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epithelial tissues form a selective barrier that separates the 
external environment from the internal tissue milieu. Single 
epithelial cells are densely packed and associate via distinct 
intercellular junctions. intercellular junction proteins not only 
control barrier properties of the epithelium but also play 
an important role in regulating epithelial homeostasis that 
encompasses cell proliferation, migration, differentiation 
and regulated shedding. Recent studies have revealed that 
several proteases target epithelial junction proteins during 
physiological maturation as well as in pathologic states 
such as inflammation and cancer. This review discusses 
mechanisms and biological consequences of transmembrane 
junction protein cleavage. The influence of junction protein 
cleavage products on pathogenesis of inflammation and 
cancer is discussed.

Introduction

Epithelial tissues form a physical barrier that separates the exter-
nal environment and tissue compartments thereby playing a piv-
otal role in host defense. In simple epithelia such as in the gut, 
this barrier is formed by a single layer of cells joined by a series of 
intercellular junctions: tight junctions (TJs), adherens junctions 
(AJs) and desmosomes (DMs).1 Intercellular junctions affiliate 
with the cytoskeleton that in turn controls junction function. It 
is now evident that intercellular junctions are dynamic structures 
that not only control the epithelial barrier, but also influence 
overall epithelial homeostasis.

TJs, the most apical epithelial junctions, are visualized as 
belt-like structures in a region where membranes from adjoining 
cells comes into very close apposition forming a selective seal that 
regulates paracellular movement of ions and solutes.1,2 In addi-
tion to its role as a gate, TJs also function as a fence that pre-
vents free movement of proteins from the apical to the basolateral 
membrane. Thus, TJs contribute to maintenance of epithelial 
apical-basolateral polarity.2 A vast repertoire of TJ proteins have 
been identified that can be broadly grouped into transmembrane, 
cytoplasmic plaque and signaling proteins. Key transmem-
brane proteins include claudins, occludin/tricellulin and the 
cortical thymocyte marker in Xenopus (CTX) family members 
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maintenance of functional AJs is a 
central event that controls epithelial 
homeostasis.

DMs are spot-like adhesions 
located in the lateral membrane 
of the epithelial cells11,12 and com-
prised of desmosomal cadherins: 
desmoglein (Dsg) and desmocol-
lin (Dsc). To date, four isoforms of 
Dsg (Dsg1–4) and three isoforms of 
Dsc (Dsc1–3) have been identified 
in the human epidermis.13 However, 
simple epithelia such as intestinal 
epithelium expresses only Dsg2 
and Dsc2.12,14 Desmosomal cadher-
ins indirectly associate with keratin 
intermediate filaments via plaque 
proteins, that include plakoglobin, 
plakophilin and the plakin family 
member, desmoplakin.11 DMs pro-
vide resistance to mechanical stress 
in the epithelium and also in several 
nonepithelial tissues such as cardiac 
muscle and meninges.12 In concert 
with other intercellular junctions, 
DMs are reservoirs for signaling 
molecules that control several bio-
logical processes.11,14,15 Dysfunction 
of desmosomal cadherins has been 
linked to pathogenesis of diseases 
such as pemphigus vulgaris.16-18

Given their essential role in 
maintenance of the epithelial bar-
rier, cell junctions need to function 
as dynamic structures that are con-

tinuously assembled and disassembled. The dynamic nature 
of cell junctions allows epithelial cells to respond to external 
stimuli by modifying strength and distribution of cell junction 
proteins. Remodeling of cell junctions can be achieved by mech-
anisms that include: de novo synthesis,19 internalization,20,21 
exocytosis22 and proteolytic processing of structural proteins at 
cell junctions.14,23,24 Indeed, proteolysis of transmembrane junc-
tion proteins by cellular and bacterial proteases has emerged as a 
novel mechanism to regulate intercellular junctions and epithe-
lial homeostasis. In this review, we will focus on the mechanisms 
of transmembrane junction protein cleavage and their physiolog-
ical, pathological and biological significance.

Extracellular Cleavage of Epithelial  
Transmembrane Junction Proteins

Proteases that mediate extracellular cleavage of transmem-
brane junction proteins. In epithelial tissues, the extracellular 
domains of the transmembrane junction proteins are located 
along the lateral membrane in the paracellular space formed 
by between two adjacent cells. In the intercellular space, 

[junctional adhesion molecule A (JAM-A), coxsackie adenovi-
rus receptor (CAR) and CAR-like membrane protein (CLMP)]. 
These transmembrane proteins affiliate with the underlying api-
cal perijunctional F-actin belt via peripheral membrane proteins, 
such as zonula occludens (ZO)-1 and membrane-associated gua-
nylate kinase with inverted orientation (MAGI)-1.2-6

AJs are localized immediately subjacent to the TJ and by 
electron microscopy appear as regions where membranes of 
two neighboring cells run parallel to each other.1 Analogous to 
TJs, AJs circumscribe the cell periphery and play an important 
role regulating cell-cell adhesion. AJs consist of a central core 
of transmembrane proteins that include nectin, classical cad-
herin family members such as epithelial (E)-cadherin, neural 
(N)-cadherin, placental (P)-cadherin and cytoplasmic plaque 
proteins, which are linked to the actin cytoskeleton via plaque 
proteins.7,8 Plaque proteins in the AJ include afadin/AF-6 (for 
nectin), α-catenin and several members of the armadillo family 
that include β-catenin and p120-catenin (for classical cadherin).8 
It is noteworthy to mention that the AJ plaque protein β-catenin 
is one of the principal transcription factors that regulate epithe-
lial proliferation and differentiation.9,10 Thus, establishment and 

