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Abstract: Omics approaches for investigating biological systems were introduced in the mid-1990s
and quickly consolidated to become a fundamental pillar of modern biology. The idea of measuring
the whole complement of genes, transcripts, proteins, and metabolites has since become widespread
and routinely adopted in the pursuit of an infinity of scientific questions. Incremental improvements
over technical aspects such as sampling, sensitivity, cost, and throughput pushed even further
the boundaries of what these techniques can achieve. In this context, single-cell genomics and
transcriptomics quickly became a well-established tool to answer fundamental questions challenging
to assess at a whole tissue level. Following a similar trend as the original development of these
techniques, proteomics alternatives for single-cell exploration have become more accessible and
reliable, whilst metabolomics lag behind the rest. This review summarizes state-of-the-art technologies
for spatially resolved metabolomics analysis, as well as the challenges hindering the achievement of
sensu stricto metabolome coverage at the single-cell level. Furthermore, we discuss several essential
contributions to understanding plant single-cell metabolism, finishing with our opinion on near-future
developments and relevant scientific questions that will hopefully be tackled by incorporating these
new exciting technologies.
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1. Introduction

The advent of genomics immediately followed by similar conceptual frameworks to investigate
transcriptomes, proteomes, and metabolomes represented a paradigm shift in biological systems
investigation. The appealing idea of holistically assessing such systems has translated into rapid
developments for systems biology. Researchers can now investigate multiple processes simultaneously,
revealing essential mechanisms involved in regulating development and responses to the environment.
For practical reasons, such techniques have been mainly applied to bulk samples consisting of a large
number of cells for which results correspond to populations’ averages (Figure 1). In such experiments,
the stochasticity of biological processes leading to cell heterogeneity is often considered not to be
biologically relevant. Indeed, this is often the case, and for many applications such as characterizing
mutants of central metabolic pathways [1,2] and identifying genes involved in the production of
specialized metabolites [3–5], the use of averages is undoubtedly suitable.

However, cell heterogeneity has been shown to play important biological roles in many situations
for which averaging would mask relevant mechanistic insights [6]. In plants, several works highlighted
the importance of cell-specific metabolism in regulating essential physiological processes such as
the metabolism of the shoot apical meristem [7], the regulation of stomatal closure by guard cells
and subsidiary cells [8,9], C4 metabolism [10–12], and the evolution of specialized metabolism [13].
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However, most of these studies involve cell-specific labor-intensive protocols for cell isolation or
reporter lines targeting few metabolites. True metabolomics at the cellular level remains a daunting
task due to innumerable challenges in measuring metabolites.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 2 of 18 
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a metabolite X differentially accumulated in multiple cell types highlighting the averaging effect of
pooling cells together in a traditional metabolomics experiment. Trichomes (TC), epidermal cells (EP),
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2. Technical Challenges

Current coverage of the metabolome still lags far behind genomics, transcriptomics, and proteomics
because of the technical limitations imposed by the nature of metabolites. DNA, RNA, and proteins
exhibit high regularity as they are constituted by a set of repeating unities, namely nucleotides
and amino acids. As a consequence, these classes of molecules have characteristic physicochemical
properties that are similar between them. Metabolites, on the other hand, exhibit much broader
physicochemical diversity hindering their global analysis by a single technique. The broadest coverages
of the metabolome achievable by date rely heavily upon the high sensitivity of mass spectrometry
techniques hyphenated to efficient separation provided by gas and liquid chromatography. Although
current technological advances provide considerable resolution in benchmark equipment such as
orbitraps and quadrupole time-of-flight mass spectrometers (QTOFs), the combination of these two
techniques is still essential for overcoming matrix effects providing maximum metabolome coverage.

Following the trend, metabolomics once again lags its predecessors in the pursuit of single-cell
systems biology. Single-cell genomics and transcriptomics saw rapid popularization in the last
years [14], followed more recently by proteomics [15–17]. Here, in addition to the aforementioned
technical hurdles, sensitivity also imposes a challenge for single-cell metabolomics. DNA and
RNA analysis presents a significant technical advantage as the genetic material can be amplified,
yielding considerably more sensitive detection over proteins and metabolites. Recent developments in
proteomics have explored alternatives such as fluorescent tags providing a comprehensive increase in
sensitivity. On the other hand, metabolites cannot be amplified, and their broad dynamic range of
concentrations has a considerable impact on the observable metabolome. Furthermore, improving
detection through derivatization reactions is also complicated by their wide chemical diversity and a
higher propensity to structural modifications compared to bulkier proteins. Moreover, the minute
concentrations and volumes of material represent an issue for using classical platforms relying on
chromatographic separation.

