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Abstract

Approaches toward new therapeutics using disease genomics, such as genome-wide association study (GWAS), are
anticipated. Here, we developed Trans-Phar [integration of transcriptome-wide association study (TWAS) and
pharmacological database], achieving in silico screening of compounds from a large-scale pharmacological database (L1000
Connectivity Map), which have inverse expression profiles compared with tissue-specific genetically regulated gene
expression. Firstly we confirmed the statistical robustness by the application of the null GWAS data and enrichment in the
true-positive drug–disease relationships by the application of UK-Biobank GWAS summary statistics in broad disease
categories, then we applied the GWAS summary statistics of large-scale European meta-analysis (17 traits;
naverage = 201 849) andthe hospitalized COVID-19 (n = 900 687), which has urgent need for drug development. We detected
potential therapeutic compounds as well as anisomycin in schizophrenia (false discovery rate (FDR)-q = 0.056) and
verapamil in hospitalized COVID-19 (FDR-q = 0.068) as top-associated compounds. This approach could be effective in
disease genomics-driven drug development.

Introduction
Genome-wide association studies (GWASs) have identified thou-
sands of genomic loci associated with human complex traits (1).
Associations identified by GWASs would reveal the mechanism
of disease susceptibility and novel clinical approaches, such as
the identification of novel therapeutic targets and drug reposi-
tioning. Recent studies have shown that the success probability
of a project whose drug target was supported by human genome
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information is about twice as high as that of a project without its
support (2,3); therefore, the utilization of human genetics in driv-
ing drug development is anticipated. Genetics-led approaches
for new therapeutics have been performed in recent years (4–6).

Despite the success of GWASs, the biological functions of
the majority of the identified genomic loci are elusive. Nearly
90% of the GWAS loci are lying in the non-coding regions (7),
which are enriched in tissue- or cell-type-specific transcriptional
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regulatory regions involved in disease susceptibility (8). These
results suggest that causal variants influence disease sus-
ceptibility by altering cell-type-specific regulatory elements,
which result in altering gene regulation mechanisms, such
as gene expression profiles. Recently, statistical methods to
integrate GWAS results with the functional genomics data, such
as quantitative trait loci (eQTL) data (9), have been developed.
Transcriptome-wide association study (TWAS) is a method that
integrates GWAS loci and eQTL data, such as the Genotype-
Tissue Expression (GTEx) project data (10) and statistically
predicts trait-gene expression relationships that are called as
genetically regulated gene expression (GREx) (11,12). TWAS has
identified novel candidate genes significantly associated with
disease susceptibility in a cell-type-specific way and yielded
functional insights into disease susceptibility (13,14), but few of
these insights have been directly utilized for pharmacological
applications, such as drug discovery. Recent reports have
shown that expression signatures of human diseases, such
as differentially expressed genes (DEGs) by comparing disease
samples and normal tissue samples, were applied to identify
compounds whose perturbations were correlated on the
transcriptomic level (15). The Connectivity Map (CMap) L1000
library is a public database in pharmacology, which contains
large transcriptomic profiles of the dozens of cultivated cell lines
treated with tens of thousands of bioactive compounds, and
has been utilized to compare to disease signature and identify
novel drugs or their mechanistic actions (16). However, there
exist few reports utilizing GREx as an expression signature to
comprehensively detect compounds from large-scale databases.

In this study, we have hypothesized that compounds, which
have inverse effects in gene expression profiles when compared
with GREx from common diseases, could be detected as potential
drug candidates that are effective for disease treatment. Here,
we constructed the GWAS-TWAS-compound library integration
pipeline software (Trans-Phar; integration of transcriptome-
wide association study and pharmacological database). This
software conducts in silico screening of the compounds from
the CMap L1000 library, which have an inverse correlation
with the GREx estimated from the inputted GWAS summary
statistics. The features of our pipeline software are as follows: (1)
large-scale compound data source incorporated in our pipeline
enables the detection of compounds on a broad scale and (2) 13
tissue- or/and cell-type categories are incorporated, which are
assigned based on the 29 GTEx tissues used as the eQTL data
in TWAS and on the 77 cell types from the CMap L1000 library
database. This enables to detect compounds that affect tissue-
or cell-type category-specific manners. We applied Trans-Phar
to the UK-Biobank GWAS summary statistics covering a broad
range of human traits and diseases (17,18) and to large-scale
European GWAS meta-analysis summary statistics. Our results
demonstrated that true-positive disease–drug relationships and
potential novel drug or drug target candidates for inputted
disease GWAS summary statistics were successfully detected.

