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Abstract

Over the last two decades, intrinsically disordered proteins and protein regions (IDRs) have 

emerged from a niche corner of biophysics to be recognized as essential drivers of cellular 

function. Various techniques have provided fundamental insight into the function and dysfunction 

of IDRs. Among these techniques, single-molecule fluorescence spectroscopy and molecular 

simulations have played a major role in shaping our modern understanding of the sequence-

encoded conformational behavior of disordered proteins. While both techniques are frequently 

used in isolation, when combined they offer synergistic and complementary information that 

can help uncover complex molecular details. Here we offer an overview of single-molecule 

fluorescence spectroscopy and molecular simulations in the context of studying disordered 

proteins. We discuss the various means in which simulations and single-molecule spectroscopy 

can be integrated, and consider a number of studies in which this integration has uncovered 

biological and biophysical mechanisms.

1. Introduction

A structure-centric perspective has dominated our models of molecular function since the 

first folded proteins were visualized over 60 years ago [1–4]. Despite this, over a third of 

the eukaryotic proteome consists of regions or entire proteins that do not adopt a stable 

structure but instead sample a conformationally heterogeneous collection of structurally 

distinct states referred to as a conformational ensemble (Fig. 1) [5–8]. These intrinsically 

disordered proteins and protein regions (collectively referred to hereafter as IDRs) play a 

wide variety of roles that are critical for biological function [9–11]. As a result, the classical 

view that protein function is determined by folded proteins has expanded to recognize that 

function is driven by the combination of structure, conformation, and dynamics. There exists 

a continuum of structural heterogeneity, with well-folded hyper-stable proteins at one end 

and heterogeneous disordered regions at the other (Fig 1) [12]. While well-folded proteins 

lend themselves to various functions, including mechanical strength or enzymatic activity, 
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disordered proteins are ideally suited for molecular recognition or biological self-assembly 

[9,13]. It is this repertoire of conformational plasticity that provides cells with a complex 

molecular toolkit, through which adaptive and responsive function can be encoded.

The three-dimensional structure of a folded domain is encoded by its primary sequence, 

an observation that has generally been referred to as the sequence-to-structure relationship 

[15–17]. Although IDRs do not adopt a set three-dimensional structure, they are far from 

“featureless random noodles.” As such, an analogous sequence-to-ensemble relationship 

exists for IDRs in which the amino acid sequence of an IDR determines the conformational 

biases associated with its ensemble [10,18,19]. Just as the last four decades have focused 

immense attention on understanding the physical principles that map sequence to structure, 

the same types of questions are now being asked of disordered regions. Beyond merely 

an exercise in understanding physical chemistry, the conformational biases in IDRs are a 

central determinant of their biological function [20–24]. As such, our ability to interpret 

IDR function rests at least partially on how well we understand their sequence-encoded 

conformational biases and transient structure.

A major challenge in studying conformational behavior in IDRs is posed by the structural 

heterogeneity and rapid dynamics associated with their ensembles. Due to the absence of 

a standard ‘reference’ structure, techniques such as X-ray crystallography are inherently 

limited in their ability to provide molecular information in the context of IDRs. Similar 

limitations can be extended to cryogenic electron microscopy (cryoEM), where class 

averaging across multiple particles is often limited to a few conformational subsets. While 

various techniques have been instrumental in elucidating the conformational behavior of 

IDRs, single-molecule fluorescence spectroscopy and all-atom simulations have played 

essential roles in contributing to our understanding of IDR conformational behavior and 

IDR dynamics. In this review, we focus on how combining single-molecule fluorescence 

spectroscopy and computational methods can provide quantitative and complementary 

insights into the solution state behavior of IDRs.

Single-molecule fluorescence spectroscopy offers a high-resolution readout of molecular 

behavior, making it ideal for investigating the complexities and heterogeneity of 

disordered proteins [25–27]. Specifically, single-molecule fluorescence spectroscopy enables 

measurements of intra- and inter-chain distances and protein dynamics with high temporal 

and spatial resolution. Paired with an understanding of the physics that underlie protein 

interactions, single-molecule approaches can be used to dissect the molecular mechanisms 

that drive protein behavior, dynamics, and binding. As an example, fluorescence correlation 

spectroscopy (FCS) allows the diffusion coefficient of an IDR to be measured, from which 

the overall hydrodynamic radius of the protein can be estimated. Single-molecule Förster 

Resonance Energy Transfer (smFRET) provides a molecular ruler to quantify intramolecular 

distances within the protein [27–29], which can be directly tied to fundamental descriptors 

of polymer physics.

