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High-throughput technologies like tiling array andnext-generation sequencing (NGS) generate continuous homogeneous segments
or signal peaks in the genome that represent transcripts and transcript variants (transcript mapping and quantification), regions of
deletion and amplification (copy number variation), or regions characterized by particular common features like chromatin state or
DNAmethylation ratio (epigeneticmodifications). However, the volume and output of data produced by these technologies present
challenges in analysis.Here, a hidden semi-Markovmodel (HSMM) is implemented and tailored to handlemultiple genomic profile,
to better facilitate genome annotation by assisting in the detection of transcripts, regulatory regions, and copy number variation
by holistic microarray or NGS. With support for various data distributions, instead of limiting itself to one specific application, the
proposed hidden semi-Markovmodel is designed to allowmodeling options to accommodate different types of genomic data and to
serve as a general segmentation engine. By incorporating genomic positions into the sojourn distribution of HSMM, with optional
prior learning using annotation or previous studies, the modeling output is more biologically sensible. The proposed model has
been compared with several other state-of-the-art segmentation models through simulation benchmarking, which shows that our
efficient implementation achieves comparable or better sensitivity and specificity in genomic segmentation.

1. Introduction

The advent of high-throughput technologies like tiling array
and massively parallel sequencing has produced a windfall of
large-scale genomic data. Analysis of genome-wide data from
these experiments generally requires researchers to search for
continuous homogeneous segments or signal peaks. These
features can represent regulatory regions [1, 2], transcripts [3–
6], or regions of deletion or amplification [7, 8].The objective
of these investigations is, in general, the segmentation or par-
titioning of the genome into nonoverlapping homogeneous
segments and the assignation of a biologically sensible class
to each segment.

Variousmodels and computational tools have been devel-
oped to handle either the general segmentation problem
or particular types of partitioning. Most commonly, the
approaches address the detection of chromosomal alter-
ations with array-based comparative genomic hybridization
(aCGH) [9–18] or SNP array [19–23], transcript [24, 25] and

protein-binding site detection [26, 27] with tiling array, and
the identification of gene expression domains [28, 29]. In
recent years,more effort has been devoted to the development
of computational tools to deal with read-count data generated
from next-generation sequencing (NGS) [30–35].

Many of these computational tools utilize hiddenMarkov
model (HMM) [9, 13, 19, 20, 22, 23, 26, 32, 33] because
of its inherent capability of resolving segmentation tasks.
However, a standard HMM cannot easily account for one
basic property of genomic data—the physical position of
the feature. To our knowledge, there have been few limited
attempts to incorporate this positional information into
HMM [13, 22, 23, 26] or to adopt more complex dynamic
Bayesian network models [34]. On the other hand, a hidden
semi-Markov model (HSMM), a more generalized form of
HMM, could be applied to utilize positional information.
Indeed, HSMM was proposed for modeling aCGH data [18],
but the tool did not actually utilize positional information and
the implementation is no longer publicly available.
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Here, we implement in the R/Bioconductor [36, 37]
package biomvRCNS a novel hidden semi-Markov model,
biomvRhsmm. This model is specially designed to handle
genomic data and tailored to serve as a general segmentation
tool for various types of genomic profiles arising from both
traditional microarray-based experiments and the recent
NGS platform, with native support for modeling spatial
patterns carried by genomic position. We also compare the
proposedmodelwith several other state-of-the-art segmenta-
tionmodels through simulation benchmarking, which shows
that our efficient implementation achieves comparable or
better sensitivity and specificity in genomic segmentation.

2. Materials and Methods

2.1. Hidden Semi-Markov Model. A brief summary of the
concepts involved and a definition of the hidden semi-
Markov model follow. For some experimental data 𝑋, we
have a vector of observations 𝑥
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𝜃 = (𝜋, 𝐴, 𝐵).
A semi-Markov chain can be considered as a two-layer

mixture, an embedded first-orderMarkov chain representing
the transitions between distinct states—which follows the
standard definition ofHMM—and anoccupancy distribution
attached to each nonabsorbing state of the embedded first-
order Markov chain.