We can classify attempts to achieve cellular resolution metabolomics in three main groups:
those that attempt at isolating enough material of a specific cell type to perform the analysis on
platforms used for regular metabolomics, which we will refer to as single-cell-type metabolomics as
coined by Reference [18]; those based on micromanipulation of single cells [19,20]; and those based on
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mass spectrometry imaging (MSI) [21,22]. In the next sections, we briefly summarize some of the main
vantages and disadvantages of the different approaches (Figure 2).
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Figure 2. Overview of experimental steps and data structure from the different approaches for
cell-specific metabolomics.

3. Single-Cell and Single-Cell-Type Metabolomics

In an ideal scenario, direct extraction of the inner content of a cell, or the cell as a whole, followed by
metabolite profiling, represents the optimal procedure for preserving the natural cellular environment
and assessing individual cellular heterogeneity across an organism. However, mass spectrometry
performed within such low volumes and concentrations is generally limited to detecting only a
small set of compounds. Moreover, performing chromatography with such material is even more
challenging, and most platforms skip this method altogether. The lack of chromatographic separation
results in increased matrix effects such as ion suppression, simply put, the signal reduction due
to ionization interference between species simultaneously reaching the ionization source, therefore,
negatively affecting the detection of most analytes. One of the few platforms established for such
analysis, “Live-MS” performs single-cell metabolite profiling by sucking out the cell content under
video-microscopy observations with the help of a metal-coated microcapillary such as a nanospray
tip. The sample is further transferred into a mass spectrometer via a nano-electrospray ionization
plume [19,23].

A more viable alternative from the analytical point of view is to sample many specific cells
before the metabolomics experiment in single-cell-type experiments [18]. The main advantage is
the possibility of using traditional LC/GC-MS-based platforms providing high throughput, optimal
sensitivity, and coverage due to the chromatographic separation. The main limitations are imposed by
the chosen cell sampling technique [24–26]. Some particularly exciting works include applications of
laser microdissection (LMD)-based techniques such as laser microdissection and pressure catapulting
(LMPC) and laser capture microdissection (LCM) [18], as well as fluorescence-activated cell sorting
(FACS) [27].

LMD-based techniques are a great option as they preserve contextual information from spatial cell
distribution. However, they are significantly limited in terms of throughput. LMD is a labor-intensive
technique requiring an experienced operator to harvest the cells [18]. FACS, on the other hand,
provides a high throughput alternative to isolating specific cells. However, the necessity to obtain
single-cell suspensions is far from trivial, considerably affecting the metabolome [28]. Moreover,
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the inherent introduction of perturbations due to cell manipulation by all these techniques is particularly
troublesome when considering the rapid changes of the metabolome with the turnover time of some
metabolites being fractions of a second [29]. Despite these limitations, the recent improvement in data
processing capacity and machine learning algorithms brings exciting advances to fill some of these gaps.
A great example has recently been shown using image analysis algorithms, machine-learning, and
high-throughput microscopy to recognize individual cells in suspensions or tissue and automatically
guide extraction through LCM or micromanipulation in the so-called computer-assisted microscopy
isolation (CAMI) [30]. Similarly, exciting improvements have also been developed for FACS [31].
However, the issues related to obtaining cell suspensions for this technique are likely hard to overcome
and particularly challenging for plant sciences, as discussed below.

4. Mass Spectrometry Imaging (MSI)

MSI is a general term encompassing multiple technologies capable of providing spatially resolved
ionization of samples for mass spectrometry-based metabolite profiling [21,22]. The multiple techniques
essentially provide different tradeoffs related to sample preparation, the lateral resolution of the
ionization spot, degree of fragmentation, and ionization range (m/z). We briefly describe here some
of the most common ionization platforms that we believe cover an attractive complementary space
of features, namely matrix-assisted laser desorption/ionization (MALDI) [32,33], secondary ion
mass spectrometry (SIMS) [34], desorption electrospray ionization (DESI) [35,36], and laser-ablation
electrospray ionization (LAESI) [37] (Figure 3).
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Figure 3. Schematic representation of the different ionization strategies used for mass spectrometry
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ionization (DESI), (D) laser-ablation electrospray ionization (LAESI).

MALDI is the most popular ionization method adaptable to MSI [38]. In MALDI, a matrix applied
to the sample is excited by a laser; this energy is further transferred to the sample resulting in the
ionization event [32,33]. It is particularly good at ionizing large molecules above 500 m/z, often suffering
from matrix interference signals below this mass range [39]. Several groups have developed extensive
work involving MALDI’s application as a platform for MSI with multiple applications into the analysis
of plant samples [22]. Despite limited biologically relevant insights, these works tackle some of
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the main challenges in achieving comprehensive spatially resolved metabolomics, including sample
preparation, the lateral resolution of ionization, and multiplex data acquisition.

