 1.11) 2.00 × 10−11 1.96 × 10−4 50 0.01 1.00
rs1412834 9p21.3 22,110,131 T/C 0.50 1.08 (1.06; 1.11) 4.13 × 10−14 5.05 × 10−7 14 0.30 1.00
rs4450168 11p15.4 10,286,755 C/A 0.17 1.10 (1.06; 1.13) 1.24 × 10−8 0.079 0 0.81 0.86
rs7398375 12q13.3 57,540,848 C/G 0.72 1.09 (1.06; 1.13) 3.91 × 10−10 3.23 × 10−3 0 0.93 0.83
rs12427600 13q13.3 37,460,648 C/T 0.24 1.09 (1.06; 1.11) 5.43 × 10−11 5.01 × 10−4 0 0.81 0.99
rs45597035 13q22.1 73,649,152 A/G 0.64 1.08 (1.05; 1.10) 2.16 × 10−10 1.94 × 10−3 0 0.53 0.96
rs1330889 13q22.3 78,609,615 C/T 0.87 1.11 (1.07; 1.14) 6.50 × 10−10 5.25 × 10−3 0 0.59 0.97
rs7993934 13q34 111,074,915 T/C 0.65 1.08 (1.05; 1.10) 3.03 × 10−11 2.94 × 10−4 0 0.55 0.99
rs4776316 15q22.31 67,007,813 A/G 0.73 1.08 (1.05; 1.10) 1.11 × 10−8 0.076 22 0.21 0.95
rs10152518 15q23 68,177,162 G/A 0.19 1.08 (1.05; 1.11) 3.24 × 10−8 0.180 0 0.84 0.97
rs7495132 15q26.1 91,172,901 T/C 0.12 1.11 (1.07; 1.14) 7.92 × 10−10 6.34 × 10−3 29 0.14 0.99
rs61336918 16q23.2 80,007,266 A/T 0.29 1.09 (1.06; 1.12) 2.04 × 10−12 2.14 × 10−5 0 0.90 0.99
rs1078643 17p12 10,707,241 A/G 0.77 1.09 (1.06; 1.12) 4.14 × 10−11 3.81 × 10−4 0 0.56 0.92
rs285245 19p13.11 16,420,817 T/C 0.11 1.11 (1.07; 1.15) 3.71 × 10−8 0.195 2 0.42 0.91
rs12979278 19q13.33 49,218,602 T/C 0.53 1.07 (1.05; 1.09) 6.11 × 10−10 5.35 × 10−3 15 0.28 0.96
rs6066825 20q13.13 47,340,117 A/G 0.65 1.10 (1.08; 1.13) 3.82 × 10−17 5.67 × 10−10 0 0.49 0.99
rs3787089 20q13.33 62,316,630 C/T 0.32 1.07 (1.05; 1.10) 5.80 × 10−9 0.043 0 0.80 0.96

Associations previously only identified in Asian populations

rs639933 5q31.1 134,467,751 C/A 0.38 1.07 (1.05; 1.10) 1.14 × 10−9 9.50 × 10−3 0 0.73 0.98
rs6933790 6p21.1 41,672,769 T/C 0.83 1.10 (1.07; 1.14) 3.65 × 10−10 3.03 × 10−3 21 0.23 0.91
rs704017 10q22.3 80,819,132 G/A 0.60 1.10 (1.08; 1.13) 2.96 × 10−16 4.15 × 10−9 23 0.21 0.95
rs12255141 10q25.2 114,294,892 G/A 0.10 1.11 (1.07; 1.15) 2.97 × 10−9 0.022 0 0.81 0.96
rs10849438 12p13.31 6,412,036 G/T 0.12 1.12 (1.08; 1.16) 1.04 × 10−10 9.49 × 10−4 21 0.23 0.95
rs73975588 17p13.3 816,741 A/C 0.87 1.10 (1.06; 1.13) 8.71 × 10−9 0.058 33 0.11 0.97
rs9797885 19q13.2 41,873,001 G/A 0.71 1.08 (1.05; 1.10) 2.77 × 10−10 2.43 × 10−3 0 0.70 0.99
rs6055286 20p12.3 7,718,045 A/G 0.15 1.11 (1.07; 1.14) 9.69 × 10−11 8.61 × 10−4 50 0.02 0.97
rs2179593 20q13.12 42,660,286 A/C 0.72 1.07 (1.05; 1.10) 4.62 × 10−9 0.035 0 0.67 0.97

BFDP calculated using prior= 10−5 and maximum relative risk= 1.2
RAF risk allele frequency in Europeans, OR odds ratio, CI confidence interval, BFDP Bayesian False Discovery Probability, I2 proportion of the total variation due to heterogeneity, PhetP-value for
heterogeneity
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TERT, RTEL1) and DNA repair (e.g. POLD3) (Supplementary
Figure 5).

Pathway gene set enrichment analyses33 revealed several
growth or development related pathways were enriched, notably
TGF-β signalling and immune response pathways (Supplemen-
tary Figure 6, Supplementary Data 10). Other cancer-related
themes included apoptosis and leukocyte differentiation path-
ways. We used Data-driven Expression-Prioritized Integration for
Complex Traits (DEPICT)34 to predict gene targets based on gene
functions that are shared across genome-wide significant risk loci,
as well as those associated at P < 10−5 as advocated to mitigate
against type II error. Tissue-specificity with respect to colonic
tissue was evident (permutation test, P < 5 × 10−3) and among the
protein-coding genes predicted, there was enrichment for TGF-β
and PI3K-signalling pathways, and abnormal intestinal crypt gene
sub-networks (P < 10−5; Supplementary Data 11).