Figure 1. e-cadherin cleavage and its influence on epithelial homeostasis. This figure summarizes extra-
cellular and intracellular cleavage of e-cadherin as detailed in the review.
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γ-secretase, serine proteases (kallikrein and plasmin) and bacte-
rial proteases represent proteases that are involved in the cleav-
age of extracellular domain of junction proteins (Table 1 and 
Figure 1). It is noteworthy to mention that γ-secretase also 
functions as an intracellular protease for transmembrane junc-
tion proteins.27

Tight junction. Given the role of TJs as gatekeepers, cleavage 
of transmembrane proteins that form these structures is often 
associated with epithelial barrier breakdown. However, despite 
their importance in controlling epithelial barrier function, extra-
cellular cleavage of integral proteins in TJs during physiological 
and pathological conditions is not well characterized. Huet et 
al. have reported that the induction of MMP9 by the extracel-
lular matrix metalloprotease inducer (EMMPRIN; also termed 
CD147) results in cleavage of occludin extracellular domain and 
disruption of barrier function associated with pathogenesis of dry 
eye disease.28 Willemsen et al. have also shown that interferon-
gamma (IFNγ) activates cellular serine proteases that cleave 
claudin-2 extracellular domain.29 Occludin has also been shown 
to be cleaved by several bacterial proteases including the cysteine 

ectodomains of two neighboring cells form cell junctions. 
Thus, the ectodomains are exposed to several insults including 
extracellular proteases referred to as “sheddases.” Sheddases can 
cleave unprotected extracellular domains of the proteins in the 
paracellular space (Fig. 1). Such proteases include diverse pro-
teins derived from the epithelium, endothelium, immune cells 
and bacteria. Many sheddases are misregulated in pathological 
states such as inflammation and cancer. In fact, one of the mech-
anisms by which cancer cells overcome cell adhesion to induce 
cell proliferation and metastasis is by upregulating the expres-
sion/activity of several sheddases that are capable of cleaving the 
extracellular domain of cell adhesion molecules.25,26 As shown in 
Figure 2, cleavage of transmembrane proteins most often occurs 
at defined sites close to transmembrane regions of junction pro-
teins. Interestingly, the extracellar cleavage products can modu-
late epithelial cellular processes such as cell-cell adhesion, cell 
migration and cell proliferation. In this review, we discuss prote-
ases that generate cleavage products of junctional proteins which 
exert biological effects on epithelial homeostasis. Matrix metal-
loprotease (MMP), a disintegrin and metalloprotease (ADAM), 

Figure 2. potential cleavage sites in transmembrane junctional proteins. These figures demonstrate potential cleavage sites of representative trans-
membrane junctional proteins in epithelial cells. (A) Tight junction proteins; (B) e-cadherin; (C) desmoglein.
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Table 1. extracellular cleavage of transmembrane junction proteins in epithelial cells

Junction  
protein

Protease Model epithelial cell line Functional output 
of cleavage product

Stimulus Reference

Claudin-2 Serine protease T84 (Colon) iFnγ 29

epCAM ADAM17 (TACe) HeK293 (Kidney), FaDu 
(Hypopharynx)

93

γ-secretase HeK293 (Kidney), HT29 (Colon) 124

JAM-A ADAM10, 17 
(TACe)

HeK293 (Kidney) neutrophil transmi-
gration↓

pMA 35

occludin MMp MDCK (Kidney) Barrier function↓ Methyl-β-
cyclodextrin

125

MMp2 primary human ectocervical 
epithelial cells, CaSki (Cervix)

126

MMp7 primary human normal vaginal-
cervical epithelial cells

estrogen 127

MMp9 Human corneal epithelial cells, 
MMp9 knockout mouse

66

Human corneal epithelial cells extracellular 
matrix metal-

loprotease 
inducer

28

Serine protease plasmin primary human ectocervical 
epithelial cells, CaSki (Cervix)

126

Bacterial protease Aerolysin HT29/B6 (Colon) 32

Haemagglutinin/
protease

MDCK (Kidney) 31

protease K primary human ectocervical 
epithelial cells, CaSki (Cervix)

Barrier function↓ 126

e-cadherin MMp Membrane-bound Sw480, HT29 (Colon), A431 
(Skin), Te12, Te13 (esophagus)

Mechanical 
scraping, iono-

mycin

84

MMp2 LnCapFgC (prostate) Cell proliferation↓ pKD1 128

MMp3 MDCK (Kidney), DU145 (Breast) Cell invasion↑, cell-
cell adhesion↓

pMA 40

SCp2, SCg6 (Breast) Cell-cell adhesion↓ 73

HC11 (Breast) Cell invasion­↑ FK506-binding 
domain dimer-
izer (Ap20187)

