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Abstract
The innate immune system, the primary defense mechanism of higher organisms against pathogens including viruses, senses 
pathogen-associated molecular patterns (PAMPs). In response to PAMPs, interferons (IFNs) are produced, allowing the host 
to react swiftly to viral infection. In turn the expression of IFN-stimulated genes (ISGs) is induced. Their products dissemi-
nate the antiviral response. Among the ISGs conserved in many species are those encoding mono-ADP-ribosyltransferases 
(mono-ARTs). This prompts the question whether, and if so how, mono-ADP-ribosylation affects viral propagation. Emerg-
ing evidence demonstrates that some mono-ADP-ribosyltransferases function as PAMP receptors and modify both host and 
viral proteins relevant for viral replication. Support for mono-ADP-ribosylation in virus–host interaction stems from the 
findings that some viruses encode mono-ADP-ribosylhydrolases, which antagonize cellular mono-ARTs. We summarize 
and discuss the evidence linking mono-ADP-ribosylation and the enzymes relevant to catalyze this reversible modification 
with the innate immune response as part of the arms race between host and viruses.
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Introduction

The innate immune system is our first line defense against 
pathogens. To mount a rapid response, it senses pathogen-
associated molecular patterns (PAMPs) through pattern 
recognition receptors (PRRs) (Fig.  1a). These include 
membrane-bound toll-like receptors (TLRs) and cytosolic 
receptors such as retinoic acid-inducible gene I (RIG-I)-
like receptors (RLRs), nucleotide-binding oligomerization 
domain (NOD)-like receptors (NLRs), AIM2-like receptors 
(ALRs), and cyclic guanosine monophosphate–adenosine 
monophosphate synthase (cGAS) and RNA helicases that 
sense nucleic acids [1–7].

PRRs recognize PAMPs to allow cells to distinguish 
between self and non-self. PAMPs consist of a variety of 

molecules with broad chemical properties, including con-
served microbial components such as glycolipids, pepti-
doglycans, and lipopolysaccharides (LPS). Also, certain 
forms of RNA and DNA serve as PAMPs. Nucleic acid 
receptors sense distinct features of these polymers that 
are not present or not available in host cells. Examples are 
viral replication intermediates, double stranded (ds) RNA 
or dsDNA with a high non-methylated cytosine-phosphate-
guanosine (CpG) content [8–10].

Upon interaction with PAMPs, PRRs induce signaling 
cascades that stimulate interferon (IFN) expression. Subse-
quently, these secreted cytokines induce the expression of 
IFN-stimulated genes (ISGs), which encode antiviral and 
antimicrobial factors and thus enable other cells to mount 
an antipathogen response [11, 12]. Some ISGs encode 
ADP-ribosyltransferase (ART) family members, in particu-
lar mono-ADP-ribosylating (MARylating) PARPs (Box 1) 
[13, 14]. In this review, we focus on the role of intracellular 
mono-ADP-ribosyltransferases in the antiviral response. 
This involves functions of ARTs as PAMP receptors and 
as regulators of both host and viral factors. Moreover, we 
summarize how viruses antagonize MARylation, which is 
achieved by ADP-ribosylhydrolases. These findings suggest 
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that MARylation is an important arm of innate immunity and 
that the emerging mechanisms may offer opportunities to 
interfere with viral replication and/or immune modulation.

Of note, enzymes that poly-ADP-ribosylate (PARylate) sub-
strates, such as PARP1, and extracellular mono-ARTs, referred 
to as ARTCs [14], have also been linked to innate and adap-
tive immunity. Discussing these findings in detail is beyond 
the scope of this review. We refer the reader to excellent, recent 
reviews that summarize and discuss these functions [15–17]. 

Recognition of PAMPs and signaling by PRRs

TLRs are spanning either the plasma (e.g. TLR2, 4 and 5) or the 
endosomal membrane (e.g. TLR3, 7 and 8), recognizing a large 
variety of different PAMPs such as LPS by TLR4 and dsRNA 
by TLR3, and activate signal transduction pathways (Fig. 1a) [2, 
18–20]. Cytosolic RLRs recognize PAMPs that include nucleic 
acids. For example, un-capped dsRNA promotes oligomeriza-
tion of RIG-I and MDA5, while unmethylated CpG-rich DNA is 
sensed by cGAS, which then activates the adaptor mitochondrial 

antiviral signaling protein (MAVS) or stimulator of interferon 
genes (STING), respectively, to promote the assembly of signal-
ing complexes. These contain different ubiquitin E3 ligases and 
kinases, which activate sequence specific transcription factors 
(sTFs) such as interferon regulatory factors (IRFs) 3 and 7 and 
NF-κB [5, 9, 21–27]. These sTFs stimulate the expression of 
genes encoding type I and III interferons (IFN) as well as pro-
inflammatory cytokines in many different cell types [28–31]. 
In addition, the expression of IFNγ, the single type II IFN, is 
induced predominantly in certain immune cells, such as natural 
killer, innate-like lymphoid and T cells following PRR activation 
[32–34]. Together, these IFNs unfold signaling processes con-
trolling the expression of genes whose products possess broad 
antiviral activities (Fig. 1b).

Interferon regulated genes and their 
products

IFNs were originally identified due to their interfering anti-
viral activities [35, 36]. Once released, IFNs disseminate 
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Fig. 1  Schematic summary of signaling processes in innate immu-
nity. a Pathogen-associated molecular patterns (PAMPs) serve as 
markers recognized by pattern recognition receptors (PRRs) that 
allow cells to distinguish between self and non-self. PRRs include 
membrane bound Toll-like receptors (TLRs) and cytosolic nucleo-
tide-binding oligomerization domain (NOD)-like receptors (NLRs), 
retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), AIM2-
like receptors (ALRs), and the cyclic guanosine monophosphate–
adenosine monophosphate synthase (cGAS). These receptors read 
different PAMPs, which include conserved microbial components 
such as  glycolipids, peptidoglycans, lipopolysaccharides, and vari-
ous nucleic acids such as dsRNA and dsDNA, and stimulate signaling 
complexes that typically involve adaptor proteins and enzymes with 
kinase and ubiquitin E3 ligase activity. Subsequently, these activate 
sequence specific transcription factors (sTFs) such as IFN regula-

tory factors (IRFs) and NF-kB proteins, and inflammasomes. The 
latter are multimolecular complexes controlling proteolytic enzymes 
such as caspase-1, which activate IL-1 family cytokines [260, 261]. 
As a consequence, IFNs, pro-inflammatory cytokines and alarmins 
or DAMPs (damage associated molecular patterns) are released and 
disseminate potentially hazardous pathogen encounters. b Differ-
ent interferons (IFN) interact with distinct heterodimeric receptors 
as indicated. Upon cytokine binding, Janus family kinases (JAKs) 
are stimulated that phosphorylate transcription factors of the signal 
transducer and activator of transcription (STAT) family. Complexes 
of STAT1 and STAT2 with IRF9 form the trimeric transcription fac-
tor ISGF3, which binds to IFN-specific response elements (ISREs). 
Dimeric STAT1 complexes recognize IFNγ activation sites (GAS). 
Both ISREs and GAS elements are commonly found in IFN stimu-
lated genes
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the information about preceding PAMP recognition and thus 
alert neighboring cells to potentially hazardous pathogens 
that were encountered [11]. Type I, II and III IFNs signal 
through IFNAR1/INFAR2, IFNGR1/IFNGR2 and IFNLR1/
IL10Rβ heterodimers, respectively, and activate JAK-STAT 
pathways. This results in the expression of ISGs (summa-
rized in Fig. 1b) [12, 32, 37, 38]. Type I and II IFN receptors 
are broadly expressed and thus most cell types respond to 
these cytokines, while type III IFNs are particularly relevant 
at anatomical barriers, such as the epithilia of the respiratory 
or gastrointestinal tracts [11, 12, 32].

