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Abstract

Mapping gene expression as a quantitative trait using whole genome-sequencing and tran-
scriptome analysis allows to discover the functional consequences of genetic variation. We
developed a novel method and ultra-fast software Findr for higly accurate causal inference
between gene expression traits using cis-regulatory DNA variations as causal anchors,
which improves current methods by taking into consideration hidden confounders and weak
regulations. Findr outperformed existing methods on the DREAMS5 Systems Genetics chal-
lenge and on the prediction of microRNA and transcription factor targets in human lympho-
blastoid cells, while being nearly a million times faster. Findr is publicly available at https://
github.com/lingfeiwang/findr.

Author summary

Understanding how genetic variation between individuals determines variation in observ-
able traits or disease risk is one of the core aims of genetics. It is known that genetic varia-
tion often affects gene regulatory DNA elements and directly causes variation in expression
of nearby genes. This effect in turn cascades down to other genes via the complex pathways
and gene interaction networks that ultimately govern how cells operate in an ever chang-
ing environment. In theory, when genetic variation and gene expression levels are mea-
sured simultaneously in a large number of individuals, the causal effects of genes on each
other can be inferred using statistical models similar to those used in randomized con-
trolled trials. We developed a novel method and ultra-fast software Findr which, unlike
existing methods, takes into account the complex but unknown network context when
predicting causality between specific gene pairs. Findr’s predictions have a significantly
higher overlap with known gene networks compared to existing methods, using both sim-
ulated and real data. Findr is also nearly a million times faster, and hence the only software
in its class that can handle modern datasets where the expression levels of ten-thousands
of genes are simultaneously measured in hundreds to thousands of individuals.
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Introduction

Genetic variation in non-coding genomic regions, including at loci associated with complex
traits and diseases identified by genome-wide association studies (GWAS), predominantly
plays a gene-regulatory role [1]. Whole genome and transcriptome analysis of natural popula-
tions has therefore become a common practice to understand how genetic variation leads to
variation in phenotypes [2]. The number and size of studies mapping genome and transcrip-
tome variation has surged in recent years due to the advent of high-throughput sequencing
technologies, and ever more expansive catalogues of expression-associated DNA variants,
termed expression quantitative trait loci (eQTLs), are being mapped in humans, model organ-
isms, crops and other species [1, 3-5]. Unravelling the causal hierarchies between DNA vari-
ants and their associated genes and phenotypes is now the key challenge to enable the
discovery of novel molecular mechanisms, disease biomarkers or candidate drug targets from
this type of data [6, 7].

It is believed that genetic variation can be used to infer the causal directions of regulation
between coexpressed genes, based on the principle that genetic variation causes variation in
nearby gene expression and acts as a causal anchor for identifying downstream genes [8, 9].
Although numerous statistical models have been proposed for causal inference with genotype
and gene expression data from matching samples [10-15], no software implementation in the
public domain is efficient enough to handle the volume of contemporary datasets, hindering
any attempts to evaluate their performances. Moreover, existing statistical models rely on a
conditional independence test which assumes that no hidden confounding factors affect the
coexpression of causally related gene pairs. However gene regulatory networks are known to
exhibit redundancy [16] and are organized into higher order network motifs [17], suggesting
that confounding of causal relations by known or unknown common upstream regulators is
the rule rather than the exception. Moreover, it is also known that the conditional indepen-
dence test is susceptible to variations in relative measurement errors between genes [8, 9, 18],
an inherent feature of both microarray and RNA-seq based expression data [19].

To investigate and address these issues, we developed Findr (Fast Inference of Networks
from Directed Regulations), an ultra-fast software package that incorporates existing and
novel statistical causal inference tests. The novel tests were designed to take into account the
presence of unknown confounding effects, and were evaluated systematically against multiple
existing methods using both simulated and real data.

Results
Findr incorporates existing and novel causal inference tests

Findr performs six likelihood ratio tests involving pairs of genes (or exons or transcripts) A, B,
and an eQTL E of A (Fig 1, Materials and methods). Findr then calculates Bayesian posterior
probabilities of the hypothesis of interest being true based on the observed likelihood ratio test
statistics (denoted P;, i =0to 5,0 < P; < 1, Materials and methods). For this purpose, Findr
utilizes newly derived analytical formulae for the null distributions of the likelihood ratios of
the implemented tests (Materials and methods, S1 Fig). This, together with efficient program-
ming, resulted in a dramatic speedup compared to the standard computationally expensive
approach of generating random permutations. The six posterior probabilities are then com-
bined into the traditional causal inference test, our new causal inference test, and separately a
correlation test that does not incorporate genotype information (Materials and methods).
Each of these tests verifies whether the data arose from a specific subset of (E, A, B) relations
(Fig 1) among the full hypothesis space of all their possible interactions, and results in a
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Test ID Test name (hypothesis) (hypothesis) hypothesis

0 Correlation A B A——B Alternative

1 PI:lmary E A E— A Alternative
(Linkage)
Secondary .

2 i E B E— B Alternative
(Linkage)