74

MMp7 MDCK (Kidney) Cell-cell adhesion↓, 
cell migration↑, cell 
polarization↓, cell 

proliferation  ↑

129

MDCK (Kidney), MCF-7 (Breast) Cell invasion↑, cell-
cell adhesion↓

pMA 40

LnCap-FgC (prostate) Cell-cell adhesion↓, 
cell invasion­↑

HgF/SF 39

A549 (Lung) Cell migration­↑ 130

nUgC-3, MKn-28 (Stomach) Cell invasion­↑ HgF 131

MMp9 ovCA433 (ovary) Barrier function↓, 
cell-cell adhesion↓

Bead-
immobilized α3 

or β1 integrin 
antibody

41

MDCK (Kidney), DU145 (Breast) Cell proliferation↓ pKD1 128

SCC10A (Head and neck) Cell migration↑, cell 
invasion­↑

egF 132

Meprinß MDCK (Kidney), Caco-2 (Colon) Cell-cell adhesion↓ 133
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Table 1. extracellular cleavage of transmembrane junction proteins in epithelial cells

Junction  
protein

Protease Model epithelial cell line Functional output 
of cleavage product

Stimulus Reference

ADAM10 HaCaT (Skin) Cell migration­↑ 43

primary human keratinocyte 
cells

TgF-β, iL-1β, 
LpS, iFnγ + 

TnFα

134

nCi-n87 (Stomach) Helicobacter 
pylori

135

MDCK (Kidney) ephrin-B1 136

ADAM15 SKBr3 (Breast) Cell prolieration↑, 
cell migration↑ 

77

γ-secretase Caco-2 (Colon) Barrier function↓ Candida albicans 137

Serine protease Kallikrein 6 HeK293 (Kidney) Cell-cell adhesion↓ 138

Kallikrein 7 BxpC-3 (pancreas) Cell invasion↑, cell-
cell adhesion↓

63

plasmin MDCK (Kidney) Cell-cell adhesion↓, 
cell invasion­↑

62

ovCA429 (ovary) Cell invasion↑ LpA 115

Bacterial protease Fragilysin HT29/C1 (Colon) 45

gingipain MDCK (Kidney) 46

HtrA MKn-28 (Stomach) Bacteria invasion↑, 
bacterial 

ransmigration­↑

44

Leukocyte elas-
tase

Rat pancreatic tissue, primary 
rat pancreatic acinar cells

Leukocyte transmi-
gration↑, cell-cell 

adhesion↓

Cerulein 139

Cysteine protease Cathepsins: B, S, L Mouse pancreatic cancer 
model

Cell invasion­↑ 140

nectin-1α MMp MDCK (Kidney) TpA, HgF/SF 48

nectin-4 ADAM17 (TACe) CHo (ovary), T47D (Breast) pMA 49

Desmoglein 1 MMp A431 (Skin) Uv 141

Serine protease plasmin Human skin tissue 142

exfoliative toxin A Mouse skin Cell-cell adhesion↓ 53

HaCaT (Skin) 54

organotypic raft model of 
human epidermis, primary 

human epidermal  
keratinocytes

50, 52

Kallikrein 5 SCC25 (Tongue) 51

Desmoglein 2 MMp SKCo-15 (Colon) 86

ADAM10 CHo (ovary), A431 (Skin), 
ADAM10 knockout mouse

egF 58

ADAM17 (TACe) SCC68 (Skin) Cell-cell adhesion↓ 143

CHo (ovary), A431 (Skin), 
ADAM10 knockout mouse

egF 58

A431 (Skin) 144

Serine protease Kallikrein 7 panc-1, BxpC-3 (pancreas) 145

Matriptase HCT-116 (Colon) Cell-cell adhesion↓ 57

Desmoglein 3 MMp HaCaT (Skin) Staurosporine 146

Desmocollin 3

, cont.
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in intestinal epithelial cells by matriptase has been associated 
with decreased cancer cell–cell adhesion.57 ADAM17 and 10 
have also been implicated in the shedding of Dsg2 during can-
cer development.58 A similar mechanism has been described in 
the pathogenesis of oral squamous cell carcinoma where cleav-
age of Dsg1 by kallikrein 5 is necessary to reduce cell-cell adhe-
sion in order to enhance cell migration.51 Thus, understanding 
the mechanisms that regulate desmosomal cadherin cleavage is 
important in understanding the pathogenesis of several diseases.

Biological effects of epithelial junction protein extracellular 
cleavage fragments. Recent evidence suggests that cleavage frag-
ment of junctional proteins possess different biological activi-
ties.26 These fragment not only control normal homeostatic event 
in the epithelia such as cell proliferation, migration and apopto-
sis but also contribute to pathogenesis of mucosal inflammation 
and cancer. In this section, we describe the biological effects of 
soluble intercellular junction protein cleavage fragments.