The discrete state occupancy distribution or the sojourn
distribution, 𝐷, is defined as the probability of spending
𝑢 consecutive time steps in state 𝑗, which is geometrically
distributed for a normal HMM, 𝑑
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hidden semi-Markov model, with the sojourn distribution
explicitly specified using a common distribution, can be
defined by 𝜃 = (𝜋, 𝐴, 𝐵,𝐷). The explicit modeling of sojourn
time immediately enables the full inclusion of genomic
distance in the segmentation process. A complete likelihood
(1) of the HSMM is given in [38] with survivor function
𝐷
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With likelihood function defined, the optimal model
parameters could then be estimated using the expectation-
maximization (EM) algorithm. A forward-backward algo-
rithm for the estimation step and a Viterbi algorithm to
derive the most likely state sequence are explained in [38],
where the author also shows the possibility of replacing
the nonparametric M-step of the EM algorithm in sojourn
distribution parameters reestimation with a parametric M-
step in practice, to simplify themodel and prevent overfitting.
The E-step of the forward-backward EM procedure and the
Viterbi algorithm have been implemented as C library in the
package.We also attempted to provide support for parametric
reestimations of theM-step based on continuous and discrete
distributions like Gamma, Poisson, and negative binomial
distribution, which is done ad hoc using point estimation
methods. More detail about the estimation of HSMM can
be found in the Supplementary Material available online at
http://dx.doi.org/10.1155/2014/910390.

2.2. Implementation. The batch function biomvRhsmm
accepts both the basic R data matrix and the more
encapsulated GenomicRanges-like object as input, for
better interfacing with other Bioconductor classes and
methods [39]. The function will sequentially process each
region identified by the distinctive sequence names in
the positional input. A second layer of stratification is
introduced by a grouping argument, assigning each profile
to a group, which could be used to reflect experimental
design. Sample columns within the same group could be
treated simultaneously in the modeling process as well
as iteratively. The assumption is that profiles from the
same group could be considered homogeneous and, thus,
processed together in a multivariate fashion. Simultaneous
treatment of multiple profiles is currently available for
emission type set to multivariate normal distribution or
multivariate 𝑡 distribution. Additionally, there is a built-in
automatic grouping method by hierarchical clustering.

The prior distribution of the sojourn density will be
initialized as flat or be estimated from another related data
source by calling the function sojournAnno. State number
could be either assigned explicitly or inferred during the
sojourn learning. The model complexity is limited by a
constant 𝑀, denoting the upper bound to the time spent
in a state, which is quite similar to the approach adapted
in the segmentation model in tilingArray [24]. The constant
could be explicitly given by the argument max 𝑘 or inferred
by another constantmax 𝑏𝑝 togetherwith positional informa-
tion. The modeling of sojourn time is done using positional
information like genomic distance between markers and
regresses to a rank-based position setting, like the original
design in [38], when positional information is not available.
Starting state probabilities will be initialized as a flat vector.
Initial parameters for the emission distribution could be
estimated using different levels of quantile of the input or via
a clustering process, assuming different states tend to have
different levels of emitted signals.

The function will then call the C library to compute
the smoothed-state probability profile in the E-step, after
which model parameters will be reestimated in an M-step.
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Table 1: List of algorithms compared in this paper.

Name Reference Method R package (version)
bcp Erdman and Emerson (2008) [16] Product Partition Model bcp 3.0.1
bioHMM Marioni et al. (2006) [13] Heterogeneous HMM snapCGH 1.30.0
CBS Venkatraman and Olshen (2007) [14] Modified Circular Binary Segmentation DNAcopy 1.34.0
cghseg Picard et al. (2011) [17] Joint CGH Segmentation cghseg 1.0.1
GLAD Hupé et al. (2004) [10] Adaptive Weights Smoothing GLAD 2.24.0
HaarSeg Ben-Yaacov and Eldar (2008) [15] Wavelet Decomposition andThresholding HaarSeg 0.0.3
HMM Fridlyand et al. (2004) [9] Homogeneous HMM aCGH 1.38.0

Eventually, the most likely state sequence could be inferred
from the smoothed-state probability profile or estimated
with the Viterbi algorithm. The complexity of the forward-
backward algorithm used in the E-step and the Viterbi
algorithm is𝑂(𝐽𝑇(𝐽+𝑇)) time in the worst case and𝑂(𝐽𝑇𝑀)

space. To relax the high memory burden from NGS data of
base-pair resolution, we attempt to use run-length encoding
(RLE) for the storage and handling of sequencing count data,
since the feature distribution is normally sparse across the
genome. Also, to speed up computation, parallel processing
ofmultiple chromosomes or contigs could be enabled, to take
advantage of the multicore infrastructure of modern PC.