Results
Overview of GWAS-TWAS-compound library
integration pipeline

We hypothesized that compounds, which have an inverse effect
in the gene expression profiles (i.e. negative correlation) when
compared with GREx estimated from the common disease
GWAS, could be identified as potential drug candidates effective

for disease treatment. Here, we constructed a GWAS-TWAS-
compound library integration pipeline. The overview of our
method is shown in Figure 1. The method consists of the
following three steps. Step 1: we performed TWAS to predict
GREx, which contained predicted up-regulated and down-
regulated genes concerning each inputted GWAS summary
statistics of the disease or trait. We chose the 44 tissues GTEx
version 7 eQTL data for the TWAS analysis, whose sample sizes
were >100. Then, we obtained top-ranked genes whose absolute
values of the TWAS Z-scores were on the top 10%, which we
defined as genes with drastically changed expression levels
among GREx. Step 2: we performed negative Spearman’s rank
correlation analysis for the gene expression changes (Z-score)
between top-ranked genes from the GREx and LINCS CMap
L1000 library data, which consist of 308 872 pairs of compound
and compound-perturbed cell-type gene expression change
data that belonged to 13 tissue- or/and cell-type categories
(Supplementary Material, Fig. S1). Step 3: we obtained output
statistics as P-values from the negative Spearman’s rank
correlation analysis. Each of which corresponds to a correlation
P-value between the top-ranked genes from the TWAS of a GTEx
tissue and compound-perturbed gene expression change in
a specific tissue or cell-type category. This pipeline (named
Trans-Phar) was publicly available at GitHub (https://github.
com/konumat/Trans-Phar). Our pipeline software requires the
formatted GWAS summary statistics as the input data and then
outputs P-values and BH-adjusted false discovery rate (FDR)-q
corresponding to each set of TWAS tissue-CMap L1000 library
cell-type-compound (at a specific dose and at a specific time
point).

Evaluation of the integration pipeline

To validate the robustness of our pipeline, we first applied
negative controls (i.e. simulated null GWAS data) to the pipeline.
The null GWAS data were created by performing GWAS and
randomly assigning trait labels to a set of 381 genomes from the
1000 Genome Project (19) under normal distribution at 10 times.
We performed negative spearman’s rank correlation analysis
using the 10 null GWAS data and evaluated the rank-based
median values of the distributions of the P-values from the
correlation analysis, which were sorted in ascending order. An
averaged quantile–quantile (Q–Q) plot of the results of the 10
null GWAS showed that the output P-values followed uniformly
distributed null distributions, confirming robust controls of the
false-positive rates (Supplementary Material, Fig. S2). These
results demonstrated the statistical robustness of our method
(i.e. strict control of false-positive rates).

Next, to validate whether true-positive drug–disease rela-
tionships (which means the detection of the approved drug
for the inputted disease itself) are statistically enriched in a
broad range of human traits and diseases, we applied the UK-
Biobank GWAS summary statistics, which have contained a
quite broad range of diseases and traits (17,18), to the pipeline.
Using UK-Biobank GWAS summary statistics, we examined
whether approved drugs for the disease of inputted GWAS were
detected with statistical significance by the following method
(Fig. 2). We first collected the GWAS summary statistics: (1)
whose single nucleotide polymorphism (SNP)-based heritability
calculated by the linkage disequilibrium score regression (LDSC)
(20,21) were >0.001 and (2) which had genome-wide significant
variants (P < 5.0 × 10−8). Of these, we further selected the 30
disease GWAS summary statistics in descending order of the
number of the curated approved drugs from the ChEMBL
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Figure 1. Schematic illustration of the Trans-Phar framework of GWAS-TWAS-compound library integration. Step 1: TWAS is performed to predict GREx per GTEx tissue

using GTEx version 7 eQTL data concerning the inputted GWAS summary disease or trait. Step 2: negative Spearman’s rank correlation analyses are performed using

the top 10% of GREx per tissue and the LINCS CMap L1000 library data (cell-type- and cell-perturbed-compound pairs) for every tissue- or/and cell-type category. Step

3: Compounds that inversely correlate with GREx from each tissue with statistical significance are outputted, and their correlation-detected tissues and cell types are

also outputted.

database (22) and the Therapeutic Target Database (TTD) (23).
The selected 30 GWAS diseases consisted of six major disease
categories (certain infectious and parasitic diseases, neoplasms,
mental and behavioral disorders, diseases of the circulatory
system, diseases of the respiratory system and diseases of the
musculoskeletal system and connective tissue; Supplementary
Material, Table S1).