Cell-cell adhesion. Cell-cell adhesion in epithelial cells is 
mediated by AJ and desmosomal proteins. It’s well known that 
disruption of cell-cell adhesion contributes to metastasis of can-
cer cells. Several reports have shown that extracellular cleavage 
of intercellular junction proteins results in loss of cell-cell adhe-
sion.59,60 Moreover, recent findings have also shown that soluble 
extracellular cleavage products of intercellular junction proteins 
can regulate epithelial cell-cell adhesion by paracrine or auto-
crine signaling. Wheelock et al. reported that the 80 kd sE-cad-
herin fragment disrupts cell-cell adhesion in a human mammary 
carcinoma cell line.61 Symowicz et al. have also demonstrated 
that recombinant sE-cadherin promotes cell junction disrup-
tion and metastasis of ovarian carcinoma cells.41 Additionally, 
extracellular E-cadherin fragments released by serine proteases, 
plasmin and kallikrein 7 inhibit cellular aggregation.62,63 These 
findings suggest that extracellular E-cadherin fragments have 
functional effects that inhibit endogenous cell-cell junction 
protein function. However, it still remains unknown how these 
cleavage products interact with cell-cell junction proteins and 
whether or not extracellular cleavage products of other intercel-
lular junction proteins such as nectins or desmosomal cadherins 
have similar biological effects on cell-cell adhesion.

Barrier function. Epithelial tissues provide physical and per-
meability barriers in vertebrates. In simple epithelium the barrier 
is formed by epithelial cells where the paracellular space is sealed 
by intercellular contacts. MMPs actively participate in the dis-
ruption of epithelial barrier under several conditions. For exam-
ple, during inflammation, proinflammatory cytokines released 
in the milieu of ocular epithelium enhance MMP9 expression 
and activation that promotes cleavage of the TJ protein occlu-
din thereby resulting in increased corneal epithelial permeabil-
ity.28,64-66 Of interest MMP9 expression and activity has been 
directly linked to dry eyes in human patients with ocular rosa-
cea and rheumatoid arthritis.64,65 Moreover, virulence factors 
can also perturb epithelial barrier function by inducing cleav-
age of specific transmembrane epithelial junction proteins. The 
effects of these bacterial proteases are broad in range and some 
are very well characterized. Fragilysin from Bacteroides fragilis 
cleaves the extracellular domain of E-cadherin to disrupt barrier 

protease Der p 1 from house dust mite,30 haemagglutinin/prote-
ase (metalloprotease) from Vibrio Cholerae,31 and secreted pore-
forming toxin aerolysin produced by Aeromonas hydrophila.32 
Paracellular barrier compromise by haemagglutinin/protease 
and aerolysin has been linked to clinical diarrhea. Epithelial bar-
rier disruption by house dust mite and pollen extract contributes 
to allergic diseases such as asthma.30,33,34 Koenen et al. reported 
that cleavage and shedding of the TJ protein, JAM-A is mediated 
by ADAM17 and 10 during inflammation resulting in inhibi-
tion of neutrophil transendothelial diapedesis.35 These findings 
highlight cleavage of transmembrane TJ proteins is essential 
mechanism that mediates disruption of epithelial barriers.

Adherens junction. The AJ intercellular space (~200 Å)1 con-
tains extracellular domains of classical-cadherin family members 
and nectins, which constitute the two major family of integral 
membrane proteins in this region. Nectins and cadherins con-
trol several physiological processes including cell-cell adhesion, 
cell signaling, proliferation and differentiation.36-38 For example, 
soluble E-cadherin (sE-cadherin) fragment resulting from cleav-
age of the E-cadherin extracellular domain by MMPs39-41 can 
function as a paracrine/autocrine signal to prevent cell death 
by activating epidermal growth factor receptor (EGFR) signal-
ing and inhibiting apoptosis.42 Shedding of sE-cadherin frag-
ment has also been reported for other cellular proteases such as 
ADAMs43 and γ-secretase.27 In addition to cellular proteases, 
the extracellular domain of E-cadherin is targeted by several 
bacterial proteases that include HtrA protease from Helicobacter 
pylori,44 fragilysin from Bacteroides fragilis45 and the gingipains 
from Porphyromonas gingivali.46 These bacterial proteases influ-
ence epithelial homeostasis analogous to cellular proteases. In 
addition to E-cadherin, other integral membrane AJ proteins 
such as the nectin-1 ectodomain are cleaved in neurons by 
MMPs.47 The entire ectodomain of nectin-4 and nectin-1α are 
shed by MMPs in cancer and during cell spreading.48,49 The sta-
bility of these fragments in different body fluids suggests a puta-
tive role of these ectodomains as mediators of diverse biological 
processes.

Desmosome. Analogous to E-cadherin, desmosomal cadher-
ins including Dsg and Dsc family members undergo extracel-
lular domain cleavage during inflammation and cancer.18,50,51 
Indeed, extracellular domain cleavage of desmosomal cadherins 
has been reported to influence epithelial homeostasis.18,51,52 In 
keratinocytes, where desmosomal cadherins are the major adhe-
sion molecules, cleavage of desmosomal cadherins contributes 
to pathogenesis of diseases. For instance, the staphylococcal 
exfoliative toxin, which is causative agent of bullous impetigo 
and staphylococcal scalded skin syndrome have been shown to 
specifically target the ectodomain of Dsg1.53,54 In Netherton 
syndrome, which is an autosomal skin disease characterized by 
skin inflammation and scaling, Dsg1 cleavage occurs as a con-
sequence of kallikrein hyperactivation due to the inactivation 
of the serine protease inhibitor of kazal type 5 (SPINK5).55,56 
Additionally, shedding of desmosomal cadherin ectodomains 
by cellular proteases has been reported during cancer progres-
sion and metastasis implying a role of these molecules in modu-
lating invasion and metastasis. For example, cleavage of Dsg2 
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linked to the presence or appearance of pro-apoptotic signals.78 
In fact, metalloprotease cleavage of desmosomal cadherins dur-
ing keratinocyte apoptosis has been reported.79 Additionally, 
and in simple epithelium, cleavage of E-cadherin by sheddases is 
an essential step in the onset of apoptosis.80,81