Finally, many single-molecule fluorescence approaches provide access to protein dynamics, 

over a broad range of times, from nanoseconds to hundreds of seconds, depending on 

the method of choice. Readouts of protein dynamics are often essential for adequately 
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interpreting measured transfer efficiencies in smFRET experiments, particularly when 

discriminating whether a population reflects a static or dynamic conformation. More 

generally, experimentally-derived molecular dynamics offer an additional lens through 

which perturbations to an IDR (mutation, binding partners, solution changes) can be 

examined.

Molecular simulations include a robust set of tools that provide structural insight at 

an effectively infinite spatial resolution [30–33]. By generating large conformational 

ensembles, protein conformation and dynamics can be directly assessed (in the case of 

molecular dynamics), or ensemble-averaged properties can be computed (in the case of 

molecular dynamics and Monte Carlo simulations). Essentially any property that can 

be derived from the collection of conformations can be calculated, offering a window 

into a wide array of molecular information. Of particular relevance in the context of 

disordered proteins, all-atom simulations are especially well-poised to enable a structural 

interpretation of experimental data as a function of some perturbations, such as mutations, 

post-translational modification, and changes in solution properties such as temperature, ion 

concentrations, or pH. [20,34–40].

Single-molecule fluorescence spectroscopy and all-atom simulations are highly 

complementary. Both techniques can, in principle, provide information at the resolution of a 

single molecule and do so at high temporal resolution. As such, the types of information 

available from single-molecule fluorescence spectroscopy and all-atom simulations are 

simultaneously overlapping, yet the assumptions and limitations are inherently orthogonal. 

As such, results from simulations can help interpret measurements made by single-molecule 

fluorescence spectroscopy, and vice versa.

The remainder of this review is laid out as follows. We provide a brief description 

of all-atom simulations and single-molecule fluorescence spectroscopy approaches used 

in the context of disordered proteins. We discuss theoretical approaches through which 

results from simulations and experiments can be formally integrated. We then consider 

specific examples in which simulation and experiment have been integrated to provide 

complementary insight. Finally, we conclude by summarising the outstanding questions and 

challenges.

2. Materials and Methods

2.1 Overview of all-atom simulations

Molecular simulations represent a large class of methods in which one or more molecules 

are explicitly described in terms of their spatial coordinates and their associated chemical 

and physical properties. All physics-based molecular simulations require two different 

components: a representation scheme and an update scheme.

The representation scheme reflects how a biomolecule is described within a simulation 

framework. This is typically achieved using a force field – a collection of equations, 

reference values, and rules that converts each three-dimensional conformation of a protein 

into a potential energy value [41,42]. The granularity of a representation scheme reports 
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on the degrees of freedom that are explicitly encoded within that scheme (Fig. 2). We 

broadly categorize all-atom simulations here as those in which every biomolecule in the 

system is represented with atomistic detail, providing a one-to-one mapping between a 

simulated and real molecule. This would include representations that encode implicit and 

explicit hydrogens, given in both cases a clear mapping between a given biomolecule and 

atomic position are present. Commonly used modern forcefields that have shown good 

agreement in the context of disordered proteins include Amber ff03w, Amber ff03ws, 

Amber ff99SBws, a99SB-disp, DES-Amber, Amber ff99SBws-STQ, CHARMM36m, and 

the ABSINTH implicit solvent model [43–51].

In contrast to all-atom simulations, coarse-grained simulations sacrifice accuracy for a 

reduced number of degrees of freedom, facilitating larger, longer, and faster simulations. 

Disordered proteins have been well-described by a range of different coarse-grained models, 

including ultra-coarse-grained models, one-bead-per residue models, or mixed-resolution 

models [52–65]. While coarse-grained simulations have had remarkable success in capturing 

conformational behavior in disordered proteins, here we focus on all-atom simulations [66–

71].

Not only must the protein of interest be represented, so too must the solution environment. 