After the batch run, results are combined and returned
together with input data plus model parameters as a biomvR-
CNS class object, for which a plot method has been imple-
mented to provide integrative visualization of the segmenta-
tion results with optional annotation.

2.3. Performance Comparison with Other SegmentationMeth-
ods. To show the reliability and relative performance of the
proposedmodel, we compared our implementation with sev-
eral other state-of-the-art segmentation algorithms (Table 1),
using a similar approach as in [38], by calculating the receiver
operating characteristic (ROC) curves on simulated data.

Some of the models reviewed in [40] have evolved over
the years. Venkatraman and Olshen [14] present a faster,
modified version of circular binary segmentation (CBS) [11]
in R/Bioconductor packageDNAcopy. Picard et al. [17] extend
the univariate dynamic programming procedure [12] to joint
analysis of multiple CGH profiles in R package cghseg and
adopt the modified Bayesian information criterion [41] for
model selection. We also included the unsupervised hidden
Markov model described in R package aCGH [9] (labeled
HMM hereafter) and the local adaptive weights smoothing
procedure in R package GLAD [10] in our comparison; these
are considered to be early efforts in the field, thus they can
serve as baselines to show advances in the approaches.

In recent years, several new methods and computa-
tional tools have also been introduced. In R package bcp
[16], Erdman and Emerson implement an efficient Bayesian
change point model described by Barry and Hartigan [42].
Ben-Yaacov and Eldar suggest an ultrafast segmentation
model based on wavelet decomposition and thresholding
in R package HaarSeg [15]. Marioni et al. implement a
heterogeneous hidden Markov model bioHMM [13] in R
package snapCGH, which can utilize positional information
or clone quality in the modeling process and, thus, could be
considered as an extension of the HMM in package aCGH.

Among these models, there has been no comparison study
between bcp, bioHMM, and HaarSeg in recent literature. We
did not include implementations that are specific to SNP data
in our comparison, mainly due to the unique nature of the
platform, which is less general in terms of segmentation and
may require more inputs like B Allele Frequency (BAF) or
genotype call, in addition to the copy number profile in the
form of Log R Ratio (LRR).

2.4. Data Simulation for Algorithm Comparison. For the data
simulation, we attempt to make it conceptually similar to
the scenario one may encounter in real experiments. For
copy number studies using CGH or using sequencing with
matched case-control sample, three states are commonly
assumed, and regions of copy gain and loss are of major inter-
est when sizes range from about 1 kb to several megabases
[43]. For this purpose, we first create pools of segments for
each state; lengths of the segments are sampled from three
Poisson distributions, with lambda equal to 20, 270, and 10,
respectively. The distance between data points is assumed to
be regular and equal to 1. Signal intensities are sampled from
three normal distributions,𝑁

1
(𝑟, 1),𝑁

2
(2 × 𝑟, 1), and𝑁

3
(3 ×

𝑟, 1) for each state, respectively, with state mean controlled
via a ratio factor 𝑟 varying from 1 to 3 at a step of 1. Segments
from different states are then randomly sampled and joined
together to form one data sequence.

For sequencing data, to check for splicing and novel
transcripts or detect peaks for transcript factor binding sites,
one would be interested in distinguishing the true expression
signal from the background. Normally, annotated coding or
noncoding transcripts are relatively much shorter compared
to intergenic regions. In this case, we also first create pools
of segments for three virtual states, intergenic, short, and
relatively lowly-expressed gene and protein coding sequence
with high abundance; lengths of the segments are sampled
from three Poisson distributions, with lambda equal to 285,
5, and 10, respectively. Signal intensities for each segment are
then sampled from three pools of Poisson distribution, 𝑃

1
(1),

𝑃
2
(𝑟), and 𝑃

3
(𝑟
2
), with mean controlled via a ratio parameter

𝑟 varying from 1.5 to 2 at a step of 0.25 for each pool of
segments. Segments from different states are then randomly
sampled and joined together to form one data sequence,
representing one targeted region.