Intracellular Cleavage of Epithelial  
Transmembrane Junction Proteins

Proteases that mediate intracellular cleavage of junction 
proteins. Transmembrane junction proteins associate with an 
underlying actin cytoskeleton via scaffold proteins that con-
strains their intracellular domains. Intracellular domains can 
also be targeted by proteases that are in the vicinity of the cyto-
plasmic surface of the plasmamembrane.

Several proteases that are activated during inflammation 
and cancer mediate intracellular cleavage of cell-cell junction 
proteins. Additionally, increased expression/activity of prote-
ases that cleave adhesion proteins facilitates cancer cell prolif-
eration and metastasis.25,26 Interestingly, following extracellular 
domain shedding, the membrane-associated proteins undergo 
proteolytic processing thereby generating soluble intracellular 
fragments that exert biological effects. Cleavage of such protein 
fragments is mediated by intracellular and membrane associated 
proteases such as calpain, caspase, cathepsin and γ-secretase.27 
Intracellular proteases promote intracellular cleavage of junction 
proteins that in turn induces cytoskeletal restructuring as well 
as modification in scaffold and signaling proteins to maintain 
epithelial homeostasis (Fig. 1). Recent reports have highlighted 
biological effects of intracellular cleavage fragments of junction 
proteins (Table 2).

Tight junction. Little is known about the intracellular cleav-
age of TJ proteins. Sumitomo et al. have demonstrated that 
calpain activated by Streptolysin S from Group A streptococ-
cus, cleaves occludin and disrupts barrier function of intestinal 
epithelial cells and keratinocytes.82 Willemsen et al. have also 
shown that cellular serine protease activated by IFN-γ treatment 
can cleave intracellular domain of claudin-2.29 Additionally, 
toll-like receptor (TLR) 2-induced calpain cleaves intracellular 
domain of occludin and promotes polymorphonuclear leukocyte 
transmigration.83

Adherens junction. The intracellular fragment of E-cadherin 
that remains attached to the cellular membrane after cleavage 
by membrane-bound metalloproteases, generates a cytosolic 
fragment (33 kDa) when γ-secretase is activated. The 33 kDa 
cytosolic fragment promotes intracellular signaling and cell pro-
liferation.27,84 In addition to cleavage by membrane associated 
proteases, the cytosolic domain of E-cadherin has been shown 
to be further cleaved by intracellular proteases such as calpain.23 
However, the fragments generated by calpain have been shown 
to induce apoptosis instead of proliferation in epithelial cells.81 
Interestingly, it has also been proposed that during apoptosis the 
33 kDa fragment generated by γ-secretase is also targeted by cas-
pase-3 to generate a 29 kDa fragment. However, the function of 
this cleavage fragment has not been characterized, but its local-
ization and distribution suggest a putative role in the regulation 

function.45 In contrast, the zinc-containing metalloprotease 
from Vibrio cholerae decreases epithelial barrier function by tar-
geting the extracellular domain of occludin.31 In addition to its 
role in compromising the epithelial barrier, mimetic peptides of 
transmembrane junction proteins and virus-derived proteins can 
transiently modulate epithelial barrier function. Interestingly, 
the efficiency and reliability of this system has been used in 
recent years to transiently compromise the paracellular pathway 
in order to promote drug delivery across the epithelium.67-71

Migration and invasion. Epithelial cells are less mobile than 
most other cell types. Disruption of cell adhesion to enhance 
cell migration and invasion is an integral event in cancer metas-
tasis.72 As mentioned above, cleavage of transmembrane junc-
tion proteins by proteases reduces cell-cell adhesion and directly 
enhances cell migration and invasion.59,60 Interestingly, it has 
been shown that the extracellular cleavage products from inter-
cellular junction proteins can also induce cell migration and 
invasion. The role of sE-cadherin in cell migration and inva-
sion is well known.40,62,73,74 Most recently, Brouxhon et al. have 
demonstrated that sE-cadherin promotes cell migration and 
tumor invasion by activating MMP2 and 9 in murine skin squa-
mous carcinoma cell lines.75 Furthermore, in human lung tumor 
cells, the presence of sE-cadherin in conditioned media and 
E-cadherin HAV peptides simulating E-cadherin EC1 domain 
induce MMP2, 9 and MT1-MMP transcription and activation 
resulting in cell invasion.76 Taken together, these findings sug-
gest that sE-cadherin has functional properties that promote cell 
migration and invasion by inducing MMP activity. Increased 
junction protein cleavage, reported in inflammation, exerts bio-
logical effects on mucosal homeostasis. Soluble JAM-A ectodo-
main fragments have been reported to modulate endothelial 
cell migration and prevent neutrophil extravasation.35 However, 
mechanisms by which soluble extracellular junction protein 
cleavage fragments modulate cell migration are complex and not 
well understood.