The solvent can be represented using an explicit solvent model (in which water is described 

as individual molecules) or an implicit solvent (in which the solvation effects are ‘felt’ 

by the molecules through a mean-field interaction) [72]. Explicit solvents are generally 

computationally expensive but benefit from directly capturing information related to the 

local solvent structure. While implicit solvents sacrifice molecular detail, the performance 

enhancement by reducing the number of atoms in the system by 90–99% is substantial. In 

the context of disordered proteins, the strength of attractive protein-water interactions has 

been the subject of substantial investigation, and may be one of the most important factors 

that determines forcefield accuracy in the context of disordered proteins [46,47,50,73,74].

The update scheme reflects how the molecules defined by the representation scheme evolve 

as the simulation proceeds. In Molecular Dynamics (MD) simulations, the update scheme 

converts changes in energy with respect to the atomistic position into force [41,75,76]. 

This force dictates the evolution of the system through a series of timesteps in which new 

forces are calculated and used to alter the velocity of each atom in a sequential manner. 

MD simulations can be used to obtain both ensemble-average values for observables of 

interest (e.g., end-to-end distance, the radius of gyration, local transient structure) as well as 

information on chain dynamics [39,44,77,78].

Monte Carlo (MC) simulations differ from MD simulations with respect to the update 

scheme. For MC simulations, changes to the protein conformation are made in a series of 

Monte Carlo steps [79]. During each step, i) a random perturbation (move) to the system 

is applied, leading to a temporary change in protein conformation ii) the potential energy 

associated with the new conformation is calculated, and iii) the new conformation is either 

accepted or rejected depending on the change in energy compared to an acceptance criterion. 

Typically Monte Carlo moves include rigid body moves (e.g., translation or rotation of a 

molecule of interest), local moves that act on a single degree of freedom (e.g., a single 
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dihedral angle rotation or bond stretching), or more complex moves that perturb several 

degrees of freedom simultaneously (e.g., in the context of concerted pivot moves or moves 

to perturb systems in specific ways [80–84].)

The acceptance criterion determines how moves are accepted or rejected. The most 

commonly used criterion here is Metropolis-Hastings, and when combined with an ergodic 

moveset that maintains detailed balance, this approach ensures that the collection of 

conformations generated sample the canonical (NVT) distribution [85,86]. Standard MC 

simulations cannot provide information on chain dynamics as there is no time component 

involved in the update scheme. However, if well-sampled ensembles are generated, 

equilibrium distributions of various ensemble properties such as global dimensions, average 

distances between residues, or transient structure can be obtained [24,35,87].

2.2 Limitations of all-atom simulations

There are several caveats associated with the interpretation of intrinsically disordered 

proteins with all-atom simulations. One area that has received considerable attention is 

that of force field accuracy [44,50,74,88]. Obtaining the correct balance of attractive and 

repulsive atomic interactions and dihedral angle distributions is an inherently challenging 

problem. For IDRs in particular, small inaccuracies can have a substantial impact on 

the final conformational ensemble due to the metastable nature of residual structure in 

IDRs. Many standard force fields lead to over-compaction of IDRs, influencing both 

final ensemble behavior and introducing local kinetic traps that can impair conformational 

sampling [46,47,88]. There has been a substantial effort over the last decade to address this 

challenge with IDRs in mind, with notable work from several key players including Best, 

Mittal, and Piana on this challenging problem [31,43–50,73,74,88–91].

A related but distinct challenge is that of conformational sampling. The heterogeneous 

conformational landscape of an IDR means that the total number of energetically accessible 

conformations is vast - much larger than there are for the same folded protein. Given 

conformational rearrangement takes time, there is a real and practical challenge in that for 

MD simulations, adequate sampling in unbiased simulations will typically require many 

microseconds of simulation time, even in the best-case scenario where there are no kinetic 

traps. Unfortunately, this requirement is often forgotten, with simulations run as a single 

replica for just a few hundred nanoseconds. These simulations can inherently only explore a 

small slice of conformational space and will inevitably lead to biased or noisy conclusions.

As mentioned above, simulations of IDRs also often experience “kinetic” traps - long-lived 

metastable states that impede conformational exploration. Both MD and MC simulations can 

suffer from these metastable states (Fig. 3). In the context of MC simulations, structurally-

cooperative energetic minima raise a specific challenge, whereby the probability of the 

specific move(s) necessary for escape becomes vanishingly small. In the context of MD 

simulations, large energetic barriers between distinct states can yield slow conformational 

rearrangements that lead to locally trapped states domination ensembles. Even long MD 

or MC simulations may only sample a small region of phase space due to spending large 

fractions of simulations in a single state. In both cases, local conformational traps can lead to 

disparate levels of conformational sampling along a single polypeptide, with locally trapped 
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structural ‘nuggets’ that may give the illusion of good sampling. All told, substantial care 

should be taken when assessing ensembles for goodness of sampling [92,93].