Hundreds of IFN-regulated genes have been identified, 
many encoding proteins with antiviral activities [11, 12, 
39–41]. Others desensitize the pathway to limit IFN signal-
ing and to avoid toxic effects [42]. The precise control of 
IFN signaling is important as impairment results in defects 
in pathogen control [43, 44], while chronic activation of type 
I IFN signaling has been linked to autoimmune disease [45]. 
Among the ISGs are genes encoding members of the ART 
superfamily suggesting that ADP-ribosylation contributes 
to the antiviral response.

Genes encoding ADP‑ribosyltransferases are 
regulated by interferons

ARTs are enzymes capable of transferring ADP-ribose 
(ADPr) from  NAD+ onto substrates. ADP-ribosylation 
comes in two forms, mono- and poly-ADP-ribosylation 
(MARylation and PARylation, respectively), which is cata-
lyzed intracellularly predominantly by the ARTD family, 
including PARP and TNKS proteins (Box 1). ADP-ribo-
sylation was discovered in the 1960s and numerous pro-
teins have been identified as substrates. These are associ-
ated with many different biochemical and cellular functions, 
including DNA repair, viral replication, gene transcription 
and stress response [13]. Importantly, ADP-ribosylation is 
a fully reversible process. ADP-ribosylhydrolases contain 
either a macrodomain or a Ribosyl_crysJ1 domain capable 
of cleaving ADPr-ADPr or ADPr-amino acid glycosidic 
bonds (Box 2) [46]. Moreover, Nudix hydrolases cleave 
ADP-ribose to produce 5′ AMP and ribose-5-phosphate 
[47, 48]. Below we will focus on macrodomain-containing 
proteins as these have been identified in some viruses.

In addition to proteins, nucleic acids have been identified 
as substrates [49, 50]. Although a good part of the evidence 
comes from in vitro experiments so far, it is notable that 
enzymes in shellfish and in butterflies have been demon-
strated to MARylate DNA, possibly as part of a defense 
mechanism [51–53]. Moreover, some toxins of bacterial 
toxin-antitoxin systems, which are involved in promoting 
persistence of cell populations, have been described as 
DNA ADP-ribosylating enzymes [54, 55]. It is tempting to 

speculate that ADP-ribosylation of viral nucleic acids might 
be of functional relevance.

An early observation linking ARTDs to IFN signaling 
was the demonstration that PARP9 is responsive to IFNγ 
[56]. PARP9 was initially described as a risk factor in dif-
fuse large B-cell lymphoma (DLBCL) and is upregulated in 
chemoresistant DLBCL [57, 58]. PARP9 shares its promoter 
with DTX3L and, indeed, DTX3L is also IFNγ responsive. 
Both genes are activated in cells that express a dominant 
active form of STAT1 (Fig. 1b) [59]. Interestingly, PARP9 
and DTX3L, a Deltex family member (see below), interact 
and participate in the activation of certain ISGs, suggest-
ing a positive feedback loop [56, 60]. Another PARP gene 
identified as regulated by IFNs is PARP13 [61, 62]. Moreo-
ver, in different experimental systems, including infection 
of human monocytes with Borrelia burgdorferi, spirochetes 
that promote an IFN response, the ISGs activated include 
PARP10, PARP12 and PARP14 [63–67]. Similar findings 
were obtained upon infection with for example a murine cor-
onavirus (CoV) and with SARS-CoV-2 (for viral taxonomy 
see https:// ictv. global/ taxon omy/) [64, 68].

Comparing type I IFN-inducible genes between 10 differ-
ent species, i.e. 9 mammals and chicken, revealed 62 up-reg-
ulated ISGs in all species and an additional 28 only in mam-
mals, likely defining central components of the innate immune 
response [39]. These genes encode antiviral proteins, factors 
involved in PAMP sensing and in modulating IFN signaling, 
proteins implicated in antigen presentation, and several PARP 
genes (Table 1) [39]. The latter include the previously iden-
tified IFN-inducible genes, i.e. PARP9, PARP10, PARP12, 
PARP13 and PARP14. These five genes were consistently 
activated, in many cases more than tenfold. In some species 
PARP11 and PARP15 were induced, while PARP3, PARP4, 
PARP7, PARP8, and PARP16 were stimulated less efficiently 
(Table 1). Strikingly, these PARP genes encode mono-ARTs, 
except PARP13, which is thought to be catalytically inactive 
[69]. The genes encoding the PARylating enzymes PARP1, 
PARP2, TNKS1 and TNKS2 were not induced (Table 1 and 
Box 1). Together, these findings establish a link between 
innate immune signaling and the expression of a subset of 
PARP genes that encode MARylating enzymes.

In addition to IFNs, some PARP genes are also activated 
by PAMPs [70–73]. Whether these PAMP signals promote 
the expression of these PARP genes directly or whether these 
are indirect effects caused by activated IRFs driving IFN 
expression, thereby stimulating autocrine signaling, is not 
fully understood. In support of a direct effect are analyses 
of IRF1, a transcription factor directly activated by cer-
tain PAMPs [74]. IRF1 interferes with replication of some 
viruses and promotes the expression of PARP9, PARP10, 
PARP12 and PARP14 even in the absence of STAT1 [67].

Furthermore, it is of interest to mention that the dif-
ferent ADP-ribosylhydrolases capable of reversing 

https://ictv.global/taxonomy/
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ADP-ribosylation were also evaluated in the data set dis-
cussed above [39]. The genes encoding PARG and ARH3, 
both capable of hydrolyzing PAR chains, and the genes 
encoding MacroD1, MacroD2, TARG1, ARH1 and ARH3, 
which cleave the glycosidic bond between specific amino 
acid side chains and ADP-ribose, were not systematically 
regulated in response to type I IFN (Table 1 and Box 2).

Together these observations support the notion that 
MARylation contributes to innate immunity. Considering 
that genes encoding mono-ARTs are up-regulated upon IFN 
signaling, while genes encoding hydrolases are not, suggests 
that MARylation exerts predominantly antiviral effects. In 
support, some viruses encode a mono-ADP-ribosylhydro-
lase. However, this does not exclude that viruses may also 
exploit ADP-ribosylation for their propagation.