We applied our Trans-Phar pipeline to these 30 GWAS
summary statistics to obtain a total of 9 266 160 P-values from
all cell-type-compound pairs (308 872 P-values per each inputted
GWAS summary statistics) and a total of 102 348 P-values from
all cell-type-approved drug pairs. Then, we visually assessed
the distributions of these GWAS-TWAS-library linkage P-values
(Fig. 3A). The Q–Q plots of the P-values for all the disease, cell-
type and drug pairs followed those under the null hypothesis.
However, the Q–Q plots of the P-values corresponding to the
disease and approved drug pairs showed a significant inflation
of the test statistics in its tail. The top-associated disease and

approved drug pairs was lung cancer [malignant neoplasm of
bronchus and lung; International Classification of Diseases-
10 (ICD-10) code = C34] and DNA intercalator of doxorubicin
(P = 1.4 × 10−7; FDR-q = 0.014; Table 1) under cell-type specificity
of skin (GTEx) and malignant melanoma cells of A375 (CMap
L1000 library). The top cell-type-approved drug pairs detected
by Trans-Phar are shown in Table 1. In addition, we also
applied our pipeline by using phase 1 and phase 2 clinical
trial drugs, as the same method for the approved drugs to
obtain P-values from all cell-type-phase 1 clinical trial drug
pairs or all cell-type-phase 2 clinical drug pairs. Q–Q plot for
P-values corresponding to the diseases and phase 1 or phase
2 clinical drug pairs (Supplementary Material, Fig. S3) showed
that phase 1 and phase 2 clinical drug pairs had still inflation
of the test statistics in their tails, but their inflations were
relatively smaller than that of the approved drugs. The top-
ranked phase 1 clinical drugs were foretinib for lung cancer (ICD-
10 code = C34) and dasatinib for melanoma and other malignant

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab049#supplementary-data
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Figure 2. Empirical evaluation of our pipeline using the UK-Biobank GWAS summary statistics. The 30 UK-Biobank GWAS summary statistics were selected for the

evaluation of our pipeline (see the detailed definitions in Materials and Methods). As outputs, negative Spearman’s rank correlation analysis P-values, each of which

corresponds to the correlation P-value between the TWAS top genes in a GTEx tissue and a compound-perturbed gene expression change in a specific cell-type, were

obtained. Also, P-values corresponding to all pairs of TWAS and approved drug-perturbed gene expression data were obtained.

Table 1. Top signals from all cell-type-approved drug pairs screened from the 30 disease GWAS summary statistics from UK-Biobank

Inputted GWAS summary
statistics (source:
GeneATLAS)

ICD-10
code

GTEx tissue CMap L1000
library
cell-type

CMap L1000 library
compound (dose, h)

Mechanistic
action of
compound

P FDR

Malignant neoplasm of
bronchus and lung

C34 Skin not
sun-exposed

A375 Doxorubicin (0.12 μM,
24 h)

DNA
intercalator

1.4 × 10−7 0.0144

Malignant neoplasm of
bronchus and lung

C34 Skin not
sun-exposed

A375 Epirubicin (0.37 μm,
24 h)

TOP2 inhibitor 2.9 × 10−6 0.150

Malignant neoplasm of
bronchus and lung

C34 Skin not
sun-exposed

A375 Epirubicin (0.12 μm,
24 h)

TOP2 inhibitor 5.3 × 10−6 0.180

Other forms of heart
disease

I30-I52 Lung HCC515 Quinidine (10 μM, 24 h) SCN5A
inhibitor

9.8 × 10−6 0.215

Malignant neoplasm of
bronchus and lung

C34 Skin not
sun-exposed

A375 Epirubicin (0.04 μm,
24 h)

TOP2 inhibitor 1.1 × 10−5 0.215

SCN5A, sodium channel α5 subunit; TOP2, topoisomerase II. The therapeutic targets with FDR-q < 0.25 are listed.

neoplasms of skin (ICD-10 code = C43-C44). The top-ranked
phase 2 clinical drug was AZD-2014 for lung cancer (ICD-10
code = C34).

Next, to evaluate the approved drug pairs from the viewpoint
of tissue- or/and cell-type specificity, we evaluated these
approved drug pairs in each of the 13 tissue- or/and cell-type
categories defined in Supplementary Material, Figure S1. The
Q–Q plots of P-values which were separated into 13 tissue-
or/and cell-type categories showed more significant inflation
than that of P-values from all the cell-type-approved drug pairs,
especially in skin category (Fig. 3B). In the skin category, 15
significantly associated disease and approved drug pairs (FDR-
q < 0.1) were found (Supplementary Material, Table S2). These
pairs contained lung cancer (ICD-10 code = C34) with approved
anti-cancer drugs and other rheumatoid arthritis (ICD-10
code = M06) with approved anti-rheumatoid arthritis drugs. Most
of the top signals from the skin cell-type-approved drug pairs
contained lung cancer (ICD-10 code = C34) with approved anti-
cancer drugs (doxorubicin, epirubicin and mitoxantrone) under
cell-type specificity of A375 (malignant melanoma cells with
epithelial-like morphology). Although most top signals from the

lung cancer GWAS had a specificity of A375, characteristics of
these signals may reflect the pathophysiology of lung cancer
(epithelial cells in lung are related to the arise of lung cancer).
Considering these results, our pipeline could successfully detect
already approved drugs with higher sensitivity in specific tissue-
or/and cell-type categories than all categories, from the inputted
disease GWAS summary statistics.