E E
(Conditional) / / \
3 Independence Null
A— B A— B
E E

4 Relevance / / \ Alternative

A B A— B

E E
5 Controlled / \ / \ Alternative
A B

A— B

Fig 1. Six likelihood ratio tests are performed to test the regulation A — B, numbered, named, and defined as shown. E is the best
eQTL of A. Arrows in a hypothesis indicate directed regulatory relations. Genes A and B each follow a normal distribution, whose mean
depends additively on its regulator(s), as determined in the corresponding hypothesis. The dependency is categorical on discrete regulators
(genotypes) and linear on continuous regulators (gene expression levels). The undirected line represents a multi-variate normal distribution
between the relevant variables. In order to identify A — Bregulation, we select either the null or the alternative hypothesis depending on the
test, as shown.

https://doi.org/10.1371/journal.pcbi.1005703.9001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005703  August 18,2017 3/26


https://doi.org/10.1371/journal.pcbi.1005703.g001
https://doi.org/10.1371/journal.pcbi.1005703

©'PLOS

COMPUTATIONAL

BIOLOGY

Causal inference from genome-transcriptome variation data

probability of a causal interaction A — B being true, which can be used to rank predictions
according to significance or to reconstruct directed networks of gene regulations by keeping
all interactions exceeding a probability threshold.

The traditional causal inference test fails in the presence of hidden
confounders and weak regulations

Findr’s computational speed allowed us to systematically evaluate traditional causal inference
methods for the first time. We obtained five datasets with 999 samples simulated from syn-
thetic gene regulatory networks of 1,000 genes with known genetic architecture from the
DREAMS5 Systems Genetics Challenge, and subsampled each dataset to observe how perfor-
mance depends on sample size (Materials and methods). The correlation test (Py) does not
incorporate genotype information and was used as a benchmark for performance evaluations
in terms of areas under the receiver operating characteristic (AUROC) and precision-recall
(AUPR) curves (Materials and methods). The traditional method [11] combines the secondary
(P,) and independence (Ps) tests sequentially (Fig 1, Materials and methods), and was evalu-
ated by comparing P, and P, P; separately against the correlation test. Both the secondary test
alone and the traditional causal inference test combination were found to underperform the
correlation test (Fig 2A and 2B). Moreover, the inclusion of the conditional independence test
worsened inference accuracy, more so with increasing sample size (Fig 2A and 2B) and increas-
ing number of regulations per gene (S1 Text, S2 Fig). Similar performance drops were also
observed for the Causal Inference Test (CIT) [13, 15] software, which also is based on the con-
ditional independence test (S3 Fig).

We believe that the failure of the traditional causal inference test is due to an elevated false
negative rate (FNR) coming from two sources. First, the secondary test is less powerful in iden-
tifying weak interactions than the correlation test. In a true regulation E — A — B, the second-
ary linkage (E — B) is the result of two direct linkages chained together, and is harder to detect
than either of them. The secondary test hence picks up fewer true regulations, and conse-
quently has a higher FNR. Second, the conditional independence test is counter-productive in
the presence of hidden confounders (i.e. common upstream regulators). In such cases, even if
E — A — Bis genuine, the conditional independence test will find E and B to be still correlated
after conditioning on A due to a collider effect (S4 Fig) [20]. Hence the conditional indepen-
dence test only reports positive on E — A — B relations without any confounder, further rais-
ing the FNR. This is supported by the observation of worsening performance with increasing
sample size (where confounding effects become more distinguishable) and increasing number
of regulations per gene (which leads to more confounding).

To further support this claim, we examined the inference precision among the top predic-
tions from the traditional test, separately for gene pairs directly unconfounded or confounded
by at least one gene (Materials and methods). Compared to unconfounded gene pairs, con-
founded ones resulted in significantly more false positives among the top predictions (Fig 2C).
Furthermore, the vast majority of real interactions fell outside the top 1% of predictions (i.e.
had small posterior probability) [92% (651/706) for confounded and 86% (609/709) for uncon-
founded interactions, Fig 2C]. Together, these results again showed the failure of the tradi-
tional test on confounded interactions and its high false negative rate overall.

Findr accounts for weak secondary linkage, allows for hidden
confounders, and outperforms existing methods on simulated data

To overcome the limitations of traditional causal inference methods, Findr incorporates two
additional tests (Fig 1 and Materials and methods). The relevance test (P,) verifies that B is not
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Fig 2. Findr achieves best prediction accuracy on the DREAMS5 systems genetics challenge. (A, B) The mean AUROC (A) and AUPR
(B) on subsampled data are shown for traditional (P,, P> Ps) and newly proposed (P4, P» Ps, P) causal inference tests against the baseline
correlation test (Pp). Every marker corresponds to the average AUROC or AUPR at specific sample sizes. Random subsampling at every
sample size was performed 100 times. Half widths of the lines and shades are the standard errors and standard deviations respectively. P;
corresponds to test inumbered in Fig 1; Pis the new composite test (Materials and methods). This figure is for dataset 4 of the DREAM
challenge. For results on other datasets of the same challenge, see S2 Fig. (C, D) Local precision of top predictions (bars top to bottom: 0%
10 0.01%, 0.01% to 0.02%, 0.02% to 0.05%, 0.05% t0 0.1%, 0.1% to 0.2%, 0.2% t0 0.5%, 0.5% to 1%, 1% to 10%, and 10% to 100% top
predictions) for the traditional (C) and novel (D) tests for dataset 4 of the DREAM challenge. Gene pairs unconfounded (left, blue) and
confounded by a third gene (right, red) are visualized separately. Each full brick corresponds to 10% in precision. Numbers next to each bar
(x/y) indicate the number of true regulations (x) and the total number of gene pairs (y) within the respective range of prediction scores. For
results on other datasets, see S5E and S5F Fig. (E, F) The average AUROC (E) and AUPR (F) over 5 DREAM datasets with respectively
100, 300 and 999 samples are shown for Findr's new (Findr-P), traditional (Findr-P7), and correlation (Findr-P,) tests, for CIT and for the
best scores on the DREAM challenge leaderboad. For individual results on all 15 datasets, see S1 Table.