Contribution of risk SNPs to heritability. Using Linkage Dis-
equilibrium Adjusted Kinships (LDAK)35 in conjunction with the
GWAS data generated on unselected CRC cases (i.e. COIN,
CORSA, Croatia, DACHS, FIN, SCOT, Scotland1, SOCCS/LBC,
SOCCS/GS, UKBB, VQ58 studies) we estimated that the herit-
ability of CRC attributable to all common variation is 0.29 (95%
confidence interval: 0.24–0.35). To estimate the sample size
required to explain a greater proportion of the GWAS heritability,
we implemented a likelihood-based approach using association
statistics in combination with LD information to model the
effect-size distribution36, which was best represented by a three-
component model (mixture of two normal distributions). Under
this model, to identify SNPs explaining 80% of the GWAS her-
itability, it is likely to require effective sample sizes in excess of
300,000 if solely based on GWAS associations (Supplementary
Figure 7).

After adjusting for winner’s curse37, the 79 SNPs thus far
shown to be associated with CRC susceptibility in Europeans
explain 11% of the 2.2-fold familial relative risk (FRR)38, whilst all
common genetic variants identifiable through GWAS could
explain 73% of the FRR. Thus, the identified susceptibility SNPs
collectively account for approximately 15% of the FRR of CRC
that can be explained by common genetic variation. We
incorporated the newly identified SNPs into risk prediction
models for CRC and derived a polygenic risk score (PRS) based
on a total of 79 GWAS significant risk variants. Individuals in the
top 1% have a 2.6-fold increased risk of CRC compared with the
population average (Supplementary Figure 8). Risk re-
classification using this PRS offers the prospect of optimising
prevention programmes for CRC in the population, for example
through targeting screening6, and also preventative interventions.
The identification of further risk loci through the analysis of even
larger GWAS is likely to improve the performance of any
PRS model.

Co-heritability with non-cancer traits. We implemented cross-
trait LD score regression39 to investigate co-heritability globally
between CRC and 41 traits with publicly available GWAS sum-
mary statistics data. None of the genetic correlations remained
significant after Bonferroni correction (two-sided Z-test, P-
threshold: 0.05/41= 1.2 × 10−3). However, nominally significant
positive associations with CRC risk (Supplementary Data 12)
included insulin resistance, comprising raised fasting insulin,
glucose and HbA1c (positive), hyperlipidaemia, comprising raised
total cholesterol and low-density lipoprotein cholesterol, and
ulcerative colitis, all of which are traits or diseases previously
reported in observational epidemiological studies to be associated
with CRC risk40,41.

Discussion
Here we report a comprehensive analysis that sheds new light on
the molecular basis of genetic risk for a common cancer, and
greatly increases the number of known CRC risk SNPs. To
identify the most credible target genes at each site, we have
performed detailed annotation using public databases, and have
also acquired our own disease-specific data from ChIP-seq, pro-
moter capture Hi-C and gene expression analyses.

Given that there remains significant missing common herit-
ability for CRC, additional GWAS meta-analyses are likely to lead
to discovery of more risk loci. Such an assertion is directly sup-
ported a contemporaneous study42, which has reported the
identification of 40 independent signals; 30 novel loci and 10
conditionally independent association signals at previously and
newly identified CRC risk loci. Of these, 18 were replicated in our
analysis, with an additional five exhibiting an independent signal
present at the same locus (Supplementary Data 13).

Overall, our findings provide new insights into the biological
basis of CRC, not only confirming the importance of established
gene networks, but also providing evidence that point to a role for
the gut microbiome in CRC causation, and identifying several
functional mechanisms previously unsuspected of any involve-
ment in colorectal tumourigenesis. Several of the gene pathways
identified through GWAS may provide potential novel targets for
chemoprevention and chemotherapeutic intervention.

Methods
Ethics. Collection of patient samples and associated clinico-pathological infor-
mation was undertaken with written informed consent and relevant ethical review
board approval at respective study centres in accordance with the tenets of the
Declaration of Helsinki. Specifically: (i) UK National Cancer Research Network
Multi-Research Ethics Committee (02/0/097 [NSCCG], 01/0/5) [SOCCS], 05/
S1401/89 [GS:SFHS], LREC/1998/4/183 [LBC1921], 2003/2/29 [LBC1936], 17/SC/
0079 [CORGI] and 07/S0703/136 [SCOT]); (ii) The research activities of UK
Biobank were approved by the North West Multi-centre Research Ethics Com-
mittee (11/NW/0382) in relation to the process of participant invitation, assess-
ment and follow-up procedures. Additionally, ethics approvals from the National
Information Governance Board for Health & Social Care in England and Wales
and approval from the Community Health Index Advisory Group in Scotland were
also obtained to gain access to the information that would allow the invitation of
participants. This study did not need to re-contact the participants, and no separate
ethics approval was required according to the Ethics and Governance Framework
(EGF) of UK Biobank; (iii) South East Ethics Committee MREC (03/1/014); (iv)
Written informed consent was obtained from all participants of CORSA. The study
was approved by the ethical review committee of the Medical University of Vienna
(MUW, EK Nr. 703/2010) and the “Ethikkommission Burgenland” (KRAGES, 33/
2010) and (v) Finnish National Supervisory Authority for Welfare and Health,
National Institute for Health and Welfare (THL/151/5.05.00/2017), the Ethics
Committee of the Hospital District of Helsinki and Uusimaa (HUS/408/13/03/03/
09).