Application of the integration pipeline to European
GWAS meta-analysis summary statistics

Motivated by the empirical robustness and statistical power of
our Trans-Phar pipeline, we then expanded the target GWAS
from the UK-Biobank GWAS summary statistics into the large-
scale European GWAS meta-analysis summary statistics to
further detect compounds that could be promising novel
therapeutic targets. We collected a total of 17 large-scale
European GWAS meta-analysis summary statistics, which
consisted of three major categories (immune/allergy, metabolic/-
cardiovascular and neuropsychiatric; Table 2). These GWASs had
sufficient numbers of significant disease-related loci with

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab049#supplementary-data
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Figure 3. Q–Q plots for the 30 UK-Biobank GWAS summary statistics. Q–Q plots for the 30 UK-Biobank GWAS summary statistics for all tissue- or/and cell-type

categories (A) and per 13 tissue- or/and cell-type category (B). The x-axis reflects an estimated distribution of P-values under the null hypothesis. The y-axis in (A)

reflects an observed distribution of P-values for all cell-type-compound pairs (red) and cell-type-approved drug compound pairs (blue) from the 30 UK-Biobank GWAS

summary statistics. The y-axis in (B) reflects P-values for cell-type-approved drug compound pairs in each tissue- or/and cell-type category from the 30 UK-Biobank

GWAS summary statistics.

relatively large estimates on the SNP-based heritability cal-
culated by LDSC (>0.01). We also adopted the latest COVID-
19 GWAS meta-analysis results released by the COVID-19
Host Genetics Initiative (ANA_B2_V2 as hospitalized COVID vs.
population, which was the largest-scale meta-analysis released
from the consortium on July 2, 2020).

We applied our Trans-Phar pipeline to these GWAS meta-
analysis summary statistics and obtained 308 872 P-values
from all the cell-type-compound pairs per each inputted GWAS
summary statistics. As a result, we obtained sets of cell-type-
compound pairs in a specific tissue- or/and cell-type category
with reverse expression correlation. We highlighted the top 14
cell-type-compound pairs from seven diseases/traits in Table 3
(BH-adjusted FDR-q < 0.25). Further, 55 cell-type-compound
pairs from nine diseases/traits are also shown in Supplementary
Material, Table S3 (BH-adjusted FDR-q < 0.50).

Especially, we found two strong GWAS-TWAS-compound
linkages: (1) anisomycin relevance to the GREx at the brain
(brain hypothalamus as the GTEx tissue and NEU cell-type as
the CMap L1000 library) from schizophrenia (P = 1.8 × 10−7; FDR-
q = 0.056; Fig. 4A) and (2) verapamil relevance to the GREx at
lymphocytes (cells EBV-transformed lymphocytes as the GTEx
tissue and WSUDLCL2 cell-type as the CMap L1000 library) from
hospitalized COVID-19 (P = 1.7 × 10−7; FDR-q = 0.068; Fig. 4B). In
addition, the Q–Q plots of P-values which were separated into 13
tissue/cell-type categories showed more significant inflation
than that of P-values from all the cell-type-approved drug
pairs, especially in the central nervous system category from
schizophrenia (Fig. 4C) and in the hematopoietic tissue category
from COVID-19 hospitalization (Fig. 4D). For schizophrenia, ani-
somycin (protein synthesis inhibitor), proscillaridin (Na+/K+-
ATPase inhibitor) and digoxin (Na+/K+-ATPase inhibitor) were
significantly detected (Supplementary Material, Table S4). For
COVID-19 hospitalization, verapamil (Ca2+ channel blocker), 7-
nitroindazole (NOS inhibitor), orantinib (PDGFR inhibitor) and
enzalutamide (androgen receptor inhibitor) were significantly

detected (Supplementary Material, Table S5). These results
highlighted that disease-relevant tissue or cell-type categories
were more likely to show apparent inflation than other tissue-
or cell-type categories.

As the top-ranked drug we found for schizophrenia,
anisomycin was reported to protect cortical neurons from
hypoxia-induced neuronal death in vitro (24) and to attenuate
posttraumatic stress response in animal models (25). As the top-
ranked drug we found for COVID-19, verapamil is a Ca2+ channel
blocker and has been approved for hypertension. Ca2+ channel
blockers, including verapamil, have shown antiviral activity (26).
A randomized clinical trial evaluating the efficacy of verapamil
on COVID-19-hospitalized patients by the independent groups
is underway by the independent groups (NCT no. NCT04351763).
Although further functional and clinical assessments are
warranted, our study suggested verapamil as one of the potential
drug candidates for COVID-19.