ARTD protein expression and activation 
in innate immune signaling

While many reports demonstrate expression of PARP genes 
in response to PAMPs and IFNs, the expression and activity 
of the encoded proteins are less well studied. For PARP10, 
PARP12 and PARP14 enhanced protein expression in 
response to LPS has been documented [70, 71, 75]. Other 
PARPs have been more difficult to evaluate, mainly due to 
the lack of high quality reagents for protein detection and the 
low expression of some of these proteins. Even less clear is 
whether the catalytic activities of the different MARylating 
enzymes are altered in response to innate immune stimuli. 
While mass spectrometry studies define increasing numbers 
of substrates and ADP-ribosylation sites (see e.g. [76–82]), 
information that specifies enzyme–substrate pairs is still rare. 
Interestingly, a recent study suggests that ADP-ribosylation 
increases upon treatment with IFN as well as poly(I:C), a 
vRNA mimic [83]. This increase was unaffected by Olapa-
rib, a potent PARP1/2 inhibitor, suggesting that PARP1 and 
PARP2 were unlikely to be involved. Whether the increase 
is due to activation of an ART or through inhibiting a hydro-
lase or both has not been clarified. Together, understand-
ing the role of IFN-inducible PARPs in innate immunity 
will require the identification of substrates, to comprehend 
whether the relevant sites are differentially modified, and 
whether MARylation is of functional relevance.

Evolution of mono‑ARTs supports link 
to host–pathogen conflicts

PARP genes have undergone strong selection in primates 
[84]. In particular, it appears that PARP13 is under posi-
tive selection, enhancing its antiviral activities [85]. Also 
PARP9, PARP14 and PARP15 seem to be under strong 

evolutionary selection [86]. The described rapid sequence 
adaptations are thought to reflect the arms race in host–path-
ogen conflicts. Of note is that the changes in sequence that 
were selected are particularly frequent in the catalytic 
domains, e.g. in PARP13 despite its apparent lack of cata-
lytic activity, and in the macrodomains of PARP9, 14 and 
15, domains linked to ADP-ribosylation-dependent signaling 
(Box 2). This supports the hypothesis that mono-ARTs are 
contributing to the antiviral innate immune response.

PARP proteins in viral replication 
and propagation

The information depth regarding the consequences of mono-
ARTs on viral replication and propagation is quite variable. 
Because mechanistic insight has only been obtained in some 
cases, the subsequent discussion is structured according to 
proposed mechanisms. Worth remembering is that PARP13 
seems to be catalytically inactive as an ART and thus it does 
not teach us directly how ADP-ribosylation might interfere 
with viral replication. However, PARP13, which is also 
referred to as zinc finger (ZnF) antiviral protein (ZAP) or 
ZC3HAV1, is arguably the best studied PARP member with 
antiviral activity and it connects to other PARP enzymes, 
thereby likely affecting ADP-ribosylation (see below). Note 
that a lack of consequences on viral replication when single 
PARPs are manipulated should be interpreted with caution. 
The activity of a specific PARP may only unfold in coop-
eration with other ISG encoded proteins, including other 
IFN-inducible PARPs. Thus, while we learn more about 
individual PARPs and viral replication, a more complete 
picture will require to study cooperative activities of PARPs.

Interference with viral replication

In an overexpression screen using Moloney murine leukemia 
virus (MMLV) as a model, PARP13 was identified as an inhibi-
tor of viral propagation [87]. PARP13 is expressed as several 
isoforms. The most prominent are a long and a short version, 
referred to as PARP13 (PARP13.1/ZAPL) and PARP13.2 
(ZAPS), respectively. Both encode all 4 ZnFs, but PARP13.2 
lacks the pseudo-ART domain [88, 89]. The different isoforms 
have distinct activities in the innate immune response [88, 90]. 
PARP13 possesses robust antiviral activity in many experimen-
tal systems including, in addition to MMLV, certain alphavi-
ruses, hepatitis B virus, influenza A virus, and SARS-CoV-2 
[73, 85, 91–104]. Other PARPs, including PARP7, PARP9, 
PARP10, PARP12 and PARP14, also interfere with replica-
tion and propagation of some viruses [64, 66, 67, 105–110]. 
For PARP10 and 12 these effects are at least in part dependent 
on catalytic activity [66, 107, 108, 110]. Studying the effects of 
PARPs on different viruses reveals some selectivity, possibly 
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due to different substrate specificities or the interaction with 
both host and viral proteins or nucleic acids (see below). For 
example, some viruses are not affected by PARP13, including 
yellow fever virus (YFV, Flaviviridae family) and Venezuelan 
equine encephalitis virus (VEEV, Togaviridae family) [95, 99, 
108]. It is likely that PARP13 needs to cooperate with other IFN 
regulated gene products for antiviral activity [93, 111]. Simi-
larly, PARP7 also shows some specificity, which may depend 
on the ability to interact with certain viral RNAs [105]. Thus, 
combinatorial effects of different PARPs and with other host 
factors will need to be considered.

PARP proteins as sensors of viral RNA

When analyzing the structural attributes of IFN-inducible 
PARPs, features that stand out are potential nucleic acid bind-
ing domains (ZnFs and RRMs) and macrodomains (Box 1). 
Indeed, several PARP proteins interact with viral RNA and 
thus may serve as PRRs. Again, PARP13 was the first iden-
tified. It interacts with vRNA through its ZnFs, which can 
stimulate RNA degradation (Fig. 2a). PARP13 seems to rec-
ognize multiple binding sites in both the 5′ or the 3′ untrans-
lated regions (UTR) of MMLV, although no defined sequence 
was mapped [87, 112]. More recently, the CpG dinucleotide 
content was found to promote PARP13 binding. Synonymous 
mutagenesis of the HIV genome to increase the number of 
CpG dinucleotides resulted in sensitization to PARP13 [113]. 
The genomic positions of the additional CpG dinucleotides 
are relevant, suggesting that the sequence context is important 
[102, 114]. This is consistent with a high CpG content pro-
moting an innate immune response [115–117].

PARP13 interacting factors are important for CpG dinu-
cleotide dependent antiviral activity (Fig. 2a) [113, 118]. 
One is TRIM25, which appears to enhance RNA binding 
of PARP13 [119]. Because TRIM25 is involved in activat-
ing MAVS [1], promoting IFN expression might be a con-
sequence of PARP13 sensing vRNA. Moreover, PARP13 
interacts with the exosome, a structure that degrades RNA 
and is involved in immunity [120, 121]. Exosome-dependent 
degradation of RNA begins with removing the poly(A) tail. 
Indeed, PARP13 interacts with PARN, one of several exonu-
cleases known to target poly(A), and indirectly with decap-
ping factors [96]. In addition, evidence for the requirement 
of a DEAD box helicase that associates with PARP13 has 
been obtained [122]. Helicases are involved in resolving sec-
ondary structures of RNA, which is required for exosome-
dependent degradation. These findings suggest that PARP13 
bridges viral and possibly cellular RNAs (see below) to 
cellular complexes that unfold and degrade RNA. PARP7, 
similar to PARP13, uses its ZnF to bind to SINV vRNA and 
induces its degradation by recruiting the exosome [105].