2.5. Performance Comparison Using ROC Curves. In this
work, we compare our model with several well-tested seg-
mentation algorithms, all of which are available as R pack-
ages. Since different algorithms tend to be tuned differently



4 BioMed Research International

Table 2: Area under the ROC curves of simulation 1 data.

𝑟 = 1 𝑟 = 2 𝑟 = 3 Weighted avg. rank
AUCg AUCl AUCg AUCl AUCg AUCl

hsmm 0.619487 0.729668 0.982176 0.988689 0.999141 0.998519 3.528400
bcp 0.675283 0.758042 0.912009 0.956031 0.921090 0.963401 6.416511
bioHMM 0.685575 0.875202 0.977079 0.990215 0.995062 0.997551 3.408419
CBS 0.633272 0.795941 0.974008 0.985508 0.996065 0.995409 4.491084
CGHseg 0.586505 0.696329 0.960183 0.991765 0.996045 0.998051 4.621081
GLAD 0.506588 0.548763 0.833011 0.962862 0.986098 0.996577 6.907573
HaarSeg 0.649687 0.763682 0.923416 0.993653 0.995908 0.998408 3.886978
HMM 0.717595 0.854783 0.749492 0.887209 0.526358 0.573611 6.589848
AUCg and AUCl are area under the receiver operating characteristic (ROC) curves for simulated gain and loss segments, respectively, for each 𝑟.
Weighted avg. rank is calculated as 𝑛 + 1 − ∑𝑗=𝑐

𝑗=1
AUC
𝑖
× rank𝑗(AUC

𝑖
)/𝑐 for each model 𝑖, where 𝑐 is the number of AUC columns and 𝑛 is the number of

competing models.

to suit their ownmethodologies for better sensitivity, here we
do not attempt to alter their default settings and feed only the
simulated signals without other information to the models,
thus achieving an essentially fair comparison and mimicking
a common-use case for normal users.

We use simulated data with varying levels of interstate
ratio 𝑟, which is conceptually similar to signal-to-noise ratio
(SNR); since, for both simulations, states with extreme values
are of interest, the differences in mean between the extreme
states and the intermediate states could be considered as
signal, while the variation associated with the intermediate
state could be considered as noise. We calculate the true-
positive rates (TPR) and the false-positive rates (FPR) over
10000 iterations (100 simulations for each of the 100 random
segments formation) of simulation for each level of 𝑟.

The TPR is defined as the number of points that are
from the states of interest and fall into the predicted states of
interest, divided by the total number of points from the states
of interest.The FPR is defined as the number of points that are
not from the states of interest but fall into the predicted states
of interest, divided by the total number of points not from the
states of interest.The true states of interest depend on the type
of simulation; for normal data in simulation 1, this is assigned
to the first and the third states, namely the gain and loss states,
respectively. For count data in simulation 2, this is assigned
to the third state, which is used to represent signal peak.
The prediction is done by comparing the estimated segment
mean with a threshold (𝑡) varying from the maximum to
the minimum of the simulated value. For abnormal state of
gain in simulation 1 and peak in simulation 2, the segment
with estimated value above the threshold is considered as
positive; for state of loss in simulation 1, the segment with
estimated value below the threshold is considered as positive.
Definitions of TPR and FPR are formulated as follows:

TPRloss =
𝑁 (𝑥 < 𝑡 | 𝑠 = 1)

𝑁 (𝑠 = 1)
,

FPRloss =
𝑁 (𝑥 < 𝑡 | 𝑠 ̸= 1)

𝑁 (𝑠 ̸= 1)
,

TPRgain|𝑠2 =
𝑁 (𝑥 > 𝑡 | 𝑠 = 3)

𝑁 (𝑠 = 3)
,

FPRgain|𝑠2 =
𝑁 (𝑥 > 𝑡 | 𝑠 ̸= 3)

𝑁 (𝑠 ̸= 3)
.

(2)

All calculations were carried out in the statistical lan-
guage R (version 3.0.1). Area under the curve (AUC) was
estimated using Bioconductor package ROC (version 1.36.0).
The system used for benchmarking is a standard 64 bits Linux
desktop with Intel Core i7 with 3.07GHz and 6GB DDR3
memory.