Cell proliferation and apoptosis. Several reports have linked 
junction extracellular cleavage products to cell proliferation and 
apoptosis.42,59,75,77 These studies have also highlighted underlying 
signaling pathways that mediate the biological effect of junction 
protein cleavage fragments. In skin cancer cells, exogenous sE-
cadherin can interact with EGFR and human epidermal growth 
factor receptor (HER) 2 to activate them and their downstream 
singnaling proteins: phosphoinositide-3 kinase (PI3K)/Akt/
mammalian target of rapamycin (mTOR) and mitogen-acti-
vated protein kinase (MAPK). Ultimately, the cleavage frag-
ments induce cell proliferation.75 Najy et al. have also shown the 
interaction between exogenous sE-cadherin and HER2-HER3 
heterodimer in breast cancer cells where sE-cadherin promotes 
cell proliferation via HER2-HER3 and extracellular signal-reg-
ulated kinase (ERK) activation.77 In addition to proliferation, 
recent evidence indicates that extracellular cleavage products 
can regulate cell survival. For example, Inge et al. have revealed 
that sE-cadherin can suppress apoptosis thereby promote cell 
survival and these effects are mediated by activation of EGFR 
signaling via PI3K/Akt and ERK1/2.42 However, cleavage or loss 
of the transmembrane proteins in cell junctions has also been 
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Table 2. intracellular cleavage of transmembrane junction protein in epithelial cells

Junction protein Protease Model epithelial cell line Functional output of  
cleavage product

Stimulus Reference

Claudin-2 Serine protease T84 (Colon) iFng 29

epCAM γ-secretase presenilin 2 HeK293 (Kidney) Cell proliferation↑ extracellular cleavage 
product of epCAM

93

HeK293 (Kidney), HT29 
(Colon)

124

occludin MMp MDCK (Kidney) Barrier function↓ Methyl-β-cyclodextrin 125

Cysteine 
protease

Calpain Caco-2 (Colon), HaCaT (Skin) Barrier function↓, bacterial 
translocation

Streptolysin S 82

16 HBe, 1HAeo (Lung/
Bronchus)

polymorphonuclear leuko-
cytes (pMns) transmigration

Toll-like receptor 2 
ligands

83

Der p 1 MDCK (Kidney), 16HBe14o 
(Lung/Bronchus)

Barrier function↓ 30

e-cadherin MMp7 MDCK (Kidney) Cell-cell adhesion↓, cell 
migration↑, cell polariza-
tion↓, cell proliferation↑

129

MMp Membrane-
bound

Sw480, HT29 (Colon), 
A431 (Skin), TH12, Te13 

(esophagus)

Mechanical scraping, 
ionomycin

84

MT1-MMp 
(MMp14)

nRK-52e (Kidney) Cell-cell adhesion↓ 147

ADAM10 primary human keratino-
cyte cells

TgFβ, iL-1β, LpS, iFnγ + 
TnFα

134

γ-secretase Caco-2 (Colon) Barrier function↓ Candida albicans 137

T47D, MCF-7 (Breast) Cell-cell adhesion↓ Staurosporine 148

A431 (Skin), MCF-7 (Breast), 
MDCK (Kidney)

91

presenilin 1 Murine embryonic fibro-
blast, Sw480 (Colon)

90

A431 (Skin) Cell-cell adhesion↓ ionomycin 27

Caspase HeR313A (Retina) 149

Caspase-3 H184A1 (Breast) Staurosporine 80

Cysteine 
protease

Calpain LnCap (prostate), MCF-7, 
SKBR3 (Breast)

TpA, ionomycin 23

16 HBe, 1HAeo (Lung/
Bronchus)

pMns transmigration Toll-like receptor 2 
ligands

83

Caco-2 (Colon), HaCaT (Skin) Barrier function↓, bacterial 
translocation

Streptolysin S 82

Cathepsins 
(B, S, L)

Mouse pancreatic cancer 
model

Cell invasion↑ 140

nectin-1α γ-secretase presenilin 1 CHo (ovary) TpA 150

Desmoglein 1 Caspase HaCaT (Skin) Staurosporine 79

Caspase-3 A431 (Skin) Uv 141

Desmoglein 2 T84 (Colon) Camptothecin 14

Caspase-3 HaCaT cells (Skin), HT29 
(Colon)

Cell-cell adhesion↓ Staurosporine 85

Cysteine 
protease

Calpain T84 (Colon) Camptothecin 14

Desmoglein 3 Caspase HaCaT (Skin) Staurosporine 146
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Signaling Pathways Triggered by Cleavage  
of Transmembrane Junction Proteins