PARP9 has also been suggested to function as a receptor 
of viral dsRNA. This interaction promotes the activation 

of IRF3 and IRF7 through the phosphoinositide 3-kinase 
(PI3K) and AKT3 pathway (Fig. 2b) [106]. IRF3 and IRF7 
stimulate type I and III IFN gene expression, however, this 
appears to be independent of MAVS, suggesting that PARP9 
functions as a non-canonical PAMP sensor. Consistent with 
this, Parp9−/− mice are more susceptible to different viral 
infections [106]. Thus, evidence is accumulating that several 
PARPs function as PRRs, contributing to the first level of 
the antiviral response.

Cellular RNA metabolism and protein translation

Many viruses affect the availability of cellular RNAs and 
control selective protein translation. Products of ISGs inter-
fere with these processes [123]. Several PARP proteins have 
been suggested to alter protein translation. When expressed 
from a modified VEEV replicon, PARP7, 10 and 12 appear 
to strongly repress translation [109]. This might be due to 
synergistic effects with viral proteins, as these PARPs do 
not affect general translation in other cellular systems. As 
discussed above, vRNAs are regulated by PARP13. Moreo-
ver, it destabilizes certain cellular RNAs, for example the 
mRNA encoding TRAIL receptor 4 (TRAILR4), a decoy 
receptor [124]. Downregulation of TRAILR4 sensitizes cells 
to pro-apoptotic TRAIL signaling and thus may contribute 
to the antiviral function of PARP13. PARP13 was also found 
to inhibit translation at least in part by preventing the inter-
action of RNA with ribosomes (Fig. 2c) [125]. PARP13 
interacts with eIF4A, a helicase important for initiation of 
translation [126]. The eIF4 complex is a frequent target of 
viral interference to promote translation of vRNAs [127]. 
In addition to stimulating RNA binding as described above, 
TRIM25 appears to participate in PARP13 mediated inhibi-
tion of viral translation [128]. Whether this is dependent on 
the E3 ligase activity of TRIM25 will need clarification. An 
indirect mechanism to control the availability of both cel-
lular and viral RNAs is to interfere with Dicer/RNA-induced 
silencing complex (RISC), which contributes to antiviral 
immunity [129]. Subunits of RISC, including Ago2, are 
PARylated upon stress and damage-associated molecular 
patterns (DAMP) signaling [130, 131]. PARP13 interacts 
with Ago2 and interferes with miRNA function, possibly 
in complex with PARP12 and PARP15, offering additional 
mechanisms to control RNA stability and translation.

Many of the processes discussed above connect to stress 
granules (SGs), which are well-described to contribute to 
innate immunity [132–135]. Indeed, Ago2 and PARPs12-
15 are found in SGs, pointing to an intimate relation of SGs 
with ADP-ribosylation [130, 136–138]. In support, ADP-
ribosylation of both SG and RISC components are suggested 
to participate in antiviral activities (Fig. 3a) [136]. Because 
the effects on SG formation are thought to require PAR for-
mation, the mono-ARTs PARP12, PARP14 and PARP15, 
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and possibly others, may be responsible for initial MARyla-
tion. This might provide a seed for subsequent PAR forma-
tion, for example by TNKS1 or 2, which are also located in 
the cytosol and are associated with SGs when overexpressed 
[13, 130]. Together, a network of PARP proteins appears 
to contribute to SG formation, potentially regulating RNA 
stability and availability. Unraveling their precise interplay 
will be relevant to advance our understanding of the role of 
SGs for viral replication.

Cellular interactors and substrates of IFN‑inducible 
PARPs

A key question in understanding the role of PARPs in 
host–pathogen conflicts is to define their substrates. Both 
host and viral factors might be controlled by ADP-ribo-
sylation. Different approaches have been employed includ-
ing targeted approaches, protein arrays, chemical genetics 
approaches and BioID-based protein–protein interaction 

Table 1  The expression of ARTD subfamily members, macrodomain-containing hydrolases, and ARH family members in response to interferon 
signaling is summarized

 

Enzyme ADP-ribosylation Human Rat Cow Sheep Pig Horse Dog Fruit bat Microbat Chicken 

PARP1 Poly NDE          

PARP2 Poly -0.60          

PARP3 Mono  0.61 1.56  1.28 0.71  1.17 1.25  

PARP4 

(VPARP) 

Mono 1.34 0.46      0.45 0.43  

TNKS1 Poly  -0.22   0.34      

TNKS2 Poly 0.66          

PARP6 Mono     -0.31      

PARP7 

(TIPARP) 

Mono   0.83 0.72    1.67 0.45  

PARP8 Mono 2.05 0.82 2.15     1.49   

PARP9 

(BAL1) 

Mono 4.02 4.81 4.46 4.12 5.79 4.97 4.00 4.41 3.24 4.86 

PARP10 Mono 2.92 3.81 4.27 2.68 2.58 5.54 NA 2.27 4.03  

PARP11 Mono 0.58 0.57 0.35  3.48  1.32 3.35 1.67  

PARP12 

(ZC3HDC1) 

Mono 4.22 3.98 4.36 4.50 4.78 3.81 2.53 6.66 3.12 4.21 

PARP13 

(ZAP, 

ZC3HAV1) 

Inactive 3.06 1.55 2.07 2.55 3.86 5.68 2.81 2.26 2.10 5.21 

PARP14 

(BAL2) 

Mono 5.14 4.44 4.69 5.71 10.35 3.96 5.71 6.96 5.31 5.61 

PARP15 

(BAL3) 

Mono 1.10     8.06 2.34 8.68 6.07 5.61 

PARP16 Mono -0.75    -0.58 0.46  1.75   

PARG De-poly           

MacroD1 De-mono           

MacroD2 De-mono          0.35 

TARG1 De-mono        -0.34   

ARH1 De-mono 0.98        0.71  

ARH3 De-mono/poly 1.72   -0.67 -0.42   -0.32   

 

The data were obtained from http:// isg. data. cvr. ac. uk [39]
The expression is indicated as log2 fold change. In green are genes whose expression is induced more than tenfold (log2 ≥ 3.33)
NDE/orange: not differentially expressed. This indicates genes that are neither induced nor repressed in a statistically significant manner
NA/grey: no data available
ADP-ribosylation: mono refers to ARTD enzymes capable of mono-ADP-ribosylating substrates; poly to ARTD enzymes synthesizing ADP-
ribose polymer chains (iterative mono-ADP-ribosylation); De-poly and de-mono refer to enzymes that can degrade ADP-ribose polymer chains 
and substrate attached mono-ADP-ribose, respectively

http://isg.data.cvr.ac.uk
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screens to define possible interactors and substrates. Because 
measuring MARylation in cells is cumbersome, many of the 
potential substrates await detailed analysis, including map-
ping modification sites to evaluate relevance.