3. Results

3.1. Performance Comparison with Simulated Data. After two
extensive simulation runs, we show the resulting ROC curves
under different signal-to-noise ratios for all comparedmodels
in Figure 1. In Figure 2, two sets of randomly simulated data
(chosen from the 50th random grid formation and the 50th
iteration of that formation), one from each simulation run
(using the intermediate 𝑟 level, 2 for simulation 1 and 1.75 for
simulation 2), have been illustrated as an example together
with estimated segments from competing models.

In simulation 1 (Table 2), most algorithms—except for
HMM—perform comparably well at intermediate- and low-
noise scenarios. The difference in detecting gain and loss is
consistent with our simulation setup, where we intentionally
set the loss region to be relatively longer, making it easier to
detect. In general, the competing algorithms can be catego-
rized into three performance groups: our model, bioHMM,
and HaarSeg perform best, followed by CBS and cghseg, and
the last three algorithms perform less satisfactorily. Notably,
in simulation 1, bioHMM has surprisingly high power in a
high-noise setting. However, the advantage essentially dis-
appears when signals get stronger. This phenomenon could
result from its model selection process, where it attempts
to assign a higher number of states, thus more segments,
to compensate for the random noise. Additionally, HaarSeg
has difficulty detecting short gain segments, which could be
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Figure 1: ROC curves for performance comparison. Receiver operating characteristic (ROC) curves for segmentation algorithm comparison
under different signal-to-noise settings (𝑟). Curves were generated by measuring the sensitivity and specificity at different threshold levels.
The 𝑥-axis and 𝑦-axis show the false-positive rate (FPR) and true-positive rate (TPR), respectively. The upper panel (a) shows simulation 1,
similar to an aCGH analysis, and the lower panel shows simulation 2, similar to peak identification using NGS. Compared algorithms are
color-coded as indicated in the figure legend, while the up-triangle represents segment of gain in simulation 1 and peak in simulation 2, and
hollow down-triangle represents segment of loss in simulation 1. Models are labeled using lowercase letters of their name. Our proposed
model is coded as “hsmm” for simplicity and the hidden Markov model in package aCGH is labeled as “hmm.”

related to the default model setting that is not well adapted to
short aberrations [15].

A smoothing algorithm like GLAD only operates well
under higher signal-to-noise ratio. Smoothing results in less
accurate segment boundaries. Further, as mentioned in [40],

GLAD is sensitive to single outliers, which explains the
minor deficiency of sensitivity in detecting gain regions even
for low-noise cases. The behavior of bcp indicates that to
achieve higher power specificity must be lost, even with
a high signal-to-noise setting. HMM achieves a high area
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Table 3: Area under the ROC curves of simulation 2 data.

AUC
𝑟=1.5

AUC
𝑟=1.75

AUC
𝑟=2

Weighted avg. rank
hsmm 0.7623442 0.9423881 0.9849165 2.232382
bcp 0.8219388 0.9280808 0.9656302 2.616598
CBS 0.6828102 0.874411 0.954873 5.487906
CGHseg 0.7292456 0.8982693 0.9594827 4.550670
GLAD 0.5418485 0.7366826 0.8971196 6.730182
HaarSeg 0.7728192 0.9114189 0.9786983 2.977933
HMM 0.6243222 0.5872855 0.5259849 7.212695
Weighted avg. rank is calculated as 𝑛 + 1 − ∑𝑗=𝑐

𝑗=1
AUC
𝑖
× rank𝑗(AUC

𝑖
)/𝑐 for each model 𝑖, where 𝑐 is the number of AUC columns and 𝑛 is the number of

competing models.

Table 4: Processing time and error estimate of the compared models.

avg.𝑡 Simulation 1 Simulation 2
avg.cp MAE RMSE avg.cp MAE RMSE

hsmm 0.25645 12/11.16 5.756 3.476 6/6.50 18.73 6.31
bcp 1.46298 NA NA NA NA NA NA
bioHMM 6.96811 14/14.71 8.655 7.376 NA NA NA
CBS 0.12168 12/11.02 7.444 4.178 5/4.93 20.762 7.068
CGHseg 0.28938 12/9.89 9.059 4.783 7/7.00 14.83 5.533
GLAD 0.23725 10/8.22 13.128 6.071 3/4.15 22.139 7.668
HaarSeg 0.00268 17/15.57 12.896 4.984 10/10.65 10.117 4.018
HMM 0.28008 7/38.97 94.666 80.792 1/60.05 144.83 97.178
avg.𝑡 is calculated as the mean run time of 20000 simulation iterations.
avg.cp is the median/mean number of segments estimated across 3 SNR settings.
MAE is calculated as the mean absolute error∑ |no.seg − true.no.seg|/𝑛.
RMSE is the rooted mean squared error√∑(no.seg − true.no.seg)2/𝑛.
NA indicates that the measurement is not applicable for this algorithm. For bcp, the model output posterior means for each position that does not tend to form
segments with constant mean. For bioHMM, the model cannot be run, thus no results were collected.