https://doi.org/10.1371/journal.pchi.1005703.g002
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independent from A and E simultaneously and is more sensitive for picking up weak second-
ary linkages than the secondary linkage test. The controlled test (Ps) ensures that the correla-
tion between A and B cannot be fully explained by E, i.e. excludes pleiotropy. The same
subsampling analysis revealed that P, performed best in terms of AUROC, and AUPR with
small sample sizes, whilst the combination P, Ps achieved highest AUPR for larger sample
sizes (Fig 2A and 2B). Most importantly, both tests consistently outperformed the correlation
test (Py), particularly for AUPR. This demonstrates conclusively in a comparative setting that
the inclusion of genotype data indeed can improve regulatory network inference. These obser-
vations are consistent across all five DREAM datasets (S2 Fig).

We combined the advantages of P, and P, Ps by averaging them in a composite test (P)
(Materials and methods), which outperformed P, and P, Ps at all sample sizes (Fig 2 and
S2 Fig) and hence was appointed as Findr’s new test for causal inference. Findr’s new test (P)
obtained consistently higher levels of local precision (i.e. one minus local FDR) on confounded
and unconfounded gene pairs compared to Findr’s traditional causal inference test (Pr)

(Fig 2C and 2D, S5 Fig), and outperformed the traditional causal inference test (Pr), correla-
tion test (Py), CIT, and every participating method of the DREAMS5 Systems Genetics Chal-
lenge (Materials and methods) in terms of AUROC and AUPR on all 15 datasets (Fig 2E and
2F, S1 Table, S6 Fig).

Specifically, Findr’s new test was able to address the inflated FNR of the traditional method
due to confounded interactions. It performed almost equally well on confounded and uncon-
founded gene pairs and, compared to the traditional test, significantly fewer real interactions
fell outside the top 1% of predictions (55% vs. 92% for confounded and 45% vs. 86% for
unconfounded interactions, Fig 2D, S5 Fig).

The conditional independence test incurs false negatives for
unconfounded regulations due to measurement error

The traditional causal inference method based on the conditional indepedence test results in
false negatives for confounded interactions, whose effect was shown significant for the simu-
lated DREAM datasets. However, the traditional test surprisingly reported more confounded
gene pairs than the new test in its top predictions (albeit with lower precision), and corre-
spondingly fewer unconfounded gene pairs (Fig 2C and 2D, S5 Fig).

We hypothesized that this inconsistency originated from yet another source of false nega-
tives, where measurement error can confuse the conditional independence test. Measurement
error in an upstream variable (called A in Fig 1) does not affect the expression levels of its
downstream targets, and hence a more realistic model for gene regulation is E — A®” — B
with A®”” — A, where the measured quantities are E, A, and B, but the true value for A, noted
A(t), remains unknown. When the measurement error (in AW A) is significant, conditioning
on A instead of A’ cannot remove all the correlation between E and B and would therefore
report false negatives for unconfounded interactions as well. This effect has been previously
studied, for example in epidemiology as the “spurious appearance of odds-ratio heterogeneity”
[21].

We verified our hypothesis with a simple simulation (Materials and methods). In a typical
scenario with 300 samples from a monoallelic species, minor allele frequency 0.1, and a third
of the total variance of B coming from A", the conditional independence test reported false
negatives (likeilihood ratio p-value <1, i.e. rejecting the null hypothesis of conditional inde-
pencence, cf. Fig 1) as long as measurement error contributed more than half of A’s total unex-
plained variance (Fig 3B). False negatives occurred at even weaker measurement errors, when
the sample sizes were larger or when stronger A — B regulations were assumed (S7 Fig).
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Fig 3. The conditional independence test yields false negatives for unconfounded regulations in the presence of even minor
measurement errors. (A, B, C, D) Null hypothesis p-values of the secondary linkage (A), conditional independence (B), relevance (C), and
controlled (D) tests are shown on simulated data from the ground truth model £ — A — Bwith AY — A. A%’s variance coming from Eis set
to one, xaxis (d2,) is A”’s variance from other sources and y axis (d2,) is the variance due to measurement noise. A total of 100 values from
1072 (left, bottom) to 102 (right, top) were taken for a3, and a3, each to form the 100 x 100 tiles. Tiles that did not produce a significant eQTL
relation E— A with p-value <10~° were discarded. Contour lines are for the log-average of smoothened tile values. Note that for the
conditional independence test (B), the true model corresponds to the null hypothesis, i.e. small (purple) p-values correspond to false
negatives, whereas for the other tests the true model corresponds to the alternative hypothesis, i.e. small (purple) p-values correspond to
true positives (cf. Fig 1). For details of the simulation and results from other parameter settings, see Materials and methods and S7 Fig
respectively. (E) Color bar.