The study of PARP10 and PARP14 on protein microar-
rays defined in vitro substrates [139], some of the PARP10 
substrates could be verified in cells [140–142]. Through 
interaction and chemical genetic screens potential sub-
strates for PARP10, PARP11 and PARP14 were identified 
[143, 144]. Interestingly, gene ontology (GO) analyses of 
these potential substrates suggest functions in signaling, 
metabolism and mRNA associated processes, among oth-
ers, compatible with functions in innate immunity. One of 
the PARP14 substrates identified is PARP13, providing a 
link for an interaction network of PARP family members 
[144]. Other PARPs that are modified in cells include 
PARP9, PARP10 and PARP14 [145]. Support for a network 
is also provided by the interaction of PARP14 with MAR-
ylated PARP10 that is dependent on the ability of the macro-
domains of PARP14 to read the modification [146].

Of note is that PARP14 translocates to the cell nucleus 
upon LPS stimulation, offering the possibility that nuclear 
substrates can be MARylated upon PAMP signaling, while 
cytosolic substrates may lose MARylation (Fig. 3b) [71]. 
These effects may be further augmented because the translo-
cation of PARP14 also promotes the nuclear uptake of other 
proteins, including PARP12 and PARP9/DTX3L. Some 
PARPs affect transcription, for example PARP14 acts as a 
cofactor for STAT6 [147, 148]. Moreover, PARP9/DTX3L 
interacts with STAT1 and enhances its DNA binding on both 
ISRE and GAS elements and transcription of ISGs, suggesting 
a STAT1 cofactor function for PARP9/DTX3L (Fig. 3b) [59]. 
Consistent with this model is that the knockdown of either 
PARP9 or DTX3L, which results in the repression of both 
proteins, abrogates the antiviral effect of active STAT1 [59]. 
The interplay of PARP14 and PARP9 has obtained further 
complexity when it was reported that STAT1 is MARylated 
by PARP14, which is antagonized by PARP9. This results 
in complex effects on STAT1 dependent gene transcription 
[149]. However, this study has provoked significant criticism 
[150], requiring further clarification about the interplay of 
PARP9 and PARP14. Also, a recent study did not find effects 
on ISG expression upon manipulating PARP9/DTX3L [83]. 
While LPS stimulates the nuclear translocation of mono-
ARTs, LPS also stimulates PARylation through PARP1 and 
2, which is inhibited by PARPi such as Olaparib [76, 151]. 
LPS has been described to induce DNA damage that acti-
vates PARP1 and PARP2 [152], and to promote PARylation 
of NFATc, a transcription factor involved in immune signal-
ing [153]. Thus, under specific conditions, combination of 
MARylation and PARylation may affect gene transcription.

In addition to the above summarized accumulation of 
PARPs in the nucleus, PARP7 relocates to the cytosol upon 

stress to interact with vRNA and to stimulate mitochondrial 
damage [105]. Because BAX and BAK are involved, this 
may result in an apoptotic response. How general this pro-
cess is remains to be determined. More recently, PARP7 
substrates were found to be linked to gene transcription and 
microtubules, functions that might be relevant for virus-host 
interactions [154].

PARP9 was considered inactive. However, when interact-
ing with DTX3L, this protein complex appears to have dual 
functions. In the presence of high  NAD+ levels, the complex 
MARylates ubiquitin and blocks its use by E3 ligases. In con-
trast, when the complex is recruited to PAR chains through 
the PARP9 macrodomains, the E3 ligase activity of DTX3L is 
stimulated [60]. The authors suggested that PARP9 is respon-
sible for this MARylation. However, a recent study finds that 
the RING-DTC domain of Deltex family E3 ubiquitin ligases 
such as DTX3L, independent of PARP9, is responsible for 
MARylation of ubiquitin [155]. It remains to be clarified 
whether PARP9 is indeed active or not. Recently, additional 
E3 ligases were identified in complex with PARP9/DTX3L 
as part of a newly forming protein module in myeloid cells 
upon LPS treatment [76]. These findings suggest an intimate 
relationship between PARP9/DTX3L and ubiquitination, a 
post-translational modification (PTM) prominent in control-
ling innate immune signaling [156].

Host proteins that have been linked to viral replication are 
the two highly homologous proteins RasGAP SH3-binding 
proteins 1 and 2 (G3BP1/2) [157]. These proteins are ADP-
ribosylated, although the relevant enzymes have not been 
identified [158]. As discussed further below, these modifica-
tions are reversed by viral hydrolases. G3BPs are essential 
for SG assembly, which at least for some viruses is relevant 
for replication [159, 160]. The knockout (KO) of G3BP1 
and/or G3BP2 affects alphavirus replication to different 
degrees [161]. SG condensates form through liquid–liquid 
phase separation (LLPS), suggested to be dependent on the 
RNA-binding capacity of G3BPs. PTMs modulate the ability 
of G3BPs to form condensates [162–164], and thus ADP-
ribosylation of G3BP proteins might affect SG function and 
consequently viral replication.

The studies summarized in this section suggest that many 
of the interactors/substrates of IFN-inducible PARPs have 
antiviral activities. Although in many instances the full 
molecular consequences are not yet understood, as dis-
cussed further below, MARylation is moving into the focus 
of virus–host conflicts.

Feedback response in interferon signaling

Deregulated IFN expression and/or signaling is associated 
with different diseases, including chronic viral infection or 
autoimmune diseases [45, 165–167]. For example, the lack of 
a proper response to IFNs due to inherent IFNAR1 deficiency 
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results in adverse reactions to live virus vaccines [168]. More 
recently, an impaired IFN response has been found associated 
with severe COVID-19 [169, 170] (reviewed in [166, 171]). 
Unlike the antiviral activity of PARP13, PARP13.2 appears 
to be part of a negative feedback mechanism as it is involved 
in the degradation of several IFN mRNAs, thereby restraining 
the IFN response [90]. Others have reported that PARP13.2 
promotes RIG-I signaling during the antiviral response, which 
enhances IFN production, and thus contributes to a positive 
feedback loop [172]. How these two opposing functions of 
PARP13.2 are regulated remains to be resolved.

PARP11 is a poorly studied family member that is induced 
by IFN and subsequently reduces IFN signaling. Mechanis-
tically, PARP11 was shown to MARylate the ubiquitin E3 
ligase β-transducin repeat-containing protein (β-TrCP), which 
promotes the poly-ubiquitination and degradation of IFNAR1 
[173]. The consequence is reduced IFN signaling, contribut-
ing to the negative feedback response. Whether PARP11 also 
has antiviral activity has not been reported.