under the curve (AUC) when high noise exists (𝑟 = 1) in
simulation 1 and performs comparably worse when signals
are stronger, eventually failing to identifymost segments.This
is in accordance with [40], whereHMM failed to identify any
region in Glioblastoma Multiforme (GBM) data. It also fails
to make any meaningful segmentation in simulation 2.

In simulation 2 (Table 3), when data contain a mixture
of Poisson distributions, we failed to run bioHMM due to
an error in a foreign function call to the C library. We have
to assume that the implementation cannot work on discrete
count data. However, all other implementations are still
operable and achieve similar performance as in simulation
1. Though the mean parameter for Poisson data simulation
is not considerably large, the normal approximation could
still achieve reasonably good power. Nonetheless, our explicit
modeling of count data remains advantageous for segment-
ing count data, which has the highest weighted average
rank (Table 4), followed by bcp and HaarSeg. Compared to
HaarSeg, the power boost for bcp essentially occurs under
higher FPR. It is possible that algorithms like bcp perform
better when a stronger signal exists, which could be due to
the normal error assumption in the model.

For both simulations we could confirm that, as has
been shown in [40], cghseg and CBS perform consistently
well under various scenarios. Two of the newly introduced
methods, bioHMM and HaarSeg, also exhibit comparable

or better performance; in contrast, our model consistently
ranks among the top 3 performing algorithms. Across the
two simulations, HMM and GLAD are considered to possess
lowest power, while for bcp an associated high error rate is
observed.

Concerning computation time, HaarSeg is the fastest
algorithm among all implementations, by a factor of 50–100;
bioHMM is the slowest due to its internal model selection
process. bcp is the second slowest, as a result of long Markov
chain Monte Carlo (MCMC) run.The processing time of our
model is similar to cghseg and is slower than CBS, which is
about two times faster.

We also took a closer look at the overall accuracy of
estimated segment number, in Table 4. For both simulations,
we joined, on average, 14 segments into one sequence.
Occam’s razor states that the best model should be the
simplest yet still retain the same power. In simulation 1,
our model achieves the lowest rooted mean-squared error
(RMSE) and mean absolute error (MAE); in simulation
2, our model finds fewer segments: the median number
of detected segments was only 6 across three noise levels.
Taking into account the power advantage of our method
in the performance comparison, this finding indicates that
the estimated segment boundaries are more accurate in our
model. Simulated aberrant segments are sampled from the
same distribution, and the sojourn modeling in our method
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Figure 2: Examples of stimulated data and estimated segments. Two
sets of randomly simulated data (chosen from the 50th random grid
formation and the 50th iteration of that formation), one for each
simulation run (using the intermediate 𝑟 level, 2 for simulation 1 and
1.75 for simulation 2), are illustrated as an example with estimated
segments from competing models. Segments are represented using
the estimated segment averages. The true underlying grid used for
data simulation is shown as the solid line in beige.

takes advantage of this property. In the second simulation,
HaarSeg achieves the lowest error estimates for both RMSE
and MAE. cghseg gives error estimates similar to our model.
For HaarSeg and cghseg, this is essentially achieved by fitting
more segments. As has been pointed out in [12], assumptions
of themean-variance relationship imposed on themodelmay
lead to more segments to satisfy such requirements.

4. Example of Differentially Methylated
Region (DMR) Detection

Differentially methylated regions (DMRs) are genomic
regions with different methylation status, that is, variable
degrees of DNA methylation between different samples,
which has been considered to have regulatory functions for
gene transcription [44] and is associated with cell differentia-
tion and proliferation [45, 46]. Such regions can be surveyed
using high-throughput technologies like tiling array [47] and
sequencing [48].