Preparation for MALDI usually comprises cryo-sectioning and lyophilizing a frozen sample
embedded in some media before applying the matrix by either a sprayer or solvent-free sublimation [39].
These methods offer an advantage over cell isolation in terms of metabolome integrity whilst also
preserving the relative localization of cells and allowing them to assess the intercellular space [40].
However, the process still lacks significant improvements in throughput. The choice of method
for matrix deposition and its composition are particularly important factors in MALDI ionization.
Comparing traditional spray and solvent-free sublimation methods as an example show that the
former may promote metabolite delocalization, an issue amended by the latter method in the
detriment of other metabolites not being ionized [41]. Moreover, matrix crystalline structure is a
relevant factor limiting lateral resolution [42]. That said, matrix optimization is an active field in
technological developments for MALDI imaging applications [43]. Several works have described
matrix optimization for specific compound classes [44], as well as exciting approaches to expand
the coverage based on derivatizations [45] and post-ionization strategies [46]. Another recent trend
involves using nanoparticles instead of organic matrixes, and it shows promising results for ionizing
the smaller range of metabolites and providing increased spatial resolution [47,48].

MALDI’s lateral resolution is usually in the range of 50–10 µm, even though some reports manage
to achieve numbers as low as 2–5 µm in customized systems [40,49]. Factors limiting resolution
again include the matrix structure and also qualitative aspects of the laser. UV lasers provide higher
resolutions of up to 10 µm. However, they have several disadvantages compared to IR lasers, such as
limitations in matrix absorption [21]. SIMS is an alternative to MALDI that relies on ion beams instead
of a laser to ionize the samples [50]. Such a mechanism results in a more fragmented ionization and
removes the necessity of any matrix and limitations due to laser’s diffraction limit, thus providing
higher reproducibility and resolution below 2 µm [50]. Moreover, SIMS allows for the acquisition of
3D imaging through the use of dual beans. Indeed, all these advantages have been recently combined
in a commercial system that includes the ultra-high resolution of orbitrap analyzers [51].

Despite the advantage of more straightforward sample preparation, SIMS-based platforms’
limitation is the need for samples to be ionized under a high vacuum. A few works try overcoming
such limitations, for instance, via the use of cryogenic orbiSIMS to evaluate semi-volatile organic
compounds that would otherwise be vaporized before ionization [52]. Nevertheless, DESI and LAESI
offer promising alternatives for direct ionization of samples with minimal treatment. In DESI, a solvent
stream originated from an electrospray probe is directed at an angle toward the sample at ambient
pressure, propelling secondary ions to the analyzer [53]. One of the biggest limitations of DESI is
its comparatively low resolution in the order of 100 µm [50]. Finally, LAESI combines laser ablation
followed by post-ionization via an electrospray. A typical resolution is in the order of 200–300 µm;
however, it can reach better resolution than DESI with the additional advantage of ionizing through
multiple layers of tissue [21,54–56].

Despite its many advantages concerning in situ analysis, MSI platforms offer significant challenges
regarding data analysis [57]. As a technique in its infancy, data processing standards, such as
normalization, are still lacking. Indeed, only relatively recently, an open cross-platform data format
was developed [58]. Quantification is also challenging, with few works providing absolute metabolite
levels [59].

5. Spatially Resolved Metabolomics in Plants: Current Status, Challenges, and Future Prospects

The tremendous metabolic diversity that evolved in plants at the level of tissues and organs
makes single-cell metabolomics a suitable tool for investigations targeting these cell-specific
chemical signatures.

To resolve metabolic diversity at a tissue level, spatial single-cell mass spectrometry, performed
alone or in combination with single-cell mass spectrometry, has primarily been applied to plant science
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(Table 1). In Catharanthus roseus, for example, the combination of MSI and single-cell MS provided
evidence of a developmentally driven process that segregates branches of the terpenoid indole alkaloid
(TIA) biosynthetic pathway into specific anatomical structures. As idioblasts and laticifers differentiate
while leaves grow and expand, single-cell MS detected the appearance of new metabolic intermediates
so that an initial draft of the TIA pathway could be written in its completeness once leaves fully
developed [60,61]. From an evolutionary perspective, this is a remarkable discovery as it provides an
additional example of the parallel evolution between biochemical processes and anatomical structures,
which often occurs in plants. In a similarly elegant experiment, Livingston and colleagues used a
combination of different techniques, which included measurements of trichome intrinsic fluorescence
and microcapillary-assisted metabolite extraction followed by GC-MS, UHPLC-MS/MS, and RNA
sequencing analyses, to lay out the developmental trajectories of Cannabis sativa trichomes from
sessile to stalked and the parallel changes occurring in the composition of their metabolites [62].
Questions concerning color pattern formation in flowers have also been answered via MSI. For instance,
a recent study revealed that the deep-blue color of the nectar guides of Viola cornuta petals is due to
the colocalization of the anthocyanin violanin and numerous colorless flavonol 3-O-glycosides [63].
By surrounding violanin, flavonol molecules prevent self-stacking and the consequent shift in the
spectrum of light absorbance [64]. Additionally, they protect the chromophore of violanin from
hydration, hence inhibiting the formation of colorless chalcones.