The aryl hydrocarbon receptor (AHR) is activated by 
ligands such as dioxin and other xenobiotics, but also micro-
bial metabolites and thus functions as a PRR. Ligand binding 
promotes DNA binding and gene expression, one of its targets 
is PARP7 [174–180]. PARP7 inhibits AHR at least in part 
by MARylating the receptor (Fig. 3c) [181–183]. Moreover, 
PARP7 induced by constitutively activated AHR interferes 
with PAMP signaling and, in accordance, IFN production is 
enhanced in AHR knockout cells, which hampers viral rep-
lication [184]. The PARP7 catalyzed MARylation of AHR 
is read by PARP9/DTX3L, which contributes to deregulated 

expression of a subset of AHR target genes [185]. Thus, the 
role of PARP7 in innate immunity is complex by limiting the 
host response but also by interfering with virus replication 
and propagation. Such a feedback mechanism might also be 
relevant during CoV infection, which promotes AHR activa-
tion by an unknown mechanism [186]. Moreover, this sug-
gests that PARP9/DTX3L also possesses activating functions, 
for example through STAT1, but also repressing functions in 
combination with PARP7 MARylated AHR.

An additional level of feedback signaling by PARP7 has 
been described recently. PARP7 was found to MARylate 
proteins with functions in the immune system, includ-
ing PARP13 (Fig. 3d) [187]. PARP7 has been reported to 
MARylate cysteines, unlike other IFN-inducible PARPs that 
modify glutamates and aspartates [181, 187]. PARP13 is 
MARylated by PARP7 at several of the cysteines that are 
responsible for coordinating  Zn2+ ions, resulting most likely 
in inactivating the ZnFs and thus preventing RNA binding 
(Fig. 3d). This function may also be important to limit the 
innate immune response. So far, no eukaryotic hydrolase 
has been identified that reverses Cys-MARylation and thus 
the modification may provide a permanent inactivation 
of PARP13. Of note is the recent finding that a bacterial 
enzyme, SpyMacroD, which is part of a toxin-antitoxin sys-
tem in Streptococcus pyogenes, can hydrolyze MAR-Cys 
(Box 2) [188]. This provides a first link to reversibility of 
cysteine MARylation. When discussing different acceptor 
sites, an additional mechanistic aspect is worth pointing 
out. While MAR and PAR chains can be distinguished by 
some readers, including macrodomains, the macrodomains 
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of PARP9 may distinguish MARylation sites also according 
to the acceptor amino acid [13, 146, 189–191].

The viral response to MARylation 
representing one arm of innate immunity

Viruses have developed many strategies to evade the innate 
immune response, including avoiding recognition by PAMP 

receptors and by interfering with IFN-dependent signaling 
[192, 193]. Because the available information suggests 
strongly that PARP mediated MARylation antagonizes viral 
replication and propagation, questions that are important to 
address include which strategies viruses developed to deal 
with MARylation and whether viral proteins are substrates. 
For both these questions we only have partial answers that 
we discuss in this section.
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Viral interference with cellular MARylation

Macrodomains, structural elements closely associated with 
ADP-ribose metabolism, are found in all kingdoms of life 
(Box 2) [46, 194–197]. Upon the realization that some 
viruses possess macrodomains, a potential role in antagoniz-
ing IFN-induced MARylation was hypothesized. Indeed, the 
viral macrodomains belonging to the alphavirus, orthohepe-
virus, alpha-CoV and beta-CoV genera have been identified 
as MAR-selective hydrolases [70, 198–203]. In some cases 
the relevance of macrodomains for replication has been 
documented [107, 199, 201, 204–207].

Beta-CoV, including SARS-CoV-2, possess a positive-
sense, single-stranded RNA ((+)ssRNA) genome of roughly 
30 kb [208–210]. SARS-CoV-2 encodes 16 non-structural 
proteins (nsPs), the corresponding information is encoded by 
the 5’ two-thirds of the viral genome. Additional open read-
ing frames encode accessory and structural proteins. The 
nsP3 protein of SARS-CoV-2, a membrane bound multi-
domain protein, contains three macrodomains. Of these, 
only Mac1 binds ADPr [211–213]. Mac1 of SARS-CoV-2, 
SARS-CoV, Middle East respiratory syndrome coronavirus 
(MERS-CoV) and murine hepatitis virus (MHV, a CoV) 
functions as MAR hydrolase [202, 214]. These studies also 
demonstrate that Mac1 is important for efficient viral repli-
cation. In contrast, Mac2 and Mac3 do not possess hydrolase 
activity. Instead, they bind to nucleic acids or host proteins, 
thereby promoting replication [215–218]. An additional 
study supports the modulatory role of the catalytic mac-
rodomain in MHV. General PARP inhibitors were able to 
interfere with viral replication only when an MHV strain was 
used, in which the nsP3 macrodomain was inactivated [64].

While in CoVs the macrodomain hydrolase  activity 
enhances viral replication, the catalytic activity of the 
 macrodomain of certain alphaviruses is necessary for repli-
cation [107, 199]. It is remarkable that of the four nsPs of 
alphaviruses, which typically have a (+)ssRNA genome of 
10–12 kb, nsP3 contains a macrodomain with MAR hydrolase 
activity [219, 220]. The high selectivity of the macrodomains 
for MAR over PAR supports the notion that MARylating 
PARPs contribute to antiviral defense [70, 107].

As pointed out above, G3BP proteins are ADP-ribo-
sylated. Early on it was found that SINV nsP3 is in com-
plexes containing G3BP1 and G3BP2 [221]. The nsP3 pro-
teins of other viruses were also found to colocalize with 
G3BP [222]. Of note is that several of the over 30 alphavi-
ruses, which include a large number of mosquito-borne 
vertebrate pathogens [223, 224], possess two FGxF-like 
motifs in nsP3. This motif mimics a G3BP binding domain 
and may modulate G3BP function and SG assembly [220]. 
Of note for the discussion here is that the catalytic activity 
of the CHIKV nsP3 macrodomain was suggested to inhibit 
SG formation [158]. These findings, which need further 

verification, suggest that CHIKV nsP3 reorganizes G3BP 
condensate formation and thus may influence SGs.

It is possible that viruses have developed additional 
means to deal with IFN-induced MARylation. In one study, 
it was suggested that the NS1 protein of avian influenza 
virus interacts with PARP10 and induces its degradation 
(Fig. 4c) [225]. In parallel, a cell cycle arrest was observed, 
although it is unclear whether this is the result of PARP10 
loss or some other NS1 effect on the host. Nevertheless, 
PARP10 is antiviral in several experimental settings and thus 
is an attractive target for viral intervention.

Viral ADP‑ribosylation substrates

Recent studies have identified viral proteins as substrates 
of IFN-induced PARP enzymes. These include the non-
structural proteins NS1 and NS3 of Zika virus (ZIKV, Fla-
viviridae family) [110], the nucleocapsid proteins of sev-
eral viruses [226], and the nsP2 protein of CHIKV [107]. 
PARP12 inhibits ZIKV replication by targeting NS1 and 
NS3. This results in PARylation dependent proteasomal deg-
radation of the two viral proteins [110], which are generated 
upon processing of a polyprotein and are required for rep-
lication [227]. Because PARP12 is a mono-ART, the com-
bined action of a MARylating and a PARylating enzyme, 
possibly TNKS1 or 2, is necessary. PAR chains can serve as 
binding sites for an ubiquitin E3 ligase, thereby promoting 
protein degradation (Fig. 4a) [13, 228]. The reported interac-
tion of PARP12 with PAR chains, through one of its WWE 
domains [137], may be part of a positive feed-forward loop 
to promote efficient non-structural protein degradation.