Also, among the detected cell-type-compound pairs, we
found compounds already approved for several diseases.
For example, azacitidine, which we found relevant to GREx
at adipose as GTEx tissue and adipose stem cells (ASCs)
as CMap L1000 library from adult-onset asthma, is a DNA
methyltransferase (DNMT) inhibitor and has been approved for
myelodysplastic syndrome. ASCs are the mesenchymal stem
cell (MSC) population found in adipose tissue and have been
shown to down-regulate the production of various inflammatory
mediators and to have the potential to be a treatment for asthma
and allergic airway disease (27–29). The effects of azacitidine on
ASCs were reported to reverse the age-related deterioration of
adult MSCs (30). Therefore, azacitidine might be related to the
therapeutic intervention for asthma by ASCs. We also found
several cardiac glycosides (proscillaridin, digoxin and digitoxin)
relevant to GREx at the central nervous system (brain hypotha-
lamus/hippocampus as the GTEx tissue and NPC cell-type as
CMap L1000 library) from schizophrenia. Cardiac glycosides,
which bind Na+, K+ pump as ion transport modulator, might

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab049#supplementary-data
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Table 2. GWAS meta-analysis summary statistics used for in silico potential drug candidates

Inputted disease/trait GWAS summary
statistics

Disease/trait category No. of samples (cases, controls) Reference PubMed ID

Amyotrophic lateral sclerosis (ALS) Neuropsychiatric (20 806, 59 804) 31178821
Asthma (adult-onset) Immune/allergy (26 582, 300 671) 30929738
Asthma (child-onset) Immune/allergy (13 962, 300 671) 30929738
Atopy Immune/allergy (18 900, 84 166) 26482879
Body mass index Metabolic/cardiovascular 344 069 25673413
Coronary artery disease Metabolic/cardiovascular (57 347, 219 521) 28714975
Celiac disease Immune/allergy (4533, 10 750) 20190752
Crohn’s disease Immune/allergy (12 194, 28 072) 28067908
Diastolic blood pressure Metabolic/cardiovascular 361 141 31427789
Type 2 diabetes mellitus Metabolic/cardiovascular (48 286, 250 671) 29632382
Multiple sclerosis Neuropsychiatric (14 802, 26 703) 31604244
Parkinson’s disease Neuropsychiatric (33 674, 449 056) 31701892
Rheumatoid arthritis Immune/allergy (14 361, 42 923) 24390342
Systolic blood pressure (SBP) Metabolic/cardiovascular 361 402 31427789
Schizophrenia Neuropsychiatric (40 675, 64 643) 29483656
Systemic lupus erythematosus Immune/allergy (6748, 11 516) 28714469
Ulcerative colitis Immune/allergy (12 366, 33 609) 28067908
COVID-19 (hospitalized cases vs.
controls; ANA_B2_V2)

— (3199, 897 488) —

Table 3. Top signals from all cell-type-compound pairs screened from the large-scale European GWAS meta-analysis summary statistics

Inputted GWAS
summary statistics

GTEx tissue CMap L1000 library
cell-type

CMap L1000 library
compound (dose, h,
#no. of replicates)

Mechanistic action of
compound

P FDR

Schizophrenia Brain hypothalamus NEU Anisomycin (10 μM,
24 h)

Protein synthesis
inhibitor

1.8 × 10−7 0.056

COVID−19
(hospitalized)

Cells
EBV-transformed
lymphocytes

WSUDLCL2 Verapamil (10 μM, 6 h) Ca2+ channel blocker 2.2 × 10−7 0.068

Asthma
(adult-onset)

Adipose
subcutaneous

ASC Azacitidine (10 μm,
24 h)

DNMT inhibitor 3.7 × 10−7 0.114

SBP Lung A549 BRD-K05645536 (5 μM,
24 h)

— 4.6 × 10−7 0.116

SBP Skin not sun-exposed
suprapubic

A375 NSC 119889 (10 μM, 6 h) Protein synthesis
inhibitor

7.5 × 10−7 0.116

Schizophrenia Brain hypothalamus NPC Proscillaridin (10 μM,
24 h)

Na+/K+-ATPase
inhibitor

8.9 × 10−7 0.138

Schizophrenia Brain hypothalamus NPC Digoxin (10 μM, 24 h, 1) Na+/K+-ATPase
inhibitor

1.3 × 10−6 0.138

ALS Prostate PC3 BRD-K70345064 (10 μM,
24 h)

— 8.1 × 10−7 0.152

ALS Prostate PC3 Sarsagenin (1.6 μm,
24 h)

Nuclear factor-κB
inhibitor

9.9 × 10−7 0.152

Schizophrenia Whole blood JURKAT Ibrutinib (10 μm, 24 h) BTK inhibitor 2.3 × 10−6 0.161
Schizophrenia Brain hippocampus NPC Digoxin (10 μM, 24 h) Na+/K+-ATPase

inhibitor
2.6 × 10−6 0.161

Atopy Muscle skeletal SKL Pyrazolanthrone
(1.11 μm, 24 h)