https://doi.org/10.1371/journal.pchi.1005703.g003

This observation goes beyond the well-known problems that arise from a large measure-
ment error in all variables, which acts like a hidden confounder [9], or from a much larger
measurement error in A than B, which can result in B becoming a better measurement of A
than A itself [8]. In this simulation, the false negatives persisted even if E — A was observation-
ally much stronger than E — B, such as when A’s measurement error was only 10%

(6%, = 0.1) compared to up to 67% for B (Fig 3B). This suggested a unique and mostly
neglected source of false negatives that would not affect other tests. Indeed, the secondary, rele-

vance, and controlled tests were much less sensitive to such measurement errors (Fig 3A, 3C,
and 3D).
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Findr outperforms the traditional causal inference test and machine
learning methods on microRNA target prediction

In order to evaluate Findr on a real dataset, we performed causal inference on miRNA and
mRNA sequencing data in lymphoblastoid cell lines from 360 European individuals in the
Geuvadis study [3] (Materials and methods). We first tested 55 miRNAs with reported signifi-
cant cis-eQTLs against 23,722 genes. Since miRNA target predictions from sequence compli-
mentarity alone result in high numbers of false positives, prediction methods based on
correlating miRNA and gene expression profiles are of great interest [22]. Although miRNA
target prediction using causal inference from genotype and gene expression data has been con-
sidered [23], it remains unknown whether the inclusion of genotype data improves existing
expression-based methods. To compare Findr against the state-of-the-art expression-based
miRNA target prediction, we used miRLAB, an integrated database of experimentally con-
firmed human miRNA target genes with a uniform interface to predict targets using twelve
methods, including linear and non-linear, pairwise correlation and multivariate regression
methods [24]. We were able to infer miRNA targets with 11/12 miRLAB methods, and also
applied the GENIE3 random forest regression method [25], CIT, and the three tests in Findr:
the new (P) and traditional (Pr) causal inference tests and the correlation test (Py) (S1 Text).
Findr’s new test achieved the highest AUROC and AUPR among the 16 methods attempted.
In particular, Findr’s new test significantly outperformed the traditional test and CIT, the two
other genotype-assisted methods, while also being over 500,000 times faster than CIT (Fig 4,
S2 Table, S8 Fig). Findr’s correlation test outperformed all other methods not using genotype
information, including correlation, regression, and random forest methods, and was 500 to
100,000 times faster (Fig 4, S2 Table, S8 Fig). This further illustrates the power of the Bayesian
gene-specific background estimation method implemented in all Findr’s tests (Materials and
methods).

Findr predicts transcription factor targets with more accurate FDR
estimates

We considered 3,172 genes with significant cis-eQTLs in the Geuvadis data [3] (Materials and
methods) and inferred regulatory interactions to the 23,722 target genes using Findr’s tradi-
tional (Pr), new (P) and correlation (Py) tests, and CIT. Groundtruths of experimentally con-
firmed causal gene interactions in human, and mammalian systems more generally, are of
limited availability and mainly concern transcription or transcription-associated DNA-bind-
ing factors (TFs). Here we focused on a set of 25 TFs in the set of eQTL-genes for which either
differential expression data following siRNA silencing (6 TFs) or TE-binding data inferred
from ChIP-sequencing and/or DNase footprinting (20 TFs) in a lymphoblastoid cell line
(GM12878) was available [26] (Materials and methods). AUPRs and AUROC:s did not exhibit
substantial differences, other than modest improvement over random predictions (S9 Fig, S3
Table). To test for enrichment of true positives among the top-ranked predictions, which
would be missed by global evaluation measures such as AUPR or AUROC, we took advantage
of the fact that Findr’s probabilities are empirical local precision estimates for each test (Mate-
rials and methods), and assessed how estimated local precisions of new, traditional, and corre-
lation tests reflected the actual precision. Findr’s new test correctly reflected the precision
values at various threshold levels, and was able to identify true regulations at high precision
control levels (Fig 5). However, the traditional test significantly underestimated precision due
to its elevated FNR. This lead to a lack of predictions at high precision thresholds but enrich-
ment of true regulations at low thresholds, essentially nullifying the statistical meaning of its
output probability Pr. On the other hand, the correlation test significantly overestimated
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Fig 4. Findr achieves highest accuracy and speed on the prediction of miRNA target genes from the Geuvadis data. Shown are the
AUROC (A), AUPR (B) and runtime (C) for 16 miRNA target prediction methods. Methods are colored by type: blue, genotype-assisted
causal inference methods; red, pairwise correlation methods; yellow, multivariate regression methods; purple, other methods. Dashed lines
are the AUROC and AUPR from random predictions. For method details, see S1 Text.

https://doi.org/10.1371/journal.pchi.1005703.g004
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Fig 5. Findr predicts TF targets with more accurate FDR estimates from the Geuvadis data. The precision (i.e. 1-FDR) of TF target
predictions is shown at probability cutoffs 0.1 to 0.9 (blue to yellow) with respect to known functional targets from siRNA silencing of 6 TFs
(A) and known TF-binding targets of 20 TFs (B). The number above each bar indicates the number of predictions at the corresponding
threshold. Dashed lines are precisions from random predictions.

https://doi.org/10.1371/journal.pcbi.1005703.9005

precisions because it is unable to distinguish causal, reversed causal or confounded interac-
tions, which raises its FDR. The same results were observed when alternative groundtruth
ChIP-sequencing networks were considered (S9 and S10 Figs).