The diagnosis of colorectal cancer (ICD-9 153, 154; ICD-10 C18.9, C19, C20)
was established in all cases in accordance with World Health Organization
guidelines.

Primary GWAS. We analysed data from five primary GWAS (Supplementary
Data 2 and Supplementary Data 3):

(1) The NSCCG-OncoArray GWAS comprised 6240 cases ascertained through
the National Study of Colorectal Cancer Genetics (NSCCG)43 and 1041 cases
collected through the CORGI consortium, genotyped using the Illumina
OncoArray. Patients were selected for having a family history of CRC (at
least one first-degree relative) or age of diagnosis below 58. Controls were
also genotyped using the OncoArray and comprised (i) 3031 cancer-free
men recruited by the PRACTICAL Consortium—the UK Genetic Prostate
Cancer Study (UKGPCS) (age <65 years), a study conducted through the
Royal Marsden NHS Foundation Trust and SEARCH (Study of Epidemiol-
ogy & Risk Factors in Cancer), recruited via GP practices in East Anglia
(2003–2009) and (ii) 4,488 cancer-free women across the UK, recruited via
the Breast Cancer Association Consortium (BCAC).

(2) The SCOT GWAS comprised 3076 cases from the Short Course Oncology
Treatment (SCOT) trial—a study of adjuvant chemotherapy in colorectal
cancer by the CACTUS and OCTO groups44. Controls comprised 4349
cancer-free individuals from The Heinz Nixdorf Recall study45. Both cases
and controls were genotyped using the Illumina Global Screening Array.
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Fig. 2 Manhattan plot showing all loci containing genetic risk variants independently associated with colorectal cancer risk at P < 5 × 10−8 in European
populations. SNPs on the left of the plot are new SNPs identified in this study, and SNPs on the right were identified in previous studies and replicated at
genome-wide significance in this study. The 79 risk SNPs consisted of 31 previously reported SNPs, 39 new risk SNPs, and nine SNPs previously identified
in Asian but not in European populations (denoted in dark gold). Dotted lines indicate SNPs that were identified as independent through conditional
analysis. Square brackets indicate the position of the sentinel SNP relative to nearest genes (“gene1-[]-gene2” for intergenic SNPs, “[gene]” for intragenic
SNPs). The distance from the sentinel SNP to each gene is proportional to the number of dashes. The red line indicates the genome-wide significance
threshold. The x-axis represents the −log10P-values of the SNPs, and the y-axis represents the chromosomal positions
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(3) SOCCS/Generation Scotland (SOCCS/GS) comprised 4772 cases from the
Study of Colorectal Cancer in Scotland (SOCCS)12,13 and 12,158 controls
including 2221 population-based controls from SOCCS and additional 9937
population controls without prior history of colorectal cancer from
Generation Scotland-Scottish Family Health Study (GS:SFHS)46.

(4) SOCCS/Lothian Birth Cohort (SOCCS/LBC) GWAS comprised 1037 cases
from the Study of Colorectal Cancer in Scotland (SOCCS)47 and 1522
population-based controls without prior history of malignant tumours from
the Lothian Birth Cohorts (LBC) of 1921 and 193648.

(5) UK Biobank (UKBB) GWAS comprised 6360 cases and 25,440 population-
based control individuals. UK Biobank is a large cohort study with more
than 500,000 individuals recruited. Biological samples of these participants
were genotyped using the custom-designed Affymetrix UK BiLEVE Axiom
array on an initial 50,000 participants and Affymetrix UK Biobank Axiom
array on the remaining 450,000 participants. The two arrays had over 95%
common content. Genotyping was done at the Affymetrix Research Services
Laboratory in Santa Clara, California, USA. Details on genotyping and
quality control were previously reported49. Self-reported cases of cancers of
bowel, colon or rectum, if not confirmed by the ICD9 or ICD10 codes were
excluded from the analysis. Healthy control individuals without history of
cancer and/or colorectal adenoma were included in the analysis after
matching one case to four controls by age, gender, date of blood draw,
ethnicity and region of residence (two first letters of postal code).

Published GWAS. We made use of 10 previously published GWAS (Supple-
mentary Data 2): (1) UK1 (CORGI study) comprised 940 cases with colorectal
neoplasia and 965 controls12; (2) Scotland1 (COGS study) included 1012 CRC
cases and 1012 controls12; (3) VQ58 comprised 1800 cases from the UK-based
VICTOR and QUASAR2 adjuvant chemotherapy clinical trials and 2690 popula-
tion control genotypes from the Wellcome Trust Case Control Consortium 2
(WTCCC2) 1958 birth cohort50; (4) CCFR1 comprised 1290 familial CRC cases
and 1055 controls from the Colon Cancer Family Registry (CCFR)15; (5) CCFR2
included a further 796 cases from the CCFR and 2236 controls from the Cancer
Genetic Markers of Susceptibility (CGEMS) studies of breast and prostate
cancer51,52; (6) COIN was based on 2244 CRC cases ascertained through two
independent Medical Research Council clinical trials of advanced/metastatic CRC
(COIN and COIN-B)53 and controls comprised 2162 individuals from the UK
Blood Service Control Group genotyped as part of the WTCCC2; (7) Finnish
GWAS (FIN)3 was based on 1172 CRC cases and 8266 cancer-free controls

ascertained through FINRISK, Health 2000, Finnish Twin Cohort and Helsinki
Birth Cohort Studies; (8) CORSA (COloRectal cancer Study of Austria) a molecular
epidemiological study of 978 cases and 855 colonoscopy-negative controls54; (9)
DACHS (Darmkrebs: Chancen der Verhütung durch Screening)55 based on 1105
cases and 700 controls and (10) Croatia consisted of 764 cases and 460 population-
based controls56.