JNK inhibitor 6.1 × 10−7 0.190

Asthma
(adult-onset)

Adipose
subcutaneous

ASC SB 203580 (10 μm, 24 h) p38 MAPK inhibitor 1.3 × 10−6 0.204

ALS Small intestine
terminal ileum

HT29 BRD-A13346522 (10 μM,
6 h, 1)

— 2.4 × 10−6 0.247

BTK, Bruton’s tyrosine kinase; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase. The therapeutic targets with FDR-q < 0.25 are listed..

be concordant with the results of GWAS performed so far for
schizophrenia (31–33), because schizophrenia-associated loci
from these results contain several ion channel-encoding genes.
Ion transport modulation by Na+/K+-ATPase in neurons has

been reported to affect depressive disorders through neuronal
activity, neurotransmission and so on (34). In summary, in silico
screening by our Trans-Phar pipeline successfully identified
promising drug target candidates as well as the confirmation of



300 Human Molecular Genetics, 2021, Vol. 30, No. 3–4

Figure 4. Q–Q plots for European GWAS meta-analysis summary statistics with strong GWAS-TWAS-compound linkages. The x-axis reflects an estimated distribution

of P-values under the null hypothesis. The y-axis reflects an observed distribution of P-values for all cell-type-compound pairs from the European GWAS meta-analysis

summary statistics for (A) schizophrenia, (B) COVID-19 hospitalization and observed distribution of P-values per 13 tissue- or/and cell-type category from the European

GWAS meta-analysis summary statistics for (C) schizophrenia and (D) COVID-19 hospitalization.

approved drug and clinical indication linkages, with implications
on cell-type-specific pathophysiology of the diseases.

Discussion
The integration of a broad range of human phenotypes and
large-scale compound databases should enhance in silico phar-
macology for drug discovery and repositioning. In this study,
our integration pipeline, named Trans-Phar, incorporated a func-
tional genomics approach by TWAS from a broad range of dis-
eases or traits and large-scale compound perturbation databases
with gene expression levels. Our pipeline showed statistical
robustness using simulated null GWAS data and demonstrated
that it could detect both true-positive drug–disease relationships
and potential drug candidates for inputted disease or trait GWAS
summary statistics.

Our approach highlights several advantages. First, this
approach is hypothesis-free, which is less dependent on any
prior biological or chemical knowledge, such as known drug–
disease relationships. This feature should be effective especially
when searching drug candidates for diseases with unknown
etiology, such as the COVID-19 pandemic. Second, we expanded
coverages of tissue- or/and cell-type specificity evaluated
through TWAS to comprehensively obtain GREx using eQTL
data from 29 GTEx tissues. Also, we used a broad compound
database of CMap L1000 library, which has been updated and
extended in the last few years, containing transcriptomic
profiles of dozens of cultivated cell lines treated with tens
of thousands of compounds. These extensions enable a
comprehensive approach to detect various bioactive compounds
in a broad range of tissue- or/and cell-type categories. Third,
our approach was computationally simple and only requested
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publicly available data, such as GWAS summary statistics and
compound-perturbed gene expression data. It is easy for users
to refine the pipeline to include additional resources, such as
in-house disease-related gene expression data and compound
libraries. These advantages should accelerate finding novel
drugs or therapeutic targets under different mechanisms for
a broad range of diseases and a broad category of organs. Our
approach would also be useful for the diseases with few known
treatments or for the urgent need for drug development such as
the COVID-19 pandemic.

There are a few limitations to our approach. First, the hypoth-
esis of finding compounds using opposite expression changes
from the disease tissue may not be completely true for every
compound–disease pair. In some case, the expression changes
identified may not be relevant for reversal because most GWAS
is about the factors in development of disease rather than pro-
gression or treatment. Second, we may not find drugs whose
expression changes are not strongly related to GREx, such as
environmental factors. Third, the therapeutic efficacy of a com-
pound in vivo is assumed to be more complex than the in sil-
ico matching of expression profiles concerning the tissue dis-
tribution of compounds and their effect on other organs and
so on. For example, because CMap L1000 library data contain
limited time point and limited dose of exposure of compounds,
these expression changes could potentially be not ideal for long-
term treatment for chronic diseases. From these limitations,
although our pipeline can highlight and prioritize compounds
efficient for diseases or traits, the in vivo validation of these
compounds, such as animal models of diseases, would provide
further utilization of identified compounds and insights for the
therapeutic approach. In addition, our pipeline did not include
consideration for the in vivo safety of compounds, therefore
the hit compounds in our pipeline would be examined for the
mechanism of action of compounds, or assessed in vivo whether
the compounds were valuable for drug repositioning from the
viewpoint of both efficacy and safety of the compounds.