The nucleocapsid proteins of several CoVs are ADP-
ribosylated in cells [226]. Although the relevant PARP 
enzyme(s) has not been identified yet, it is of interest to 
note that plasmid encoded nucleocapsid was not modified. 
Instead, this ADP-ribosylation required infection with virus 
or replicon particles. Thus, it is possible that the relevant 
PARP(s) needs to be activated by viral infection. This might 
occur by directly binding to vRNA or by stimulating innate 
immune signaling. Alternatively, the subcellular localiza-
tion might be critical and PARP and nucleocapsid are only 
in contact when additional viral proteins and/or the viral 
genome are present. It will be important to define the func-
tional relevance of nucleocapsid ADP-ribosylation.

Processing of the non-structural polyprotein of alphavi-
ruses is dependent on the protease encoded by nsP2, an 
important target for antiviral drugs [229, 230]. For CHIKV 
the protease is necessary for replication [107, 231]. PARP10 
MARylates nsP2 and the isolated protease domain, which 
inhibits catalytic activity (Fig. 4b) [107]. The protease is 
reactivated when treated with the nsP3 macrodomain. Con-
sistent with this finding is that a CHIKV replicon with an 
inactivated nsP3 macrodomain is replication defective.



Intracellular mono-ADP-ribosyltransferases at the host–virus interphase  

1 3

Page 11 of 23 288

Together, the findings discussed above provide the first 
few viral MARylation substrates that seem to be important 
for viral replication. It is likely that we are only seeing the 
proverbial tip of the iceberg.

Viral macrodomains as targets 
for therapeutic intervention

The enzymatic activities encoded by viruses are important 
for replication, and some modulate the antiviral response 
executed by the innate immune system [192, 193]. Thus, 
targeting these activities with small molecules is of consider-
able importance to therapeutically interfere with viral repli-
cation and propagation [193, 208, 232–234]. The macrodo-
main hydrolases encoded by some RNA viruses, including 
SARS-CoV-2, CHIKV and Hepatitis E virus, are considered 
potential drug targets. Targeting viral macrodomains may be 
facilitated by the conserved fold of these domains and the 
large number of structures that are available [235].

Efforts have been undertaken to identify small  molecule 
inhibitors of the catalytically active Mac1 of CoVs.  Initial 
information, based on computational approaches and frag-
ment screening, has been obtained that will be useful to 
develop Mac1 small molecule inhibitors [236–241]. Using 
homology to related macrodomains and to the PARG 
 macrodomain resulted in two compounds that crystallize in 
the active site of Mac1 [238]. It will be interesting to see fur-
ther biological studies of these compounds. In a large effort 
using crystallographic fragment screening and computational 
docking, many compound fragments were identified that 
interact with the active site of Mac1 [237]. Some of these 
fragment hits were further validated, providing a chemical 
framework as starting point for inhibitor development.

Also, efforts have been made to establish high through-
put methods to screen for Mac1 inhibitors [242, 243]. In 
one study, 640 FDA approved compounds were tested that 
yielded a single substance, suramin [242]. However, further 
validation revealed low specificity. Suramin appears to have 
multiple effects as it also binds to the SARS-CoV-2 RNA 
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polymerase [244]. Consistent with these findings, suramin 
has broad antiviral activities [245], and was reported to 
interfere with an early step of the SARS-CoV-2 replication 
cycle [246]. In a second study, dasatinib and dihydralazine 
were identified as Mac1 inhibitors [243]. Of note is that 
dasatinib, developed as an inhibitor of BCR-ABL and for 
the treatment of chronic myelogenous leukemia [247], did 
not inhibit MacroD2, the closest homolog of Mac1 present 
in humans.

A set of nucleosides and nucleotides were studied for 
binding to Mac1 using crystallography and modeling 
[240]. Interestingly, metabolites of remdesivir, including 
GS-441524, bound in the active center of Mac1. Because 
this metabolite inhibits both SARS-CoV-2 and MHV in cells 
and in a mouse model, respectively [248], GS-441524 may 
provide a hit compound for further development.

Specific inhibitors of viral macrodomains are not only 
relevant for CoVs but also for a number of alphaviruses that 
have a significant impact on the health of humans and other 
vertebrates [223, 249–251]. Several studies have used in 
silico strategies and high throughput screenings to identify 
compounds that target the CHIKV nsP3 macrodomain [252, 
253]. Although it is unclear whether they are capable of 
inhibiting hydrolase activity, they showed weak activity in 
CHIKV infection models. Also flavonoids were identified as 
interactors of the CHIKV nsP3 macrodomain [254, 255], but 
again more detailed studies will be needed to verify the mac-
rodomain as target. Finally, a recent study used compounds 
that were developed using in silico techniques to target 
MacroD1. Testing some of the compounds for their ability 
to interfere with Semliki Forest virus replication identified 
a compound with weak activity [256]. Together, these are 
promising studies that lay down the groundwork for develop-
ing much needed inhibitors of viral macrodomains.

Outlook

The findings that multiple PARP genes but none of the genes 
that encode the antagonizing hydrolases are induced in 
response to IFNs suggest a broad antiviral role of MARyla-
tion. This is consistent with some viruses possessing macro-
domains with de-MARylating activity. How do viruses that 
do not encode a catalytically active macrodomain deal with 
the PARP response? Because MARylation is widespread, it 
is well possible that such viruses have developed alternative 
strategies. One possibility is that de-MARylating activities 
are associated with as yet unidentified domains. These might 
be related to the ARH fold or be distinct from the presently 
known structures. It will be interesting to see whether indeed 
unidentified “hidden” hydrolases exist.

Other possibilities include that viral proteins affect the 
activities or the specificities of PARP enzymes, thereby 

diverting these proteins from critical host and/or viral sub-
strates. The identification of HPF1 as a cofactor of PARP1, 
which changes its substrate specificity, has provided exem-
plary evidence for redirecting specificity of a PARP enzyme 
[257]. Not only may the interaction of viral proteins with 
PARPs interfere with their antiviral activities, as suggested 
for the avian influenza virus NS1—PARP10 interaction 
described above, we imagine that it may redirect PARPs 
from an inhibitory to a neutral or even a supporting activity 
for viral replication. Additionally, multiple viral effectors 
control PAMP and IFN signaling and thus may affect PARP 
expression and activation in ways that have not been elu-
cidated yet. Together, the published findings delineate an 
important role of MARylation as an antiviral PTM.

Despite these notions, we would like to point out the pos-
sibility that some pathogens, including viruses, do not inter-
act with mono-ARTs and MARylation. Consequently, these 
pathogens may not require activities counteracting MARyla-
tion and thus they may lack MAR hydrolases or regulators 
of mono-ARTs.