It is not accidental that the great majority of these studies focused on tissues that accumulate
specialized metabolites in a large abundance and can be relatively easily accessed, such as glandular
trichomes [62,65–67], laticifers [60,68], and floral petals [69–71]. Indeed, as metabolites physiologically
accumulate in these organs and structures, their concentration is already optimized to detect an
MS signal of sufficient quality for the molecular identification of compounds. In all other cases,
to achieve a proper concentration, metabolites must be extracted from a hundred thousand identical
cells. For reasons that we explain below, harvesting such a large number of cells from plant tissues is
extremely labor-intensive, as it emerges when comparisons with similar systems utilized in animal
studies are made.

Animal cell lines established after cell disaggregation from tissues followed by subculturing
usually maintain similar physiological and biochemical characteristics as their organ of origin [72].
As such, immortal animal cell lines, for example, HeLa cells, have been successfully utilized to
investigate metabolic responses to drugs and growth regulators [57]. Indeed, as metabolic changes in
animal cell cultures mirror changes in intact organs, single-cell metabolomics is a powerful system to
predict metabolic trajectories induced by medical treatments [73]. Conversely, plant liquid and solid
(callus) cultures are made of cells in an undifferentiated status maintained with a balanced ratio of
auxins and cytokinins [74]. As plant cell cultures are phenotypically and biochemically very distant
from their differentiated counterparts, methods other than culturing must be adopted to collect a large
number of cells of a specific lineage. Fluorescence-activated cell sorting (FACS) has been successfully
employed to collect a large amount of GFP-tagged lines from plant tissues [27], but FACS applied
to samples destined for the analysis of metabolites is a very challenging procedure. As reagents for
cell protoplasting are potential contaminants of the MS detector and metabolites are prone to fast
degradation, well-established methods that are used to collect RNA from fluorescent-tagged and sorted
cells need further adjustments when applied to single-cell metabolomics [27]. In addition, the spatial
distribution of differentiated cells in plant tissues and the prospect of obtaining protoplasts from these
cells are tremendous limitations to the pursuit of harvesting cells of a single type in an amount that is
sufficient for metabolite analysis. In roots, the continuous development and radial organization of
layered tissues make single-cell collection via FACS relatively easily attainable, as well as facilitating
the interpretation of imaging at a reasonable lateral resolution [75–77]. Conversely, organs that at
maturity show a high degree of anatomical complexity, for example, flowers, are not equally suitable
for such analyses. Not to mention that the process of protoplasting, which removes the cell wall—
an intrinsic component of all plant cells— washes away compounds that cells secrete and deposit in
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the extracellular space. These compounds often have relevant physiological functions, for example,
phenylalanine derivatives which confer protection to fungal pathogens [78]. Therefore, the removal
of the cell wall can make data interpretation difficult, as it may weaken the link between chemical
phenotypes and physiological functions.

These challenges are at least partially resolved when tissues undergoing single-cell analyses
are already composed of a large number of identical cells. Thus, for seeds and grains where cells
with well-defined chemistry spatially cluster to form seed coat, embryo, and endosperm, MSI has
largely been utilized to resolve in situ localization of metabolites. For example, in the oil-seed crops
Camelina sativa and Brassica napus, as well as in Arabidopsis, MSI helped to determine the distribution
of lipids in the embryo of wild-type and transgenic lines [79–83]. In barley and wheat, the spatial
distribution of sugars and proteins between the endosperm and aleurone layer has been the main
object of study [84–86]. Furthermore, in inbreds of maize, amino acids, sugar alcohols, organic acids,
phospholipids, and triacylglycerols were observed within the embryo and radicle [87]. Unicellular
structures and unicellular organisms such as pollen grains, algae, and microalgae (diatoms) represent
another exception. For instance, metabolomics of pollen grains, which are unicellular haploid male
gametophytes, has been performed with the most disparate array of techniques. As a result of
these investigations, the molecular structure and composition of sporopollenin have recently been
unraveled [88,89]. Sporopollenin is an extraordinarily inert and resistant polymer, the acquisition of
which by land plants represents a focal adaptation to life outside water. The spectacular inertness
of sporopollenin toward the most disparate analytical techniques made the search for its molecular
structure hard to obtain, and at the same time, very desirable given the multitude of promising
applications in the fields of material engineering and nanotechnology. Progress has also been made in
the analysis of lipids, proteins, and the mechanisms of accumulation of flavonoid glycosides on the
surface of pollen grains [90–93], as well as the metabolic processes underlying pollen germination and
pollen tube elongation [94]. However, given the complexity of these chemical signals, their physiological
function is not yet fully understood [95]. Finally, we briefly mention here that while collecting abundant
pollen from male microsporangia of gymnosperms is usually easy endeavors, autogamous angiosperms
generally produce a tiny amount of pollen, for which the collection of whole anthers is a necessary step.