The VQ58, UK1 and Scotland1 GWAS were genotyped using Illumina Hap300,
Hap240S, Hap370, Hap550 or Omni2.5 M arrays. 1958BC genotyping was
performed as part of the WTCCC2 study on Hap1.2M-Duo Custom arrays. The
CCFR samples were genotyped using Illumina Hap1M, Hap1M-Duo or Omni-
express arrays. CGEMS samples were genotyped using Illumina Hap300 and
Hap240 or Hap550 arrays. The COIN cases were genotyped using Affymetrix
Axiom Arrays and the Blood Service controls were genotyped using Affymetrix 6.0
arrays. FIN cases were genotyped using Illumina HumanOmni 2.5M8v1 and
controls using Illumina HumanHap 670k and 610k arrays. DACHS study samples
were genotyped using the Illumina OncoArray, CORSA study sampels were
genotyped on the Affymetrix Axiom Genome-Wide CEU 1 Array, and Croatia
study samples were genotyped on Illumina OmniExpressExome BeadChip 8v1.1
or 8v1.3.

Quality control. Standard quality control (QC) measures were applied to each
GWAS8. Specifically, individuals with low SNP call rate (<95%) as well as indivi-
duals evaluated to be of non-European ancestry (using the HapMap version 2 CEU,
JPT/CHB and YRI populations as a reference) were excluded (Supplementary
Figure 9). For apparent first-degree relative pairs, we excluded the control from a
case-control pair; otherwise, we excluded the individual with the lower call rate.
SNPs with a call rate <95% were excluded as were those with a MAF <0.5% or
displaying significant deviation from Hardy–Weinberg equilibrium (P < 10−5). QC
details are provided in Supplementary Data 3. All genotype analyses were per-
formed using PLINK v1.957.

Imputation and statistical analysis. Prediction of the untyped SNPs was carried
out using SHAPEIT v2.83758 and IMPUTE v2.3.259. The CCFR1, CCFR2, COIN,
CORSA, Croatia, NSCCG-OncoArray, SCOT, Scotland1, SOCCS/GS, SOCCS/LBC,
UK1 and VQ58 samples used a merged reference panel using data from 1000
Genomes Project (phase 1, December 2013 release) and UK10K (April 2014
release). Imputation of UKBB was based on data from 1000 Genomes Project
(phase 3), UK10K and Haplotype Reference Consortium. The FIN and DACHS
GWAS were imputed using a reference panel comprised of 1000 Genomes Projects

Table 2 Colorectal cancer variants identified in analysis conditioning on the sentinel SNP at each risk locus

Conditional
(Sentinel) SNPs

Cytoband
(position (bp,
GRCh37))

Risk/
Alt Allele

RAF OR
(95% CI)

P-
value

Conditional
OR
(95% CI)

Conditional
P-value

BFDP LD with
sentinel
SNP (r2;
D’)

I2 (%) Phet Average
info score

rs77776598
(rs2735940)

5p15.33
(1,240,998)

C/T 0.06 1.14
(1.09;1.20)

7.90 ×
10−9

1.16
(1.11;1.21)

2.84 × 10−10 0.003 0.00; 0.33 0 0.93 0.99

rs4944940
(rs3824999)

11q13.4
(74,415,252)

G/A 0.96 1.31
(1.24;1.39)

1.05 ×
10−20

1.28
(1.21;1.35)

3.21 × 10−17 2.73 ×
10−9

0.00; 0.19 6 0.38 0.95

rs12818766
(rs3217810)

12p13.32
(4,376,091)

A/G 0.18 1.10
(1.07;1.13)

2.15 ×
10−9

1.10
(1.07;1.13)

5.29 × 10−9 0.037 0.00; 0.06 30 0.16 0.89

rs1570405a

(rs4444235)
14q22.2
(54,554,234)

G/A 0.31 1.06
(1.03;1.08)

9.81 ×
10−7

1.07
(1.04;1.09)

1.91 × 10−8 0.125 0.02; 0.19 0 0.46 1.00

rs16969681b

(rs73376930)
15q13.3
(32,993,111)

T/C 0.09 1.22
(1.18;1.27)

2.97 ×
10−27

1.21
(1.16;1.25)

2.85 × 10−24 1.33 ×
10−16

0.01; 0.32 42 0.04 0.99

rs16959063
(rs73376930)

15q13.3
(33,105,730)

A/G 0.01 1.30
(1.18;1.42)

3.72 ×
10−8

1.33
(1.21;1.45)

5.40 × 10−9 0.23 0.00; 0.40 30 0.13 0.96

rs17816465
(rs73376930)

15q13.3
(33,156,386)

A/G 0.20 1.11
(1.08;1.14)