Key to understanding the MARylation arm of innate 
immunity and its interaction with viruses will be to define 
more broadly relevant substrates, both viral and host factors. 
With the progress in the development of mass spectrometry 
techniques and detection tools to study MARylation in cells, 
we expect to see a boost in MARylation substrates. These 
will be interesting to study regarding virus–host interactions. 
Moreover, mapping modification sites and understanding the 
functional consequences of MARylation both on host as well 
as on viral proteins will be instrumental to define the role of 
MARylation as an antiviral mechanism, but also how viruses 
might capitalize on this PTM for their own advantage.

Beyond proteins, with the detection of modification of 
nucleic acids by some of the IFN-inducible PARPs [49, 50], 
the question becomes obvious whether this is a modification 
that occurs on viral genomes and whether this is part of the 
innate immune response. If so, the functional consequences 
need to be addressed as well as the activities of viral macro-
domains on nucleic acid substrates.

Finally, defining relevant substrates as well as viral effec-
tors will provide opportunities to develop small molecule 
inhibitors for therapeutic approaches. As many of the viral 
proteins possess multiple functions, developing inhibitors, 
or more generally binders, further to proteolysis targeting 
chimera or PROTACs might also be relevant for future thera-
peutic strategies, as already noteworthy in cancer therapy 
[258, 259]. The development of small molecule inhibitors/
degraders of viral macrodomains is certainly of high impor-
tance as multiple studies have demonstrated the importance 
of the de-MARylating activity. Thus, such inhibitors may 
have high therapeutic value. We are optimistic that the 
current efforts, particularly on SARS-CoV-2, will help to 
develop viral macrodomain specific therapeutics.
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Box 1 Brief summary of eukaryotic, intracellular ADP‑ribosyltransferases and their 
catalytic activities

ADP-ribosylation is a fully reversible modification of proteins, nucleic acids or metabolites (see Box 2 for the descrip-
tion of hydrolases). The reaction involves the transfer of ADP-ribose (ADPr) from the redox cofactor β-nicotinamide 
adenine dinucleotide  (NAD+) onto the respective substrate [13, 49, 262]. It links signaling to basic cellular metabolism 
due to the central role of  NAD+ in e.g. glycolysis and the Krebs cycle [263]. The main representatives of intracellular 
ADP-ribosyltransferases (ARTs) belong to the ARTD (ARTs of the diphtheria toxin-like) family [14], which share a 
highly conserved catalytic domain that resembles the ART domain of diphtheria toxin [264]. Besides, ARTDs have 
diverse additional functional domains linking them to numerous cellular processes. The enzymes are named PARP or 
TNKS. Some of these are capable of synthesizing ADPr polymers by iteratively transferring ADPr units. However, most 
enzymes transfer a single unit of ADPr (summarized in the figure). For PARP13 no catalytic activity has been reported 
so far, whereas findings with PARP9 are controversial (see the text). Several of the genes encoding ARTDs are interferon 
responsive and thus belong to ISGs. Various ADPr acceptor amino acids are under debate, including glutamate, aspartate, 
serine, arginine and cysteine. Of note is that the selectivity or the activity of a PARP protein may depend on cofactors. 
For example, the activity of PARP1, the target of clinically relevant inhibitors, shifts from modifying acidic amino acids 
to serine in the presence of HPF1 [265, 266].

The domain architecture of ARTD family members is summarized: ART, ADP-ribosyltransferase domain; BRCT, 
BRCA1 C-terminus domain; HD, helical domain; MD, macrodomain; RRM, RNA-recognition motif; SAM, sterile alpha 
motif; TM, transmembrane motif; UIM, ubiquitin-interaction motif; vWA, von Willebrand factor type A domain; VIT, 
vault protein inter-α-trypsin domain; WGR, conserved Trp-Gly-Arg motif domain; WWE, three conserved residues Trp-
Trp-Glu motif domain; ZnF, Zinc finger.
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Box 2 ADP‑ribosylhydrolases reverse ADP‑ribosylation

Both mono- and poly-ADP-ribosylation are reversible modifications, however, no eukaryotic hydrolases have been identi-
fied that remove mono-ADP-ribosylation from cysteines and lysines. Several proteins with hydrolase activity have been 
described in higher eukaryotes. One group contains macrodomains. These domains are closely associated with  NAD+ 
metabolism. Many macrodomains are capable of interacting with free ADPr and/or with ADPr-modified substrates 
and thus may function in disseminating the information carried by substrate ADP-ribosylation. Other macrodomains 
function as hydrolases and reverse ADP-ribosylation [46, 197]. The latter is true for MacroD1, MacroD2 and TARG1, 
which function as mono-ADP-ribosylhydrolases. PARG is a fourth protein with a macrodomain fold providing hydrolase 
activity. It is expressed as multiple splice variants that localize to either the nucleus or the cytosol. PARG possesses poly-
ADP-ribosylhydrolase activity but is unable to cleave the bond between ADPr and an amino acid side chain. A second 
group of proteins referred to as ADP-ribosyl-acceptor hydrolases or ADP-ribosyl-glycohydrolases (ARH1-3) possesses 
homology to a family of selenoproteins termed SelJ [267]. ARH proteins share a common Ribosyl_crysJ1 domain [46].

The ability to read and potentially regulate ADP-ribosylation is conserved among all kingdoms of life, as hydrolases 
are also found among bacteria and some RNA viruses. Macrodomain hydrolases associated with microorganisms seem 
to be relevant in stress response, some of which represent one part of bacterial toxin-antitoxin systems [54]. Several RNA 
viruses, including alphaviruses and Coronaviruses, possess macrodomains that function as mono-ADP-ribosylhydrolases 
[46]. They are important for viral replication and host immune modulation, as discussed in the text. These hydrolases 
appear to target MARylated acidic amino acids. Recently, SpyMacroD, a bacterial hydrolase of a toxin-antitoxin system 
in Streptococcus pyogenes [268], was shown to remove MAR from cysteine [188]. The Ribosyl_crysJ1 domain has also 
been identified in proteins of some microorganisms. For example, the domain is found in proteins associated with toxin-
antitoxin systems that function in interbacterial competition [269].

– 

–

–

–

–

–

–

–

–

–

–

The domain architecture of selected members of the above-mentioned ADP-ribosylhydrolases is summarized: AD, 
accessory domain promoting MD function; HV, hypervariable domain; MD, macrodomain; MTS, mitochondrial targeting 
sequence; NES, nuclear export sequence; NLS, nuclear localization sequence; nsP, non-structural protein; PL protease, 
papain-like protease domain (cleaves the viral non-structural polyprotein); Ribosyl_crysJ1, ADP-ribosylation/Crystallin 
J1 fold; RT, regulatory and targeting domain; TM, transmembrane; 3α, 3-helix bundle (3 α-helices that coordinate a  Zn2+ 
binding loop). The different isoforms of PARG are indicated.
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