Materials and methods
Datasets

We used the following datasets/databases for evaluating causal inference methods:

1. Simulated genotype and transcriptome data of synthetic gene regulatory networks from the
DREAMS5 Systems Genetics challenge A (DREAM for short), generated by the SysGenSIM
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3.

software [27]. DREAM provides 15 sub-datasets, obtained by simulating 100, 300, and 999
samples of 5 different networks each, containing 1000 genes in every sub-dataset but more
regulations for sub-datasets with higher numbering. In every sub-dataset, each gene has
exactly one matching genotype variable. 25% of the genotype variables are cis-expression
Quantitative Trait Loci (eQTL), defined in DREAM as: their variation changes the expres-
sion level of the corresponding gene directly. The other 75% are trans-eQTLs, defined as:
their variation affects the expression levels of only the downstream targets of the corre-
sponding gene, but not the gene itself. Because the identities of cis-eQTLs are unknown, we
calculated the P-values of genotype-gene expression associations with kruX [28], and kept
all genes with a P-value less than 1/750 to filter out genes without cis-eQTL. For the sub-
sampling analysis, we restricted the evaluation to the prediction of target genes from these
cis-genes only, in line with the assumption that Findr and other causal inference methods
require as input a list of genes whose expression is significantly associated with at least one
cis-eQTL. For the full comparison of Findr to the DREAM leaderboard results, we pre-
dicted target genes for all genes, regardless of whether they had a cis-eQTL.

Genotype and transcriptome sequencing data on 465 human lymphoblastoid cell line sam-
ples from the Geuvadis project [3] consisting of the following data products:

 Genotype data (ArrayExpress accession E-GEUV-1).

« Gene quantification data for 23722 genes from nonredundant unique samples and after
quality control and normalization (ArrayExpress accession E-GEUV-1).

+ Quantification data of miRNA, with the same standard as gene quantification data
(ArrayExpress accession E-GEUV-2).

o Best eQTLs of mRNAs and miRNAs (ArrayExpress accessions E-GEUV-1 and
E-GEUV-2).
We restricted our analysis to 360 European samples which are shared by gene and miRNA
quantifications. Excluding invalid eQTLs from the Geuvadis analysis, such as single-valued
genotypes, 55 miRNA-eQTL pairs and 3172 gene-eQTL pairs were retained.

For validation of predicted miRNA-gene interactions, we extracted the “strong” ground-
truth table from miRLAB [24], which contains experimentally confirmed miRNA-gene reg-
ulations from the following databases: TarBase [29], miRecords [30], miRWalk [31], and
miRTarBase [32]. The intersection of the Geuvadis and ground-truth table contains 20
miRNAs and 1054 genes with 1217 confirmed regulations, which are considered for predic-
tion validation. Interactions that are present in the ground-truth table are regarded as true
while others as false.

For verification of predicted gene-gene interactions, we obtained differential expression
data following siRNA silencing of 59 transcription-associated factors (TFs) and DNA-
binding data of 201 TFs for 8872 genes in a reference lymphoblastoid cell line (GM12878)
from [26]. Six siRNA-targeted TFs, 20 DNA-binding TFs, and 6,790 target genes without
missing differential expression data intersected with the set of 3172 eQTL-genes and 23722
target genes in Geuvadis and were considered for validation. We reproduced the pipeline of
[26] with the criteria for true targets as having a False Discovery Rate (FDR) < 0.05 from R
package gvalue for differential expression in siRNA silencing, or having at least 2 TF-
binding peaks within 10kb of their transcription start site. We also obtained the filtered
proximal TF-target network from [33], which had 14 TFs and 7,000 target genes in com-
mon with the Geuvadis data.
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General inference algorithm

Consider a set of observations sampled from a mixture distribution of a null and an alternative
hypothesis. For instance in gene regulation, every observation can correspond to expression
levels of a pair of genes wich are sampled from a bivariate normal distribution with zero (null
hypothesis) or non-zero (alternative hypothesis) correlation coefficient. In Findr, we predict
the probability that any sample follows the alternative hypothesis with the following algorithm
(based on and modified from [11]):

1. For robustness against outliers, we convert every continuous variable into standard nor-
mally distributed N(0, 1) values using a rank-based inverse normal transformation across
all samples. We name this step as supernormalization.

2. We propose a null and an alternative hypothesis for every likelihood ratio test (LRT) of
interest where, by definition, the null hypothesis space is a subset of the alternative hypothe-
sis. Model parameters are replaced with their maximum likelihood estimators (MLEs) to
obtain the log likelihood ratio (LLR) between the alternative and null hypotheses.

3. We derive the analytical expression for the probablity density function (PDF) of the LLR
when samples follow the null hypothesis.