1.12 ×
10−14

1.12
(1.09;1.15)

8.36 × 10−15 1.07 ×
10−7

0.00; 0.11 44 0.04 0.97

rs899244
(rs2696839)

16q24.1
(86,700,030)

T/C 0.21 1.09
(1.06;1.12)

1.11 ×
10−10

1.09
(1.06;1.12)

1.13 × 10−10 4.06 ×
10−3

0.00; 0.04 14 0.29 0.99

rs6085661c

(rs961253)
20p12.3
(6,693,128)

T/C 0.39 1.09
(1.06;1.11)

1.63 ×
10−14

1.09
(1.07;1.11)

2.95 × 10−15 3.88 ×
10−8

0.00; 0.08 0 0.96 1.00

rs4811050
(rs1810502)

20q13.13
(48,980,670)

A/G 0.18 1.10
(1.07;1.13)

2.43 ×
10−11

1.09
(1.06;1.12)

4.07 × 10−9 4.06 ×
10−3

0.04; 0.45 20 0.23 0.99

rs6091213
(rs1810502)

20q13.13
(49,384,745)

C/T 0.26 1.08
(1.05;1.11)

4.35 ×
10−10

1.08
(1.05;1.11)

5.68 × 10−10 4.76 ×
10−3

0.00; 0.05 6 0.39 0.94

BFDP calculated using prior= 10−5 and maximum relative risk= 1.2. LD calculated based on European populations in the 1000 Genomes Project data. BFDP calculated using conditional analysis results,
with prior= 10−5 and maximum relative risk= 1.2
RAF risk allele frequency, OR odds ratio, CI confidence interval, BFDP Bayesian False Discovery Probability, I2 proportion of the total variation due to heterogeneity, PhetP-value for heterogeneity
aTags to rs1957636 (r2= 0.67, D′= 1). Previously identified in Tomlinson IP, Nat Genet, 2008 (PMID:18372905)
bPreviously identified in Tomlinson IP, Nat Genet, 2008 (PMID:18372905)
cTags to rs4813802 (r2= 0.75, D′= 0.93). Previously identified in Tomlinson IP, Nat Genet, 2008 (PMID:18372905)
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Fig. 3 Regional plots of exemplar colorectal cancer risk loci. In the main panel, −log10P-values (y-axis) of the SNPs are shown according to their
chromosomal positions (x-axis). The colour intensity of each symbol reflects the extent of LD with the top SNP: white (r2= 0) through to dark red (r2=
1.0), with r2 estimated from EUR 1000 Genomes data. Genetic recombination rates (cM/Mb) are shown with a light blue line. Physical positions are based
on GRCh37 of the human genome. Where available, the upper panel shows Hi-C contacts from HT29 or LoVo. The lower panel shows the chromatin state
segmentation track from the Roadmap Epigenomics project (colonic mucosa, rectal mucosa, sigmoid colon), and HCT116. Also shown are the relative
positions of genes and transcripts mapping to each region of association. a rs12255141 (10q25.2); b rs12979278 (19q13); c rs2735940 (5p15); d rs7398375
(12q13.3)
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Project with an additional population matched reference panel: 3882 Sequencing
Initiative Suomi (SISu) haplotypes for the FIN study, and 3000 sequenced CRC
cases for the DACHS study. We imposed predefined thresholds for imputation
quality to retain potential risk variants with MAF >0.5% for validation. Poorly
imputed SNPs defined by an information measure <0.80 were excluded. Tests of
association between imputed SNPs and CRC were performed under an additive
genetic model in SNPTEST v2.5.260. Principal components were added to adjust
for population stratification where required (i.e. DACHS, FIN, NSCCG-OncoAr-
ray, SCOT and UKBB).

To determine whether specific coding variants within HLA genes contributed to
the diverse association signals, we imputed the classical HLA alleles (A, B, C,
DQA1, DQB1 and DRB1) and coding variants across the HLA region using
SNP2HLA11. The imputation was based on a reference panel from the Type 1
Diabetes Genetics Consortium (T1DGC) consisting of genotype data from 5225
individuals of European descent with genotyping data of 8961 common SNPs and
indel polymorphisms across the HLA region, and four digit genotyping data of the
HLA class I and II molecules. For the X chromosome, genotypes were phased and
imputed as for the autosomal chromosome, with the inclusion of the “chrX” flag. X
chromosome association analysis was performed in SNPTEST using a maximum
likelihood model, assuming complete inactivation of one allele in females and equal
effect-size between males and females.

The adequacy of the case-control matching and possibility of differential
genotyping of cases and controls was evaluated using a Q–Q plot of test statistics in
individual studies (Supplementary Figure 1). Meta-analyses were performed using
the fixed-effects inverse-variance method using META v1.761. Cochran’s Q-statistic
to test for heterogeneity and the I2 statistic to quantify the proportion of the total
variation due to heterogeneity were calculated. A Q–Q plot of the meta-analysis
test statistics was also performed (Supplementary Figure 1). None of the studies
showed evidence of genomic inflation, where λGC values for the CCFR1, CCFR2,
COIN, CORSA, Croatia, DACHS, FIN, NSCCG-OncoArray, SCOT, Scotland1,
SOCCS/GS, SOCCS/LBC, UKBB, UK1 and VQ58 studies were 1.03, 1.08, 1.09,
1.11, 1.01, 1.01, 1.09, 1.10, 1.08, 1.02, 1.09, 1.04, 1.05, 1.02 and 1.06, respectively.
Estimates were calculated using the regression method, as implemented in
GenABEL.