Transmembrane junction proteins regulate cell proliferation, dif-
ferentiation and apoptosis by controlling several signaling path-
ways. The mechanism by which the cleavage fragments regulate 
these processes is incompletely understood. Dimerization and 
autophosphorylation of receptor tyrosine kinases (RTKs) by the 
extracellular cleavage products of cadherin family members can 
regulate epithelial homeostasis. For example, sE-cadherin results 
in RTK ligand-independent dimerization, activation of the recep-
tor and stimulation of several intracellular signaling pathways 
including MAPK, PI3K, Akt and mTOR.94,95 These signaling 
pathways influence biological events such as cell proliferation,94,95 
growth,94 and cell migration.96 As a consequence of RTK interac-
tion with sE-cadherin, activation of pro-proliferative and anti-
apoptotic signaling pathways was observed. Thus, the presence 
of sE-cadherin in the serum has been associated with poor prog-
nosis in cancer patients.77,97 However, given that shedding of the 
cadherin ectodomain has also been reported in physiological con-
ditions or in other pathologies such as inflammation,50,52-54,98-100 it 
is easy to speculate that these soluble fragments have additional 
biological functions that need to be investigated.

Cleavage of transmembrane junctional proteins can directly 
trigger the activation of pro-proliferative signaling by releasing 
intracellular scaffolding molecules that often associate with their 
intracellular domains. For instance, intracellular cleavage of 
E-cadherin and N-cadherin promotes translocation of β-catenin 
from the plasmamembrane to nucleus thereby resulting in 
β-catenin/TCF transactivation and increase in cell prolifera-
tion.43,84,92 In addition to its role in cell proliferation, β-catenin 
transactivation can also increase the expression and secretion 
of metalloproteases.101,102 Thus, it is tempting to speculate that 
β-catenin redistribution after E-cadherin or N-cadherin cleav-
age could result in the activation of metalloproteases that in 
turn enhance shedding of their ectodomains. This process will 
increase epithelial cell proliferation through stimulating RTK 
receptors in a paracrine manner.

Relevance to Pathologic States

Cancer. A continuous turnover of intercellular junction pro-
teins in healthy individuals is required for the maintenance of 
epithelial tissues and therefore, a low level of E-cadherin cleav-
age product has been observed in the healthy serum.99 However, 
in pathological conditions such as inflammation and cancer, 
proteolytic activity is increased.103 Since cleavage products have 
biological activity that influences cell-cell adhesion, migra-
tion and proliferation, they contribute to the pathogenesis of 
disease. As a result, increased soluble junctional proteins such 
as E-cadherin,40,99,104,106-116 N-cadherin,105 and nectin49 can be 
observed in body fluids (serum, urine and ascites) and cancer tis-
sue of patients. Given the ectodomain stability of cell junction 
proteins in several body fluids, the detection of cleavage prod-
ucts as biomarkers for disease has been considered. For example, 
increased sE-cadherin is seen in serum or at other sites (cancer 

of epithelial cell apoptosis.80 Thus, proteolysis of epithelial cad-
herin allows the formation of several intracellular fragments that 
have biological activities. Furthermore, E-cadherin intracellular 
fragments are important in activating signaling pathways that 
control physiological and pathological events.

Desmosome. In simple epithelium, cleavage of desmosomal 
cadherins by cysteine proteases has been shown to be an impor-
tant step in the disassembly of the DMs.85 Desmosomal disas-
sembly may directly contribute to the detachment of the dead 
cells observed in epithelial tissues. The cytosolic fragments gen-
erated by Dsg2 cleavage have been observed in human colon 
tissues.86 We have observed that an intracellular Dsg2 cleav-
age fragment promotes apoptosis in the intestinal epithelium.14 
We have also reported a similar Dsg2 cleavage fragment in 
nasal polyps after cytokine exposure.87 However, in addition to 
apoptosis, we cannot rule out the possibility that the cytosolic 
fragments generated after Dsg2 cleavage serve to promote cell 
proliferation. In fact, Brennan et al. have demonstrated that 
Dsg2 proteolytic products are elevated in vivo in skin tumors 
from transgenic mice overexpressing Dsg2.88 These results sug-
gest that the cytosolic fragment of Dsg2 may be responsible for 
the regulation of several mitogenic signaling pathways such as 
Akt, MAPK and the signal transducer and activator of tran-
scription (STAT) 3.89

Biological effects of junction protein intracellular cleav-
age products. As described above, several intracellular prote-
ases including γ-secretase, calpain and caspase are responsible 
for cleavage of intercellular junction proteins that in turn exert 
biological effects. We have previously observed that an intra-
cellular Dsg2 cleavage fragment generated by serine proteases 
promotes apoptosis in intestinal epithelial cells.14 Some cleav-
age fragments can translocate to the nucleus to regulate tran-
scriptional activity and cell survival. For instance, 35 kDa 
E-cadherin C-terminal fragment (CTF) generated by preseni-
lin 1 regulates β-catenin/T cell factor (Tcf)-4 transcriptional 
activity.90 E-cadherin/CTF translocates to the nucleus to influ-
ence Kaiso-regulated gene transcription. Nuclear localiza-
tion of E-cadherin/CTF is also enhanced by p120-catenin.91 
Furthermore, presenilin 1 induces E-cadherin cytoplasmic 
cleavage, generating products that promote disassembly of 
E-cadherin-catenin complex by sequestering β-catenin in the 
cytosol.27 Additionally, calpain induced cleavage of intracellu-
lar E-cadherin domain generates a 100 kDa cleavage product 
that regulates cell survival in prostate epithelial cells.81 Similar 
to E-cadherin, presenillin promotes the release of the CTF in 
N-cadherin which also plays an important role in the regulation 
of β-catenin signaling.92