4. We convert LLRs into posterior probabilities of the hypothesis of interest with the empirical
estimation of local FDR.

Implementational details can be found in Findr’s source code.

Likelihood ratio tests

Consider correlated genes A, B, and a third variable E upstream of A and B, such as a signifi-
cant eQTL of A. The eQTLs can be obtained either de novo using eQTL identification tools
such as matrix-eQTL [34] or kruX [28], or from published analyses. Throughout this article,
we assume that E is a significant eQTL of A, whereas extension to other data types is straight-
forward. We use A; and B; for the expression levels of gene A and B respectively, which are
assumed to have gone through supernormalization, and optionally the genotypes of the best
eQTL of A as E;, where i = 1, .. ., n across samples. Genotypes are assumed to have a total of n,
alleles, so E; € {0, .. ., n,}. We define the null and alternative hypotheses for a total of six tests,
as shown in Fig 1. LLRs of every test are calculated separately as follows:

0. Correlation test: Define the null hypothesis as A and B are independent, and the alterna-
tive hypothesis as they are correlated:

HY =A B, HY =A—B. (1)

null ™

The superscript (0) is the numbering of the test. Both hypotheses are modeled with gene
expression levels following bivariate normal distributions, as

A, 0 ‘7/240 P G400
~ N b) )
Bi 0 p GAUGBU O-%U
fori=1, ..., n. The null hypothesis corresponds to p = 0.
Maximum likelihood estimators (MLE) for the model parameters p, 0,40, and op, are

1 n
0 = — A.B. 0 g = Opy = 1
p " E iDis 040 = Op ) (2)
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and the LLR is simply

LLR") = —g In(1— p%). (3)

In the absence of genotype information, we use nonzero correlation between A and B as
the indicator for A — B regulation, giving the posterior probability

P(A — B) = P(HY) | LLR?).

Primary (linkage) test: Verify that E regulates A from Hfﬂlt) =F —Aand
HW

wn =E A For ’Hillt), we model E — A as A follows a normal distribution whose

mean is determined by E categorically, i.e.
A |E ~ N(:“E,va 034)’ (4)

From the total likelihood p(A | E) = []._, p(4, | E,), we find MLEs for model parameters
Hpj=0,1,...,n4and oy, as

1 n "a pn.
No— A2 __ ] n2
K= ;ZAi(sE,-j’ Ga=1=2
J =1 j=0
where 7; is the sample count by genotype category,

n

n = Zéw.

i=1

The Kronecker delta function is defined as 6, = 1 for x = y, and 0 otherwise. When sum-
ming over all genotype values (j =0, . . ., n,), we only pick those that exist (1; > 0)
throughout this article. Since the null hypothesis is simply that A, is sampled from a geno-
type-independent normal distribution, with MLEs of mean zero and standard deviation
one due to supernormalization, the LLR for test 1 becomes

n .
LLRY = -3 Iné62. (5)

By favoring a large LLR™Y, we select . and verify that E regulates A, with

alt

P(E — A) = P(H.}) | LLRY).

alt

Secondary (linkage) test: The secondary test is identical with the primary test, except it
verifies that E regulates B. Hence repeat the primary test on E and B and obtain the MLEs:

1 n " pn.
Vo=— E B, 6:=1- E 292
J n L) n /

J =1 j=0
and the LLR as

LLR? = — 2 Ing2,
2

H') is chosen to verify that E regulates B.

alt
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3. (Conditional) independence test: Verify that E and B are independent when condition-
ing on A. This can be achieved by comparing HD i =B—E— AN (A correlates

with B) against Hnu” = E — 4 — B.LLRs close to zero then prefer H®)  and ensure

that E regulates B only through A:

null’

P(EJ-B|A): ( null‘LLR(d)

For H'?), the bivariate normal distribution dependent on E can be represented as

A, M, a4 pPO40p
E ~N ,
B, VE, PG40y oy

the distributions follow Eq 4, as well as

For H"®)

null>

B, | Ai ~ N(pAia 0123)'

Substituting parameters yj, v;, 04, 0, p of HY and W P> O, 0p Of H'®) with their MLEs,
we obtain the LLR:
@ - _I 2
LIRY = —§ln( —(p+o,-1))
(6)
’; Iné? + = ln( — %),
where

and p is defined in Eq 2.

4. Relevance test: Since the indirect regulation E — B tends to be weaker than any of its
direct regulation components (E — A or A — B), we propose to test E— A — B with
indirect regulation E — B as well as the direct regulation A — B for stronger distinguish-
ing power on weak regulations. We define ’Hah =F—>ANE—B+— A4and
HY =E—4  B.This simply verifies that B is not independent from both A and E

null —

simultaneously. In the alternative hypothesis, B is regulated by E and A, which is modeled
as a normal distribution whose mean is additively determined by E categorically and A
linearly, i.e.

B, | E, A, ~ N(v, + pA,, 03).
We can hence solve its LLR as

, (SN . BT
LLR<4) = —5 In (0_12462 — (,0 + Oup — 1)2) +§ ani.