Definition of known and new risk loci. We sought to identify all associations for
CRC previously reported at a significance level P < 5 × 10−8 by referencing the
NHGRI-EBI Catalog of published genome-wide association studies, and a literature
search for the years 1998–2018 using PubMed (performed January 2018). Addi-
tional articles were ascertained through references cited in primary publications.
Where multiple studies reported associations in the same region, we only con-
sidered the first reported genome-wide significant association. New loci were
identified based on SNPs at P < 5 × 10−8 using the meta-analysis summary statis-
tics, with LD correlations from a reference panel of the European 1000 Genomes
Project samples combined with UK10K. We only included one SNP per 500 kb
interval. To measure the probability of the hits being false positives, the Bayesian
False-Discovery Probability (BFDP)9 was calculated based on a plausible OR of 1.2
(based on the 95th percentile of the meta-analysis OR values) and a prior prob-
ability of association of 10−5. A conditional analysis was performed using Genome-
wide Complex Trait Analysis (GCTA)62, conditioning on the new and known
SNPs, and SNPs with Pconditioned < 5 × 10−8 and r2 > 0.1 were clumped using
PLINK. The NSCCG-Oncoarray data were used to provide the LD reference data.

Fidelity of imputation. The reliability of imputation of the novel risk SNPs
identified (all with an IMPUTE2 r2 > 0.8) was assessed for 51 SNPs (comprising all
new signals not directly genotyped) by examining the concordance between
imputed and whole-genome sequenced genotypes in a subset of 201 samples from
the CORGI and NSCCG studies. More than 98% concordance was found between
the directly sequenced and imputed SNPs (Supplementary Data 14).

eQTL analysis. In the INTERMPHEN study, biopsies of normal colorectal mucosa
(trios of rectum, proximal colon and distal colon) were obtained from 131 UK
individuals with self-reported European ancestry without CRC. Genotyping was
performed using the Illumina Infinium Human Core Exome array, with quality
control and imputation as above. RNA-seq was performed and data analysed as per
the GTEx Project pipeline v7 using the 1000 Genomes and UK10K data as
reference. Gene-level expression quantification was based on the GENCODE 19
annotation, collapsed to a single transcript model for each gene using a custom
isoform procedure. Gene-level quantification (read counts and TPM values) was
performed with RNA-SeQC v1.1.8. Gene expression was normalised using the
TMM algorithm, implemented in edgeR, with inverse normal transformation,
based on gene expression thresholds of >0.1 Transcripts Per Million (TPM) in
≥20% of samples and ≥6 reads in ≥20% of samples. cis-eQTL mapping was per-
formed separately for proximal colon, distal colon and rectum samples using
FastQTL. Principal components for the SNP data and additional covariate factors
were identified using Probabilistic Estimation of Expression Residuals (PEER).
P-values were generated for each variant-gene pair testing alternative hypothesis
that the slope of a linear regression model between genotype and expression
deviates from 0. The mapping window was defined as 1Mb either side of the

transcription start site. Beta distribution-adjusted empirical P-values from FastQTL
were used to calculate Q-values, and FDR threshold of ≤0.05 was applied to identify
genes with a significant eQTL. The normalised effect size of the eQTLs was defined
as the slope of the linear regression, and computed as the effect of the alternative
allele relative to the reference allele in the human genome reference GRCh37/
hg19). MetaTissue was used to generate a “pan-colonic” eQTL measure from the
three individual RNA-seq datasets per patient.

To supplement this analysis, we performed SMR analysis28 including all eQTLs
with nominally significant associations (P < 0.05). We additionally examined for
heterogeneity using the heterogeneity in dependent instruments (HEIDI) test,
where PHEIDI < 0.05 were considered as reflective of heterogeneity and were
excluded.

Promoter capture Hi-C. In situ promoter capture Hi-C (CHi-C) on LoVo and
HT29 cell lines was performed as previously described63. Hi-C and CHi-C libraries
were sequenced using HiSeq 2000 (Illumina). Reads were aligned to the GRCh37
build using bowtie2 v2.2.6 and identification of valid di-tags was performed using
HiCUP v0.5.9. To declare significant contacts, HiCUP output was processed using
CHiCAGO v1.1.8. For each cell line, data from three independent biological
replicates were combined to obtain a definitive set of contacts. As advocated,
interactions with a score ≥5.0 were considered to be statistically significant64.

Chromatin state annotation. Colorectal cancer risk loci and SNPs in LD (r2 > 0.8)
were annotated for putative functional effect based upon ChIP-seq H3K4me1
(C15410194), H3K9me3 (C15410193), H3K27me3 (C15410195) and H3K36me3
(C15410192) for LoVo, and H3K4me1 and H3K9me3 for HT29. ChIP libraries
were sequenced using HiSeq 2000 (Illumina) with 100 bp single-ended reads.
Generated raw reads were filtered for quality (Phred33 ≥ 30) and length (n ≥ 32),
and adapter sequences were removed using Trimmomatic v0.22. Reads passing
filters were then aligned to the human reference (hg19) using BWA v0.6.1. Peak
calls are obtained using MACS2 v 2.0.10.07132012.