In conclusion, we have developed a framework for detecting
potential drug or drug target candidates for disease suscep-
tibility. Our study demonstrated that the Trans-Phar pipeline
could find novel drug–disease relationships in tissue- or/and
cell-type specific manners. Our framework would be useful for
therapeutic approaches, such as drug development and drug
repositioning to a broad range of complex diseases or traits.

Materials and Methods
Framework of GWAS-TWAS-compound library
integration pipeline software

TWAS was performed using the FOCUS software (35) for each
of the GWAS summary statistics. The European 1000 Genomes
version 3 LD panel was used for TWAS. We chose 44 GTEx version
7 eQTL data whose sample size was >100 as an eQTL expression
panel for TWAS. We obtained the predicted gene expression level
in each tissue. After conducting TWAS, the top-ranked genes (top
decile in the absolute value of the TWAS Z-score) were used in
the following correlation analyses.

We used LINCS CMap L1000 library data (phases I and
II) as compound library data (16). Level 5 data (moderated
Z-scores from each perturbagen treatment on each cell) were
downloaded from the Gene Expression Omnibus database,
whose accession numbers were GSE92742 and GSE70138,
respectively. In these data, we chose compound-perturbed gene
expression data, which consist of 83 cell types and 20 547

compounds. For each compound-perturbed gene expression
data, we defined significant DEGs using gene expression change
data (Z-score) with cutoff BH-adjusted FDR-q < 0.01 and then
excluded data whose significant DEGs were lower than 5. Then,
we defined 13 tissue- or/and cell-type categories (adipose,
breast, central nervous system, digestive, hematopoietic system,
liver, lung, musculoskeletal system, ovary, pancreas, prostate,
skin and uterus) and assigned 29 GTEx tissues and 77 LINCS
CMap L1000 library cell types to 13 categories (Supplementary
Material, Fig. S1). Then, we performed negative Spearman’s
rank correlation analysis of all the pairs of top-ranked genes
derived from each tissue GREx and each compound-perturbed
gene expression data within the same tissue- or/and cell-
type category. Finally, we obtained a total of 308 872 P-values
corresponding to each of the correlation analyses as described
before.

We developed this pipeline as publicly available software
named Trans-Phar (in https://github.com/konumat/Trans-Phar).
This pipeline software needs the formatted GWAS summary
statistics as the input data and then outputs P-values and BH-
adjusted FDR-q corresponding to each set of the TWAS tissue-
CMap L1000 library cell-type-compound pairs (at a specific dose
and at a specific time point).

Empirical evaluation of the statistical robustness
of the pipeline using null GWAS data

To empirically evaluate the statistical robustness of our pipeline,
we tested our pipeline using 10 simulated null GWAS data, as
negative-control GWAS summary statistics, which were created
as described later. We obtained a total of 10 patterns of cell-
type-compound P-value distributions, each of which contained
308 872 P-values. We used the distribution of the median of
each P-value, which was sorted in the ascending order, as
negative-control P-value distribution. We also visually compared
negative-control P-value distribution to the null hypothesis
using a Q–Q plot.

True-positive drug–disease relationship evaluation
using the UK-Biobank GWAS summary statistics

To validate whether true-positive drug–disease relationships
(which means the detection of the already approved drugs
for the treatment of the inputted diseases themselves) can
be detected in a broad range of human traits and diseases,
we applied 30 UK-Biobank GWAS summary statistics to our
pipeline. The criteria for the selection of the 30 UK-Biobank
GWAS summary statistics were as follows: (1) diseases with
comparatively high SNP-based heritability in the GWAS and
(2) diseases enriched with curated already approved drugs
corresponding to each disease itself, as described later. We
assessed negative Spearman’s rank correlation analysis of the
pairs of the top-ranked genes derived from each tissue GREx and
approved drug-perturbed gene expression data in addition to all
the pairs of the top-ranked genes derived from each tissue’s
GREx and each compound-perturbed gene expression data.
We evaluated these 30 GWAS summary statistics to obtain a
total of 9 266 160 P-values from all cell-type-all compound pairs
(308 872 P-values per each inputted GWAS summary statistics)
and 102 348 P-values from all cell-type-approved drug pairs.
We compared the distribution of these P-values under the null
hypothesis. BH-adjusted FDR-q values were calculated for the
correction for multiple testing of correlation analysis [multiple
testing means all tests for all cell-type-all compound pairs or all

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddab049#supplementary-data
https://github.com/konumat/Trans-Phar
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tests for all cell-type-certain drug category (i.e. already approved
drugs, phase 1 clinical trial drugs, and phase 2 clinical trial drugs)
pairs].

To validate specificity of tissue- or/and cell-type categories in
102 348 P-values from all cell-type-approved drug pairs described
before, we separated 102 348 P-values to 13 tissue- or/and cell-
type categories defined in Supplementary Material, Figure S1.
Then, we also compared the distribution of these P-values under
the null hypothesis. BH-adjusted FDR-q values were calculated
for the correction for multiple testing of correlation analysis
within each tissue or cell-type categories.