In algal research, live single-cell metabolomics helped elucidate the metabolic rearrangements
occurring in response to environmental perturbations such as low nutrient and variation in light
regimes [96–98]. Phytoplankton, which is primarily composed of microalgae and minor amounts of
protists and bacteria, contributes to global biogeochemical cycles of carbon, nitrogen, phosphorus,
and silicate. Therefore, gaining an understanding of the physiological status of phytoplankton cells
holds excellent promises for environmental research. Besides, chemotyping of microalgae via pipelines
that utilize live single-cell MS is currently exploited for taxonomic identification [99]. Despite the
broad applications in environmental research, initial studies on algal metabolomics mostly focused on
the model organism Chlamydomonas reinhardtii because of applications in the biotechnology industry
and biofuel production [100]. In the recent past, metabolomic and transcriptomic approaches have
been extensively utilized to investigate the responses to external determinants of algal growth such as
temperature, light intensity, salinity, and nutrient availability [101,102], while today’s research mostly
shifted toward functional genomic studies that aim at understanding the genetic mechanisms of this
metabolic plasticity [103].

In plants, the application of single-cell MS to functional genomic studies has so far been scant,
although initial studies that employed known Arabidopsis thaliana mutants as a proof of concept showed
great promises [104–106]. More recently, the combination of direct infusion metabolomics and MSI
was used to characterize the signaling pathway of feronia mutants, revealing an interesting phenotype
associated with high levels of oxylipin arabidopsides, and suggesting chloroplastic localization [107].
Other new prospects of single-cell metabolomic applications pertain to research on plant–pathogen
interactions where MSI is currently being utilized to analyze plant metabolites synthesized in response
to pathogens’ infection. Here, initial studies that used to visualize metabolites present on the plant
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surface have further expanded to include analysis of metabolites that accumulate deeper in plant
tissues, which can be seen after tissue fracturing and sectioning [108]. A recent study has shown this
new approach’s relevance when it analyzed transcriptome and metabolome responses of susceptible
and resistant soybean cultivars to aphid infestation. As aphids are insects that feed on phloem sap,
plant metabolites conferring resistance to aphids are expected to be found in the phloem. Conversely,
MSI revealed the accumulation of isoflavones in mesophyll and epidermal cells, suggesting a role for
these compounds in the non-phloem defense response induced by feeding [109]. MSI has also been
used to investigate the distribution of glucosinolates across Arabidopsis leaves and the response of
lepidopterans oviposition to the detected metabolites’ concentrations [59]. In plant–bacteria symbiotic
associations, MSI has been employed to study metabolite distribution in roots and nodules of wild-type
and mutant genotypes of Medicago truncatula [110,111], and more recently of soybean [112,113].

Still, single-cell metabolomics has found very little application in the field of plant developmental
research where the combination of functional genomics and metabolomics holds the promise to
pave the way toward a better understanding of how and to what extent anatomy and metabolism
are mutually coordinated. This is at least partially due to challenges related to sample preparation,
as the presence of abundant water, cell wall, and cuticles make the process laborious in plants [114].
Additionally, the resolution and annotation of metabolites of the central pathway, which accumulate in
lower abundance than specialized metabolites (see above), represent an additional challenge. Similarly,
phytohormones that play crucial roles at the cellular level in the development and environmental
responses are of great interest but challenging to detect even with traditional methods [115]. A work
using the “Live-MS” platform [116] to investigate the response of two phytohormones, ABA and
JA-Ile, have shown promising results being able to detect some of the expected changes. However,
their results also point to limitations of the technique which still suffers from high variability. Finally,
it is worth mentioning that plants primarily utilize hexoses and various sugar polymers for storage,
transport, and organ to organ communication, of which MS annotation is not always easily attainable.
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Table 1. Summary of spatially resolved plant metabolomics works applying mass spectrometry-based platforms described in this review.