Histone mark and transcription factor enrichment analysis. ChIP-seq data from
colon crypt and tumour samples was obtained for H3K27ac and H3K4me165.
Multiple samples of the same tissue type or tumour stage were merged together.
Additional ChIP-seq data from the Roadmap Epigenomics project21 was obtained
for H3K4me3, H3K27ac, H3K4me1, H3K27me3, H3K9ac, H3K9me3 and
H3K36me3 marks in up to 114 tissues. Overlap enrichment analysis of CRC risk
SNPs with these peaks was performed using EPIGWAS, as described by Trynka
et al.20. Briefly, we evaluated if CRC risk SNPs and SNPs in LD (r2 > 0.8) with the
sentinel SNP, were enriched at ChIP-seq peaks in tissues by a permutation pro-
cedure with 105 iterations.

To examine enrichment in specific TF binding across risk loci, we adapted the
variant set enrichment method of Cowper-Sal lari et al.22. Briefly, for each risk locus, a
region of strong LD (defined as r2 > 0.8 and D′ > 0.8) was determined, and these SNPs
were termed the associated variant set (AVS). ChIP-seq uniform peak data were
obtained for LoVo and HT29 cell lines (198 and 29 experiments, respectively)66 and the
above described histone marks. For each of these marks, the overlap of the SNPs in the
AVS and the binding sites was determined to produce a mapping tally. A null
distribution was produced by randomly selecting SNPs with the same characteristics as
the risk-associated SNPs, and the null mapping tally calculated. This process was
repeated 105 times, and P-values calculated as the proportion of permutations where the
null mapping tally was greater or equal to the AVS mapping tally. An enrichment score
was calculated by normalising the tallies to the median of the null distribution. Thus, the
enrichment score is the number of standard deviations of the AVS mapping tally from
the median of the null distribution tallies.

Functional annotation. For the integrated functional annotation of risk loci, LD
blocks were defined as all SNPs in r2 > 0.8 with the sentinel SNP. Risk loci were
then annotated with five types of functional data: (i) presence of a CHi-C contact
linking to a gene promoter, (ii) presence of an association from eQTL, (iii) presence
of a regulatory state, (iv) evidence of TF binding, and (v) presence of a non-
synonymous coding change. Candidate causal genes were then assigned to CRC
risk loci using the target genes implicated in annotation tracks (i), (ii), (iiii) and
(iv). If the data supported multiple gene candidates, the gene with the highest
number of individual functional data points was considered as the candidate.
Where multiple genes had the same number of data points, all genes were listed.
Direct nonsynonymous coding variants were allocated additional weighting.
Competing mechanisms for the same gene (e.g. both coding and promoter var-
iants) were allowed for. Finally, if no evidence was provided by these criteria, if the
lead SNP was intronic we assigned candidacy on this basis, or if intergenic the
nearest gene neighbour. Chromatin data were obtained from HaploReg v4 and
regulatory regions from Ensembl.

Regional plots were created using visPIG67, using the data described above. We
used ChromHMM to integrate DNAse, H3K4me3, H3K4me1, H3K27ac, Pol2 and
CTCF states from the CRC cell line HCT116 using a multivariate Hidden Markov
Model68. Chromatin annotation tracks for colonic mucosa (E075), rectal mucosa
(E101) and sigmoid colon (E106) were obtained from the Roadmap Epigenomics
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project21, using the core 15-state model data based on H3K4me3, H3K4me1,
H3K36me3, H3K27me3 and H3K9me3 marks.

Transcription factor binding disruption analysis. To determine if the risk variants
or their proxies were disrupting motif binding sites, we used the motifbreakR package69.
This tool predicts the effects of variants on TF binding motifs, using position probability
matrices to determine the likelihood of observing a particular nucleotide at a specific
position within a TF binding site. We tested the SNPs by estimating their effects on over
2,800 binding motifs as characterised by ENCODE, FactorBook, HOCOMOCO and
HOMER. Scores were calculated using the relative entropy algorithm.

Heritability analysis. We used LDAK35 to estimate the polygenic variance (i.e.
heritability) ascribable to SNPs from summary statistic data for the GWAS datasets
which were based on unselected cases (i.e. CORSA, COIN, Croatia, DACHS, FIN,
SCOT, Scotland1, SOCCS/GS, SOCCS/LBC, UKBB and VQ58). SNP-specific expected
heritability, adjusted for LD, MAF and genotype certainty, was calculated from the
UK10K and 1000 Genomes data. Individuals were excluded if they were closely related,
had divergent ancestry from CEU, or had a call rate <0.99. SNPs were excluded if they
showed deviation from HWE with P < 1 × 10−5, genotype yield <95%, MAF <1%, SNP
imputation score <0.99, and the absence of the SNP in the GWAS summary statistic
data. This resulted in a total 6,024,731 SNPs used to estimate the heritability of CRC.

To estimate the sample size required to detect a given proportion of the GWAS
heritability we implemented a likelihood-based approach to model the effect-size
distribution36, using association statistics from the meta-analysis, and LD
information from individuals of European ancestry in the 1000 Genomes Project
Phase 3. LD values were based on an r2 threshold of 0.1 and a window size of 1MB.
The goodness of fit of the observed distribution of P-values against the expected
from a two-component model (single normal distribution) and a three-component
model (mixture of two normal distributions) were assessed, and a better fit was
observed for the latter model. The percentage of GWAS heritability explained for a
projected sample size was determined using this model, based on power
calculations for the discovery of genome-wide significant SNPs. The genetic
variance explained was calculated as the proportion of total GWAS heritability
explained by SNPs reaching genome-wide significance at a given sample size. The
95% confidence intervals were determined using 105 simulations.