5. Controlled test: Based on the positives of the secondary test, we can further distinguish the
alternative hypothesis HE lt =B—E—ANA— Bfromthenull H®) =B — E — 4

null —
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to verify that E does not regulate A and B independently. Its LLR can be solved as

LLR® = —g In (6'iﬁ'§ —(p+0,— 1)2) +g In 6767

B*

Null distributions for the log-likelihood ratios

The null distribution of LLR, p(LLR | H, ), may be obtained either by simulation or analyti-
cally. Simulation, such as random permutations from real data or the generation of random
data from statistics of real data, can deal with a much broader range of scenarios in which ana-
lytical expressions are unattainable. However, the drawbacks are obvious: simulation can take
hundreds of times longer than analytical methods to reach a satisfiable precision. Here we
obtained analytical expressions of p(LLR | H, ) for all the tests introduced above.

0. Correlation test: H1(1?1>11 = A  Bindicates no correlation between A and B. Therefore,

we can start from

B, ~iid N(0,1). (7)
In order to simulate the supernormalization step, we normalize Bi into B; with zero mean
and unit variance as:

SB o

i=1

(o111

B,
o

i
)

oo}
Il

B. =

1

=
Il
=

(- TR

Transform the random variables {B,} by defining

1 &K -
X = — A.B.
oy 0

X,

\%ZB (10)

X, = <ZB?>—X§—X;. (11)
i=1

Since B, ~ i.i.d N(0,1) (according to Eq 7), we can easily verify that X;, X,, X; are inde-
pendent, and

X, ~N(0,1), X, ~N(0,1), X, ~ y*(n—2). (12)
Expressing Eq 3 in terms of X;, X,, X5 gives

LLR" = —g In(1-Y), (13)

in which

Y= petaf L, 122 (14)
= ~ Beta| =, ——
X2+ X, 27 2

follows the Beta distribution.
We define distribution D(k,, k,) as the distribution of a random variable Z = —1In (1-Y)
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for Y ~ Beta(k,/2, k»/2), i.e.
1
Z= —3 In(1-7Y)~ D(k,,k,).

The probability density function (PDF) for Z ~ D(k,, k,) can be derived as: for z > 0,

2

_ =22\ (ke /2-1) —kyz
p(Z | k17k2) - B(k1/2,k2/2) (1 e ) e ’ (15)

and for z < 0, p(z|ky, k;) = 0. Here B(a, b) is the Beta function. Therefore the null distribution
for the correlation test is simply

LLR" /n ~ D(1,n — 2). (16)

m

o =E  Aindicates no regulation from E to A. Therefore, similarly

Primary test: H
with the correlation test, we start from A4; ~ i.i.d N(0,1) and normalize them to A; with

zero mean and unit variance.
The expression of LLR"" then becomes:

Ha £ 7N2
RO = 1o 5o A)
2 n ’

where

i = %ZA,@EJ.

] =1

For now, assume all possible genotypes are present, i.e. n; > 0 for j =0, . . ., n,. Transform
{A.} by defining

X, = \/n_jﬁj, for j=0,...,n,

X0 = <iﬁf) — (i){f)
i—1 =0

Then we can similarly verify that {X;} are pairwise independent, and

(17)

X, ~ N(0,1), fori=0,...,n,

1

X ~ y(n—-n,—1).

n,+1

(18)
Again transform {X;} by defining independent random variables

ng n
>0y~ N,
[

Y,

Y, = (Z){f) — Y2~ p2(n,),
j=0

Y, = X, .~ 2(n—n,—1).
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Some calculation would reveal

Y,
LRV = P12 ),
2 Y, + Y,

ie.

LLRY/n ~ D(n,,n —n, —1).

a’

To account for genotypes that do not show up in the samples, define 1, = ¥;c(jn~0) 1 as
the number of different genotype values across all samples. Then

LLRY /n ~D(n, —1,n—n,). (19)

2. Secondary test: Since the null hypotheses and LLRs of primary and secondary tests are
identical, LLR® follows the same null distribution as Eq 19.

3. Independence test: The independence test verifies if E and B are uncorrelated when con-

ditioning on A, with ’H(3>l = E — 4 — B. For this purpose, we keep E and A intact while

nul

randomizing B; according to B’s correlation with A:

B,=pA, ++/1-pX,, X, ~iid N(0,1).
Then B, is normalized to B; according to Eq 8. The null distribution of LLR® can be
obtained with similar but more complex computations from Eq 6, as

LLR® /n ~D(n, — 1,n—n, —1). (20)

4. Relevance test: The null distribution of LLR® can be obtained similarly by randomizing
B; according to Eqs 7 and 8, as

LLRY /n ~ D(n,n—n, —1).

5. Controlled test: To compute the null distribution for the controlled test, we start from

B,=9, +6,X, X, ~N(0,1), (21)

i
i

and then normalize B, into B; according to Eq 8. Some calculation reveals the null distri-
bution as

LLR® /n ~ D(1,n —n, — 1).

We verified our analytical method of deriving null distributions by comparing the analytical
null distribution v.s. null distribution from permutation for the relevance test.

Bayesian inference of posterior probabilities

After obtaining the PDFs for the LLRs from real data and the null hypotheses, we can convert
LLR values into posterior probabilities P(H,, | LLR). We use a similar technique as in [11],
which itself was based on a more general framework to estimate local FDRs in genome-wide
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studies [35]. This framework assumes that the real distribution of a certain test statistic forms a
mixture distribution of null and alternative hypotheses. After estimating the null distribution,
either analytically or by simulation, it can be compared against the real distribution to deter-
mine the proportion of null hypotheses, and consequently the posterior probability that the
alternative hypothesis is true at any value of the statistic.