Species Technique Cell-Type/Tissue Compounds Reference

Arabidopsis FACS Roots Multiple [27]
Arabidopsis MALDI Leaves Glucosinolates [60]

Catharanthus roseus MALDI and Live-MS Laticifers and idioblasts from leaves TIA [61]
Catharanthus roseus MALDI and Live-MS Laticifers, idioblast, parenchyma, and epidermal cells from stems TIA [62]

Viola cornuta MALDI Petals Flavonoids [64]
Rauvolfia tetraphylla DESI Stem, leaves, root, and fruits Indole alkaloids [69]

Hypericum perforatum DESI Petals and leaves Hyperforin [71]
Datura stramonium DESI Petals and leaves Sugars, atropine, and scopolamine [71]

Maize MALDI Roots Amino acids [76]
Maize MALDI Roots Lipids, sugars, and benzoxazinoid [77]

Glycyrrhiza glabra MALDI Roots Flavonoids and triterpenoids [78]
Camelina sativa MALDI Seed Lipids [80]
Camelina sativa MALDI Seed Lipids [81]
Camelina sativa MALDI Seed Lipids [82]
Brassica napus MALDI Seed Lipids [83]
Arabidopsis MALDI Seed Lipids [84]

Barley MALDI Germinating seeds Multiple [85]
Maize MALDI Germinating seeds Multiple [88]

Lycopodium clavatum SIMS and MALDI Polen Sporopollenin [90]
Poa alpina MALDI Polen Multiple [91]

Arabidopsis MALDI Leaves Oxylipins [108]
Rice MALDI Leaves Multiple [109]

Soybean MALDI Leaves Multiple [109]
Soybean MALDI Leaves Isoflavones [110]

Medicago truncatula MALDI Root nodules Multiple [111]
Medicago truncatula MALDI Root nodules Multiple [112]

Soybean MALDI Root nodules Multiple [113]
Soybean LAESI Root nodules Multiple [114]
Vicia faba Live-MS Leaves Phytohormones [117]
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6. Conclusions and Future Perspectives

There are just over 40 different types of cells described in plant tissues [117]. As most metabolomics
experiments capture data of whole tissues, our knowledge is largely biased toward prevailing cells
such as mesophyll cells in leaves [118] and endosperm in seeds [119,120]. However, several works
highlight the striking differences in cell-specific metabolism and the impact that less recurrent cell
types have in regulating and integrating crucial physiological processes, including transpiration and
photosynthesis [121,122]. Moreover, assessing metabolic heterogeneity across cells belonging to a
tissue has the potential to unravel unforeseen details masked by averaging such populations of cells,
thereby contributing to a deeper understanding of metabolic regulation [6].

Techniques for measuring single-cell metabolites have recently gone through considerable
improvements providing exciting insights into metabolic compartmentalization. Nevertheless, some of
the metabolomics most outstanding achievements rely on high throughput and comprehensive
metabolome coverage. Both parameters are still considerably limited in the current single-cell and
spatially resolved platforms. The many advantages of single-cell profiling described here represent
an enormous potential when applied to large throughput experiments. Single-cell transcriptomics of
different human tissues has recently been utilized to identify Quantitative Trait Loci (QTL) associated
with expression and splicing variants (eQTLs and sQTLs, respectively) affected by the background
genetic variation of different individuals [123]. A similar approach to plant tissues has not yet been
adopted. However, it represents a significant potential if applied to large populations to understand,
among others, the effect of environmental perturbations at a single-cell level.

Improvements in various aspects of mass spectrometry aspects, particularly resolution and
sensitivity, have been instrumental in facilitating the measurement of the spatial distribution of
metabolites through single-cell and MSI platforms. The introduction and broad adoption of other
technologies into metabolomics platforms, such as nanoLC and ion mobility, are likely to play important
roles in further reducing issues concerning limited sample and sensitivity in single-cell metabolomics
and matrix effects in MSI, respectively. Better integration of current technologies with other imaging
platforms such as microscopy also offers a promising way to improve experiments throughput and
information [73].