Cross-trait genetic correlation. LD score regression39 was used to determine if
any traits were correlated with CRC risk. GWAS summary data were obtained for
allergy, asthma, coronary artery disease, fatty acids, lipids (total cholesterol, high
density lipoprotein, low-density lipoprotein, triglycerides), auto-immune diseases
(Crohn’s disease, rheumatoid arthritis, atopic dermatitis, celiac disease, multiple
sclerosis, primary biliary cirrhosis, inflammatory bowel disease, ulcerative colitis,
systemic lupus erythematosus), anthropometric measures (BMI, height, body fat),
glucose sensitivity (fasting glucose, fasting insulin, HbA1c), childhood measures
(birth weight, birth length, childhood obesity, childhood BMI), eGFR and type 2
diabetes. All data were obtained for European populations. Summary statistics were
reformatted to be consistent, and constrained to HapMap3 SNPs as these have
been found to generally impute well. LD Scores were determined using 1000
Genomes European data.

Familial risk explained by risk SNPs. Under a multiplicative model, the contribu-

tion of risk SNPs to the familial risk of CRC was calculated from
P

k

logλk
log λ0

, where λ0 is the

familial risk to first-degree relatives of CRC cases, assumed to be 2.238, and λk is the

familial relative risk associated with SNP k, calculated as λk ¼ pkr
2
kþqk

pkrkþqkð Þ2 , where pk is the

risk allele frequency for SNP k, qk= 1−pk, and rk is the estimated per-allele OR from the
meta-analysis70. The OR estimates were adjusted for the winner’s curse using the FDR
Inverse Quantile Transformation (FIQT) method37. We constructed a PRS including all
79 CRC risk SNPs discovered or validated by this GWAS in the risk-score modelling.
The distribution of risk on an RR scale in the population is assumed to be log-normal
with arbitrary population mean μ set to -σ2/2 and variance σ2 ¼ 2

P

k
pkð1� pkÞβ2

where β and p correspond to the log odds ratio and the risk allele frequency, respec-
tively, for SNP k. The distribution of PRS among cases is right-shifted by σ2 so that the
overall mean PRS is 1.071. The risk distribution was also performed assuming all
common variation, using σ2 ¼ logðλ2sibÞ, where λsib= 1.79, as determined using the
heritability estimate from GCTA.

Pathway analysis. SNPs were assigned to genes as described in the functional
annotation section. The genes that mapped to genome-wide significant CRC risk
SNPs were analysed using InBio Map, a manually curated database of protein-
protein interactions.

Gene set enrichment was calculated using GenGen. Enrichment scores were
calculated using the meta-analysis results and were based on 103 permutations on
the χ2 values between SNPs. Pathway definitions were obtained from the Bader
Lab33, University of Toronto, July 2018 release. This data contained pathway
information from Gene Ontology (GO), Reactome, HumanCyc, MSigdb C2
(curated dataset), NCI Pathway, NetPath and PANTHER for a total of 7269

pathways. GO annotations that were inferred computationally were excluded. To
avoid biasing the results, the meta-analysis SNPs were pruned to only those with an
r2 < 0.1 and a distance greater than 500 kb. Pathways were visualised using
Cytoscape v3.6.1, together with the EnrichmentMap v3.1.0 and AutoAnnotate v1.2
plugins. Only pathways with an FDR <0.05 and edges with a similarity coefficient
(number of shared genes between pathways) >0.55 were displayed.

URLs. Bader Lab pathway data: http://download.baderlab.org/EM_Genesets/
July_01_2018/Human/symbol/

FastQTL: https://github.com/francois-a/fastqtl
GTEx: https://www.gtexportal.org/home/
InBioMap: https://www.intomics.com/inbio/map/#home
LD scores: https://data.broadinstitute.org/alkesgroup/LDSCORE/
NHGRI-EBI GWAS Catalog: https://www.ebi.ac.uk/gwas/
PredictDB: http://predictdb.org/
Roadmap Epigenomics data: https://egg2.wustl.edu/roadmap/web_portal/

chr_state_learning.html
SYSCOL: http://syscol-project.eu/
UK Biobank: http://www.ukbiobank.ac.uk/scientists-3/genetic-data/

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The SCOT data can be requested through the TransSCOT committee according to the
ethical permissions obtained as part of the clinical trial approval. The PRACTICAL and
BCAC consortium control data are available through the respective Data Access
Coordination Committees (http://practical.icr.ac.uk and http://bcac.ccge.medschl.cam.ac.
uk/) and the Heinz Nixdorf Recall Study control data can be requested through https://
www.uni-due.de/recall-studie/die-studien/hnr/. UK Biobank data can be obtained
through http://www.ukbiobank.ac.uk/. The Colon Cancer Family Registry data can be
obtained through http://coloncfr.org/.
Finnish cohort samples can be requested from THL Biobank https://thl.fi/en/web/thl-
biobank. Hi-C, CHi-C, and histone ChIPseq sequencing data have been deposited in the
European Genome-phenome Archive (EGA) under the accession code EGAS00001001946.
The remaining data are contained within the Supplementary Files or available from the
authors upon reasonable request.

Code availability
All bioinformatics and statistical analysis tools used are open source.
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