In addition to cadherins, intracellular domains of epithe-
lial cell adhesion molecule (EpCAM) generated by presenilin 
2 translocates to the nucleus with four and a half LIM-domain 
protein (FHL) 2 and β-catenin to promote lymphoid enhancer-
binding factor (Lef)-1 transactivation and epithelial prolif-
eration.93 Interestingly, truncated Dsg1 and 2 generated by 
extracellular domain cleavage can influence cell-surface desmo-
somal cadherins through the interaction of raft-associated pro-
tein, caveolin-1 and plakoglobin.50,88
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cleavage of occludin in human corneal epithelial cells and dry eye 
disease.28 In HIV infection, abnormal distribution of E-cadherin 
has been observed in the intestinal epithelium, which leads to 
increased systemic levels of sE-cadherin. Additionally, sE-cad-
herin level in plasma correlates with viral load in HIV patients. 
Interestingly, sE-cadherin can inhibit HIV-1-specific antiviral 
activity of CD8+ T-cell function.122 Thus, cleavage products of 
intercellular junctional proteins also regulate immune response. 
Additionally, it has to be noted that some pathological states 
induced by bacterial pathogens such as diarrhea45 and skin blister 
formation123 are mediated by targeting extracellular domains of 
cell adhesion molecules by bacterial proteases.

Conclusion

A continuous turnover of transmembrane intercellular junction 
proteins is observed in healthy individuals and is required for the 
maintenance of epithelial barriers. Physiologically low levels of 
cleavage products have been identified in the serum. The cleav-
age products are generated by a variety of proteases during epi-
thelial cell junction rearrangement. Extracellular proteases such 
as MMP, ADAM, γ-secretase, serine and bacterial proteases can 
cleave the ectodomain of the proteins. On the other hand, pro-
teases including calpain and caspase cleave intracellular domain 
of junction transmembrane proteins. Interestingly, the cleavage 
products generated by these proteases have distinct biological 
functions. In pathological conditions such as cancer and inflam-
mation, increased junction protein cleavage products are often 
detected in the tissue and body fluids. These cleavage products 
influence epithelial behavior that includes proliferation, migra-
tion and apoptosis. In addition to exerting biological activity, 
detection of junction protein cleavage fragment can serve as bio-
markers to follow disease progression.
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tissue, urine, cyst and ascites) in cancer patients. Such cleav-
age product has been detected in cancers from many areas that 
include bladder,106,107 colorectal,108,109 esophageal squamous cell 
carcinoma,104 gastric,99,110 liver,99,111 lung,112,113 ovarian,41,114,115 pros-
tate,116 and skin tissue.117 Given the biological function of inter-
cellular junction protein ectodomains, their upregulation may 
play a role in the progression of cancer and metastasis. However, 
some reports have failed to detect increased serum E-cadherin 
cleaved products in some cancer patients.118-120 Thus, additional 
studies are needed to verify the role of such cleavage products in 
cancer pathogenesis and detection. Analogous to E-cadherin, the 
ectodomains of nectin-4 are increased in the serum of patients 
with metastatic ductal breast carcinoma compared with healthy 
subjects.49 Furthermore, soluble N-cadherin is significantly ele-
vated in serum of prostate cancer patients.105 These findings indi-
cate the potential use of such products as diagnostic tools.

Inflammation. Knowledge of junctional protein cleav-
age fragments in inflammation is limited compared with can-
cer reports. Mayerle et al. have shown that leukocyte elastase 
cleaves extracellular domain of E-cadherin and disrupt cell-cell 
contacts in the rat pancreas, thereby promoting leukocyte trans-
migration into epithelial tissues in the initial phase of experi-
mental pancreatitis.100 Furthermore, extracellular cleavage of 
Dsg1 by Staphylococcus aureus exfoliative toxin A (serine prote-
ase) disrupts cell-cell adhesion, which leads to bullous impetigo 
or Staphylococcal scalded skin syndrome.50,52-54 These reports 
suggest that the extracellular cleavage of intercellular junction 
proteins disrupts cell-cell adhesion contributing to loss of epi-
thelial barrier function and mucosal inflammation. However, 
the utility of detecting junctional protein cleavage products as 
inflammation biomarkers remains incompletely understood. 
Pittard et al. identified increased concentration of sE-cadherin 
in patients with systemic inflammatory response syndrome and 
multi-organ dysfunction.98 On the contrary, Weiss at al. did not 
observe significant difference in serum sE-cadherin in healthy 
control individuals and patients with inflammatory bowel 
disease.109 The presence of the ectodomains of other junction 
proteins such as JAM-A and JAM-C121 in body fluids suggests 
a putative role of these fragments as diagnostic tools in such 
pathologies.

Others. Cleavage of transmembrane junction proteins has 
been observed in several other pathologies. Dry eye disease is a 
common disease that develops as a result of changes in tear fluid, 
leading to osmotic stress and perturbed epithelial barrier func-
tion. Huet et al. have shown a relationship of MMP9-mediated 
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