Finally, as these technologies mature, we can foresee their adoption to even the most challenging
applications in current tissue level metabolomics. A recurrent question that has proven essential
to characterize metabolism is the definition of metabolic fluxes rather than a simple description
of relative metabolite levels as routinely performed [124]. Methods for integrating multi-omics of
single cells are also an exciting boundary to be crossed [125]. We can anticipate considerable hurdles
for generating such datasets. However, this could represent an outstanding means of reducing
experimental complexity while improving the statistical power of systems biology studies.
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DESI Desorption electrospray ionization
FACS Fluorescence-activated cell sorting
GC Gas chromatography
LAESI Laser-ablation electrospray ionization
LC Liquid chromatography
LCM Laser capture microdissection
LMD Laser microdissection
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LMPC Laser microdissection and pressure catapulting
MALDI Matrix-assisted laser desorption/ionization
MS Mass spectrometry
MSI Mass spectrometry imaging
QTOF Quadrupole time-of-flight mass spectrometer
SIMS Secondary ion mass spectrometry
TIA Terpenoid indole alkaloid
UHPLC Ultra-high-performance liquid chromatography
UV Ultraviolet
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Kohler, A.; Kneipp, J. Combining Chemical Information From Grass Pollen in Multimodal Characterization.
Plant Cell 2020, 10. [CrossRef] [PubMed]

91. Grunewald, S.; Marillonnet, S.; Hause, G.; Haferkamp, I.; Neuhaus, H.E.; Veß, A.; Hollemann, T.; Vogt, T.
The Tapetal Major Facilitator NPF2.8 Is Required for Accumulation of Flavonol Glycosides on the Pollen
Surface in Arabidopsis thaliana. Plant Cell 2020, 32, 1727–1748. [CrossRef] [PubMed]

92. Kend̄el, A.; Zimmermann, B. Chemical Analysis of Pollen by FT-Raman and FTIR Spectroscopies.
Front. Plant Sci. 2020, 11. [CrossRef]

93. Wan, X.; Wu, S.; Li, Z.; An, X.; Tian, Y. Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects
of Reproductive Development in Plants. Mol. Plant 2020, 13, 955–983. [CrossRef]

94. Selinski, J.; Scheibe, R. Pollen tube growth: Where does the energy come from? Plant Signal. Behav. 2014,
9, e977200. [CrossRef]

95. Borghi, M.; Fernie, A.R. Outstanding questions in flower metabolism. Plant J. 2020, 103, 1275–1288. [CrossRef]
96. Baumeister, T.U.H.; Vallet, M.; Kaftan, F.; Svatoš, A.; Pohnert, G. Live Single-Cell Metabolomics

With Matrix-Free Laser/Desorption Ionization Mass Spectrometry to Address Microalgal Physiology.
Front. Plant Sci. 2019, 10. [CrossRef] [PubMed]

97. Jaschinski, T.; Helfrich, E.J.N.; Bock, C.; Wolfram, S.; Svatoš, A.; Hertweck, C.; Pohnert, G. Matrix-free
single-cell LDI-MS investigations of the diatoms Coscinodiscus granii and Thalassiosira pseudonana.
J. Mass Spectrom. 2014, 49, 136–144. [CrossRef] [PubMed]

98. Sun, M.; Yang, Z.; Wawrik, B. Metabolomic Fingerprints of Individual Algal Cells Using the Single-Probe
Mass Spectrometry Technique. Front. Plant Sci. 2018, 9. [CrossRef] [PubMed]

99. Baumeister, T.U.H.; Vallet, M.; Kaftan, F.; Guillou, L.; Svatoš, A.; Pohnert, G. Identification to species level
of live single microalgal cells from plankton samples with matrix-free laser/desorption ionization mass
spectrometry. Metabolomics 2020, 16, 28. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/tpj.12278
http://www.ncbi.nlm.nih.gov/pubmed/23808562
http://dx.doi.org/10.1104/pp.16.01865
http://dx.doi.org/10.1038/s41598-017-06838-0
http://dx.doi.org/10.1104/pp.16.01705
http://dx.doi.org/10.1016/j.bbalip.2016.11.012
http://dx.doi.org/10.1371/journal.pone.0150208
http://dx.doi.org/10.1105/tpc.111.087015
http://dx.doi.org/10.1016/j.jcs.2019.102869
http://www.ncbi.nlm.nih.gov/pubmed/32089586
http://dx.doi.org/10.1104/pp.17.00652
http://www.ncbi.nlm.nih.gov/pubmed/28634228
http://dx.doi.org/10.1038/s41477-018-0330-7
http://www.ncbi.nlm.nih.gov/pubmed/30559416
http://dx.doi.org/10.1002/rcm.8740
http://www.ncbi.nlm.nih.gov/pubmed/32003875
http://dx.doi.org/10.3389/fpls.2019.01788
http://www.ncbi.nlm.nih.gov/pubmed/32082348
http://dx.doi.org/10.1105/tpc.19.00801
http://www.ncbi.nlm.nih.gov/pubmed/32156687
http://dx.doi.org/10.3389/fpls.2020.00352
http://dx.doi.org/10.1016/j.molp.2020.05.009
http://dx.doi.org/10.4161/15592324.2014.977200
http://dx.doi.org/10.1111/tpj.14814
http://dx.doi.org/10.3389/fpls.2019.00172
http://www.ncbi.nlm.nih.gov/pubmed/30833957
http://dx.doi.org/10.1002/jms.3316
http://www.ncbi.nlm.nih.gov/pubmed/24677306
http://dx.doi.org/10.3389/fpls.2018.00571
http://www.ncbi.nlm.nih.gov/pubmed/29760716
http://dx.doi.org/10.1007/s11306-020-1646-7
http://www.ncbi.nlm.nih.gov/pubmed/32090296