Application of the integration pipeline using European
GWAS meta-analysis summary statistics

To evaluate the integration pipeline to find potential drug candi-
dates effective for inputted GWAS summary statistics, we chose
17 European GWAS meta-analysis summary statistics from three
disease/trait categories, as described later. We obtained 308 872
P-values from all pairs of top-ranked genes derived from each
tissue GREx and each compound-perturbed gene expression
data per inputted GWAS summary statistics. We also obtained P-
values of each 13 tissue- or/and cell-type category by separating
308 872 P-values into these categories. Then, we calculated the
BH-adjusted FDR-q for the correction for multiple testing of
correlation analysis.

Collection of the GWAS summary statistics datasets

To evaluate true-positive drug–disease relationship enrichment
in a broad range of human traits and diseases, we collected
the UK-Biobank GWAS summary statistics from the GeneATLAS
database (nPhenotype = 778) (18). For the 778 GWAS summary statis-
tics, we applied the following exclusion criteria: (1) not disease
phenotypes with ICD-10 diagnostic codes, (2) SNP-based heri-
tability calculated by LDSC (20,21) was <0.001 and (3) there exist
no genome-wide significant variants (P < 5.0 × 10−8). After exclu-
sion, we chose the top 30 UK-Biobank GWAS summary statistics
in descending order of the number of curated approved drugs
corresponding to each disease GWAS obtained from the ChEMBL
database (22) and TTD (23). These 30 UK-Biobank GWAS sum-
mary statistics consisted of six major disease categories [certain
infectious and parasitic diseases (n = 5), neoplasms (n = 13), men-
tal and behavioral disorders (n = 2), diseases of the circulatory
system (n = 5), diseases of the respiratory system (n = 1) and
diseases of the musculoskeletal system and connective tissue
(n = 4); Supplementary Material, Table S1].

To detect potential drug candidates with enhanced statistical
power, we then used the large-scale European GWAS meta-
analysis summary statistics. We curated 17 European GWAS
meta-analysis summary statistics for which a large number of
significant disease-related loci were reported and whose SNP-
based heritability was >0.01. These 17 European GWAS meta-
analysis summary statistics consist of three major categories
[immune/allergy (n = 8), metabolic/cardiovascular (n = 5) and
neuropsychiatric (n = 4)]. Also, we adopted the COVID-19 meta-
analysis GWAS summary statistics for which urgent drug-
repositioning strategy has been needed. COVID-19 GWAS meta-
analysis round 3 data (ANA_B2_V2 as hospitalized COVID vs.
population) were downloaded from the COVID-19 Host Genetics
Initiative (July 2, 2020 release). All the GWAS summary statistics
used for the detection of potential drug candidates are shown in
Table 2.

Simulated GWAS summary statistics (null GWAS data
as negative-control)

As the negative-control input data for our pipeline, we created
randomized dummy trait GWAS datasets by randomly assigning
trait labels to a set of 381 European human genomes from the
1000 Genome Project (19) under the assumption of following
a normal distribution (average = 100; standard deviation = 20).
GWAS on the randomized trait data were performed using the
linear regression analysis method implemented in PLINK2 (36).
We performed GWAS using randomized trait data with repetition
of trait randomization at 10 times and then obtained a total of 10
randomized trait GWAS summary statistics as negative controls.

Collection and curation of approved drugs

We collected the compound information on current, or previ-
ously developed, clinical indications from the ChEMBL database
version 25 (22) and TTD version 6.1.01 (23). To curate linkages
between the diseases and the approved drugs, we used the ICD-
10 diagnostic codes as disease ontology terms. For the ChEMBL
database, in which drug indications are annotated using Exper-
imental Factor Ontology (EFO) terms, we converted the EFO
terms to ICD-10 diagnostic codes using the EMBL-EBI ontology
database. Then, we extracted a list of diseases with ICD-10 diag-
nostic codes and defined approved drugs, phase 1 clinical trial
drugs and phase 2 clinical trial drugs for each ICD-10 diagnostic
code, which were curated in either ChEMBL or TTD.

Supplementary Material
Supplementary Material is available at HMG online.

URLs
Trans-Phar, https://github.com/konumat/Trans-Phar
GTEx, https://www.gtexportal.org/home/
CMap L1000 library, https://clue.io/
GeneATLAS, http://geneatlas.roslin.ed.ac.uk
The COVID-19 Host Genetics Initiative, https://www.covid19hg.o
rg/
ChEMBL database, https://www.ebi.ac.uk/chembl/
TTD database, http://db.idrblab.net/ttd/

Data availability
All the data used for this analysis were obtained from the public
databases as indicated in URLs.

Code availability
Python/R/Shell scripts for the Trans-Phar pipeline are available
at Trans-Phar GitHub repository (https://github.com/konumat/
Trans-Phar).
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