To be precise, consider an arbitrary likelihood ratio test. The fundamental assumption is
that in the limit LLR — 0%, all test cases come from the null hypothesis (), whilst as LLR
increases, the proportion of alternative hypotheses () also grows. The mixture distribution
of real LLR values is assumed to have a PDF as

p<LLR) = P(Hnull)p(LLR | Hnull) + P(Halt)p(LLR | Halt)'

The priors P(H,,) and P(H,,) sum to unity and correspond to the proportions of null and
alternative hypotheses in the mixture distribution. For any test i =0, . . ., 5, Bayes’ theorem
then yields its posterior probability as

p(LLR" | Hy)

P(HY | LLRY) = :
(Hye | ) H(LLRY)

P(HY). (22)
Based on this, we can define the posterior probabilities of the selected hypotheses according to
Fig 1, i.e. the alternative for tests 0, 1, 2, 4, 5 and the null for test 3 as

P(H{) | LLRY), i=0,1,2,4,5,
= (23)

P(HY, | LLR?Y), i=3.

null

After obtaining the LLR distribution of the null hypothesis [p(LLR | H, )], we can determine
its proportion [P(H, )] by aligning p(LLR | H, ) with the real distribution p(LLR) at the
LLR — 0" side. This provides all the prerequisites to perform Bayesian inference and obtain
any P; from Eq 23.

In practice, PDFs are approximated with histograms. This requires proper choices of histo-
gram bin widths, P('H,,,), and techniques to ensure the conversion from LLR to posterior
probability is monotonically increasing and smooth. Implementational details can be found in
Findr package and in S1 Text. Distributions can be estimated either separately for every (E, A)
pair or by pooling across all (E, A) pairs. In practice, we test on the order of 10> to 10* candi-
date targets (“B”) for every (E, A) such that a separate conversion of LLR values to posterior
probabilities is both feasible and recommended, as it accounts for different roles of every gene,
especially hub genes, through different rates of alternative hypotheses.

Lastly, in a typical application of Findr, inputs of (E, A) pairs will have been pre-determined
as the set of significant eQTL-gene pairs from a genome-wide eQTL associaton analysis. In
such cases, we may naturally assume P; = 1 for all considered pairs, and skip the primary test.

Tests to evaluate

Based on the six tests in Fig 1, we use the following tests and test combinations for the infer-
ence of genetic regulations, and evalute them in the results.

o The correlation test is introduced as a benchmark, against which we can compare other
methods involving genotype information. Pairwise correlation is a simple measure for the
probability of two genes being functionally related either through direct or indirect regula-
tion, or through coregulation by a third factor. Bayesian inference additionally considers dif-
ferent gene roles. Its predicted posterior probability for regulation is P.
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The traditional causal inference test, as explained in [11], suggested that the regulatory rela-
tion E — A — B can be confirmed with the combination of three separate tests: E regulates
A, E regulates B, and E only regulates B through A (i.e. E and B become independent when
conditioning on A). They correspond to the primary, secondary, and independence tests
respectively. The regulatory relation E — A — B is regarded positive only when all three
tests return positive. The three tests filter the initial hypothesis space of all possible relations
between E, A, and B, sequentially to E — A (primary test), E— A A E — B (secondary test),
and E — A — B A (no confounder for A and B) (conditional independence test). The result-
ing test is stronger than E — A — B by disallowing confounders for A and B. So its probabil-
ity can be broken down as

P, =PpP,P, (24)

Trigger [36] is an R package implementation of the method. However, since Trigger inte-
grates eQTL discovery with causal inference, it is not practical for use on modern datasets.
For this reason, we reimplemented this method in Findr, and evaluated it with P, and P, P;
separately, in order to assess the individual effects of secondary and independence tests. As
discussed above, we expect a set of significant eQTLs and their associated genes as input, and
therefore P; = 1 is assured and not calculated in this paper or the package Findr. Note that
Pris the estimated local precision, i.e. the probability that tests 2 and 3 are both true. Corre-
spondinly, its local FDR (the probability that one of them is false) is 1 — P

The novel test, aimed specifically at addressing the failures of the traditional causal inference
test, combines the tests differently:

P=_-(P,P, +P,). (25)

DN | =

Specifically, the first term in Eq 25 accounts for hidden confounders. The controlled test
replaces the conditional independence test and constrains the hypothesis space more
weakly, only requiring the correlation between A and B is not entirely due to pleiotropy.
Therefore, P, P5 (with Py = 1) verifies the hypothesis that B«— E — A A (A L B|E), a super-
setof E— A — B.

On the other hand, the relevance test in the second term of Eq 25 addresses weak interac-
tions that are undetectable by the secondary test from existing data (P, close to 0). This term
still grants higher-than-null significance to weak interactions, and verifies that

E — AN (E— BV A — B),also asuperset of E— A — B. In the extreme undetectable
limit where P, = 0 but P, # 0, the novel test Eq 25 automatically reduces to P = ; P, 