As an example, we include a set of data extracted from
BiSeq [49], which contains a small subset of a published study
[50], comprising intermediate differentialmethylation results
before DMR detection. We first load the “variosm” data,

> library (biomvRCNS)
> data (variosm)

The data contains a GRanges object variosm with two meta
columns: “meth.diff,” methylation difference between the two

sample groups and “p.val,” significance level from the Wald
test. Ourmodel could be applied on data from other pipelines
as well, using similar data input.

In the BiSeq workflow, they use an approach similar to
the max-gap-min-run algorithm to define DMR boundaries,
by prior filtering and comparing the differential test statistics
with a user-specified significance level in the candidate
regions. The positional information for methylation sites is
accounted for by locating and testing highly correlated cluster
regions in the filtering process.

With biomvRhsmm, we utilize both types of information
to detect DMRs: (1) the difference in the methylation ratio
and (2) the significance level from the differential test. The
methylation difference gives information about the direction-
ality of the change as well as the size, and the significance
level gives the confidence in claiming differential events. We
implicitly ask the model to give 3 states, since 𝐽 is default
to 3. Regarding the methylation ratio “meth.diff,” these levels
may be hypomethylated regions, undefined null regions,
or hypermethylated regions, respectively. When modeling
significance levels “p.val,” these states would represent high
confidence regions, low confidence regions, or null results.
For both scenarios, we are more interested in extreme states,
where we have consistent direction of differences and low P
values. However, the distributions of observation values in
“meth.diff ” and “p.val” are both nonuniform and asymmetric
around 0 (for “meth.diff ”) and 0.5 (for “p.val”), thuswe enable
the cluster mode for emission prior to initialization by setting
prior.m=“cluster.”The “cluster”modewill employ themethod
described in [51] to divide data into clusters and then use the
centroid of each cluster to represent themean parameter; fur-
ther, the variance structure or other distributional parameters
can be estimated using the corresponding clusters.

Due to the nonuniformly located CpG sites, onemay split
inter-spreading long segments with parameter max gap = 100
(see code chunk in Box 1).

After the model fitting, by intersecting regions with
extreme “meth.diff ” and regions with low “p.val,” we can
locate those detected DMRs, returned with their average
“meth.diff ” and “p.val”. Compared to the regions detected in
the BiSeq vignette, the two sets of regions are largely similar
except for two regions. First chr1: 872335, 872386 had highly
asymmetric distribution of “meth.diff.” Another region, chr2:
46915, 46937, resides in the tail of chromosome 2 and has
only 2methylation sites; this was sorted into the intermediate
state due to the lack of support from both the emission level
and the sojourn time. However, due to the filtering applied
in BiSeq workflow, they built wider regions out of a smaller
set of more significant sites; in contrast, our approach has
more refined regions, and we identified two hypomethylated
regions (chr1: 876807, 876958 and chr1: 877684, 877738). The
two segmented profiles are depicted in Figure 3, using the
default plot method.

5. Discussion

The segmentation problem, in general, occurs in many types
of biological experiments and can naturally fit into the hidden
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# model run
> rhsmm <- biomvRhsmm(x=variosm, maxbp=100, prior.m=‘cluster’, maxgap=100)
> hiDiffgr <- rhsmm@res[mcols(rhsmm@res)[,‘STATE’]!=2

& mcols(rhsmm@res)[,‘SAMPLE’]==‘meth.diff ’]
# check for direction of changes
> dirNo <- mcols(hiDiffgr)[,‘STATE’]==‘1’&mcols(hiDiffgr)[,‘AVG’]>0 |

mcols(hiDiffgr)[,‘STATE’]==‘3’ &mcols(hiDiffgr)[,‘AVG’]<0
> hiDiffgr <- hiDiffgr[!dirNo]
# locating low p.val regions
> loPgr <- rhsmm@res[mcols(rhsmm@res)[,‘STATE’]==1