Int. J. Mol. Sci. 2020, 21, 8987 16 of 17

100. Bölling, C.; Fiehn, O. Metabolite Profiling of Chlamydomonas reinhardtii under Nutrient Deprivation.
Plant Physiol. 2005, 139, 1995–2005. [CrossRef] [PubMed]

101. Lee, D.Y.; Park, J.-J.; Barupal, D.K.; Fiehn, O. System response of metabolic networks in Chlamydomonas
reinhardtii to total available ammonium. Mol. Cell Proteom. 2012, 11, 973–988. [CrossRef]

102. Schreiber, F.; Ackermann, M. Environmental drivers of metabolic heterogeneity in clonal microbial
populations. Curr. Opin. Biotechnol. 2020, 62, 202–211. [CrossRef]

103. Krismer, J.; Tamminen, M.; Fontana, S.; Zenobi, R.; Narwani, A. Single-cell mass spectrometry reveals the
importance of genetic diversity and plasticity for phenotypic variation in nitrogen-limited Chlamydomonas.
ISME J. 2017, 11, 988–998. [CrossRef]

104. Cha, S.; Song, Z.; Nikolau, B.J.; Yeung, E.S. Direct Profiling and Imaging of Epicuticular Waxes on Arabidopsis
thaliana by Laser Desorption/Ionization Mass Spectrometry Using Silver Colloid as a Matrix. Anal. Chem.
2009, 81, 2991–3000. [CrossRef]

105. Günl, M.; Neumetzler, L.; Kraemer, F.; de Souza, A.; Schultink, A.; Pena, M.; York, W.S.; Pauly, M.
AXY8 Encodes an α-Fucosidase, Underscoring the Importance of Apoplastic Metabolism on the Fine
Structure of Arabidopsis Cell Wall Polysaccharides. Plant Cell 2011, 23, 4025–4040. [CrossRef]

106. Korte, A.R.; Song, Z.; Nikolau, B.J.; Lee, Y.J. Mass spectrometric imaging as a high-spatial resolution tool for
functional genomics: Tissue-specific gene expression of TT7 inferred from heterogeneous distribution of
metabolites in Arabidopsis flowers. Anal. Methods 2012, 4, 474–481. [CrossRef]

107. Hansen, R.L.; Guo, H.; Yin, Y.; Lee, Y.J. FERONIA mutation induces high levels of chloroplast-localized
Arabidopsides which are involved in root growth. Plant J. 2019, 97, 341–351. [CrossRef] [PubMed]

108. Klein, A.T.; Yagnik, G.B.; Hohenstein, J.D.; Ji, Z.; Zi, J.; Reichert, M.D.; MacIntosh, G.C.; Yang, B.; Peters, R.J.;
Vela, J.; et al. Investigation of the Chemical Interface in the Soybean–Aphid and Rice–Bacteria Interactions
Using MALDI-Mass Spectrometry Imaging. Anal. Chem. 2015, 87, 5294–5301. [CrossRef] [PubMed]

109. Hohenstein, J.D.; Studham, M.E.; Klein, A.; Kovinich, N.; Barry, K.; Lee, Y.-J.; MacIntosh, G.C. Transcriptional
and Chemical Changes in Soybean Leaves in Response to Long-Term Aphid Colonization. Front. Plant Sci.
2019, 10. [CrossRef] [PubMed]

110. Gemperline, E.; Jayaraman, D.; Maeda, J.; Ané, J.-M.; Li, L. Multifaceted investigation of metabolites during
nitrogen fixation in Medicago via high resolution MALDI-MS imaging and ESI-MS. J. Am. Soc. Mass Spectrom.
2015, 26, 149–158. [CrossRef]

111. Ye, H.; Gemperline, E.; Venkateshwaran, M.; Chen, R.; Delaux, P.-M.; Howes-Podoll, M.; Ané, J.-M.; Li, L.
MALDI mass spectrometry-assisted molecular imaging of metabolites during nitrogen fixation in the
Medicago truncatula–Sinorhizobium meliloti symbiosis. Plant J. 2013, 75, 130–145. [CrossRef]
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