& mcols(rhsmm@res)[,‘SAMPLE’]==‘p.val’]
# find common high difference and low p.val regions
> DMRs <- intersect(hiDiffgr, loPgr)
> idx <- findOverlaps(variosm, DMRs, type=‘within’)
>mcols(DMRs) <- DataFrame(cbind(TYPE=‘DMR’, aggregate(as.data.frame(mcols(variosm[idx@queryHits])),

by=list(DMR=idx@subjectHits), FUN=median)[,−1 ]))
> names(DMRs) <- paste0(‘DMRs’, seq along(DMRs))
>DMRs
GRanges with 5 ranges and 3 metadata columns:
Seqnames Ranges Strand TYPE meth.diff p.val
<Rle> <IRanges> <Rle> <factor> <numeric> <numeric>
DMRs1 chr1 [875227, 875470] ∗ | DMR 0.31947418 6.677193e−06
DMRs2 chr1 [876807, 876958] ∗ | DMR −0.06108219 6.500328e−02
DMRs3 chr1 [877684, 877738] ∗ | DMR −0.06123008 2.844639e−02
DMRs4 chr2 [46126, 46280] ∗ | DMR 0.41008524 1.818530e−07
DMRs5 chr2 [46389, 46558] ∗ | DMR 0.44823172 1.890819e−06
- - -
Seqlengths:
chr1 chr2
NA NA
> plot (rhsmm, gmgr=DMRs)

Box 1: Code chunk.

Markovmodel frameworkwith segment boundariesmodeled
as transitions between hidden states.

As a generalization of the hidden Markov model, HSMM
allows the sojourn distribution to be specified other than the
Geometric distribution implicitly used in common HMM.
Given the complexity of the genome, such an implicit
assumption could be easily violated.Though the true underly-
ing sojourn distributions involving various genomic features
remains unknown, our implementation gives more flexible
options in the modeling and, thus, might provide more
insight.

In this package, several types of sojourn distribution are
implemented. For example, with gamma-distributed sojourn,
the neighboring position will tend to stay in the same
state and transit to other states if far apart. Differing from
the original design in [38], our implementation utilizes
the positional information naturally associated with most
genomic features for the sojourn density estimation. Such an
integrative approach is advantageous over simply using the
rank of feature positions, since mapping positions are not
always uniformly distributed and the spatial patterns may
be of interest in experiments like DMR detection. Further,
HSMM differs from those models that embed positions in
a nonparametric fashion, like BioHMM [13] and QuantiSNP
[19], or as in the “instability-selection” model for LOH
analysis [22, 23]; these all employ variations of exponential

function to account for feature position. OurHSMM is closer
to the DBN model employed in Segway [34] but is less
experiment-specific and easier to interpret and has conve-
nient communication with other analytical and visualization
tools within the Bioconductor community.

The explosion of data availability provides another pos-
sibility of learning from previous studies. Other than the
flat prior commonly used in Bayesian inference, prior infor-
mation for the sojourn density could be estimated from
annotation or previous studies, thus it can be effectively
utilized together with positional information of features to
guide the estimation of the most likely state sequence.

With its full probabilistic model, various emission den-
sities are provided, enabling the model to handle normally
distributed data from traditional array platforms as well as
counting data from sequencing experiments. The proposed
model has also been applied on a well-studied aCGH dataset
from Coriell cell lines [7] and from RNA-seq data generated
by the ENCODE project [52, 53] to illustrate its other
functionalities in the package vignette.

6. Conclusions

In this work, we present a novel hidden semi-Markov model
designed specifically for genomic data analysis.The proposed
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Figure 3: Detected differentially methylated regions (DMRs) in the example data, together with estimated segmentation profiles. DMRs
could be located by intersecting resulting states “1” or “3” in “meth.diff ” and segment “1” in “p.val,” like has been shown in the code chunk,
indicated by boxes in the third row.

model has been compared with several other state-of-the-
art segmentation methods; our implementation is efficient
and achieves comparable or better sensitivity and specificity
in genomic segmentation. Further, our model has flexible

data distribution assumption, enabling a unified interface
for segmenting data generated from different experimen-
tal platforms. By incorporating genomic positions into the
sojourn distribution of HSMM, with optional prior learning
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using annotation or previous studies, model output is more
biologically sensible. To this end we would like to present our
model as a general segmentation engine to serve in a wide
range of genomic research.

7. Availability and Requirements

Function biomvRhsmm is implemented as part of the
R/Bioconductor package biomvRCNS, which is available from
the Bioconductor project.

Function name: biomvRhsmm
Package name: biomvRCNS
Project home page:
http://bioconductor.org/packages/devel/bioc/html/
biomvRCNS.html
Operating system(s): Linux, Mac OS X, Windows
Programming language: R, C
Other requirements: R (≥3.0.0)
License: GPL (≥2).
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