2.3 Single-molecule Förster Resonance Energy Transfer

Förster Resonance Energy Transfer (FRET) is a non-radiative energy transfer that can occur 

when the emission band of one fluorophore (the donor) overlaps in part with the absorption 

band of the other fluorophore (the acceptor), and the two fluorophores are in proximity to 

one another. FRET provides a spectroscopic ruler to measure distances between specific 

positions on a molecule of interest [94], such as a disordered protein (Fig. 4a). As derived by 

Förster, the rate of energy transfer, denoted here as kFRET, is dependent on the sixth power 

of the distance r between the two fluorophores [95],

kFRET(r) = kD
R0
r

6
(1)

Here kD is the inverse of the fluorescence lifetime of the intrinsic donor lifetime τD (i.e., in 

the absence of the acceptor) and R0 is the Förster radius,

R0
6 = 9000(ln10)k2QDJ

128π5n4NA
(2)

where QD is the fluorescence quantum yield of the donor, n is the refractive index of the 

solution, J is the spectral overlap integral, NA is Avogadro’s constant, and κ is the dipole 

orientation factor which reports on the relative orientation of the dyes.

The efficiency of the energy transfer E(r) can be computed by comparing the rate of the 

transfer kFRET with the other radiative and non-radiative relaxation rates (in the absence of 

acceptor) from the excited state to the ground state of the donor, krad and knrad,

E(r) = kFRET(r)
kFRET(r) + krad + knrad

= R0
6

R0
6 + R6 (3)

using Eq. 1 and the fact that krad + krnad = kD.

In single-molecule experiments, the transfer efficiency can be measured by comparing the 

number of acceptor photons nA over the total number of acceptor (nA) and donor (nD) 

photons,

E(r) = nA
nA + nD

(4)

or by measuring the change in the lifetime of the donor in the presence and absence of the 

acceptor,

E(r) = 1 − τDA(r)
τD

(5)
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where

τDA(r) = kFRET(r) + krad + krnad
−1 (6)

It is important to note that only a small number of photons are detected in a typical 

experiment. The low number of photons is determined by the relatively long interval 

between the detection of two consecutive photons (interphoton time), which is largely 

due to the fluorophores being trapped in long-lived dark states (e.g., triplets state on the 

microsecond timescale) after excitation. Therefore, the measurement of transfer efficiencies 

is affected by shot-noise [96]. This means that, even when measuring a rigid distance across 

a folded domain where one single transfer efficiency is expected, a distribution of transfer 

efficiencies will be determined, and the mean and width of the distribution can usually be 

extracted.

The mean value of a shot-noise limited distribution reports on the configuration of the chain. 

For a rigid protein, this will coincide with a single distance as follows from Eq. 3. For 

IDRs, this mean value reports on the average value of transfer efficiency across the multiple 

conformations of the protein, and the factors that determine the average transfer efficiency 

are detailed below.

The width of a shot-noise limited distribution depends on the average total number of 

detected photons according to,

σsℎot − noise = E (1 − E ) 1/N ≤ E (1 − E )/NT (7)

where ⟨1/N⟩ is the average of the inverse number of photons in a burst and NT is the 

minimum number of photons in a burst (usually determined as acceptance threshold for 

burst identification) [97]. This implies that to determine whether a single population in the 

transfer efficiency distribution represents a static, rigid distance (as for folded domains) or a 

dynamic, flexible polymer (as for IDRs), an orthogonal measure is required. Particularly 

helpful in this context are measurements that report on chain dynamics, and many 

single-molecule fluorescence approaches provide access to protein dynamics, including 

the analysis of transfer efficiencies vs. fluorescence lifetimes, transfer efficiencies vs. time 

binning, burst variance [98], the use of Probability Distribution Analysis (PDA) [99–101], 

and analysis of photon trajectories of immobilized molecules [23,102–107].

Since the measured transfer efficiency is an average of a given interval of time, the 

measured dynamics will reflect the conformational changes occurring on the characteristic 

timescale of observation. The diffusion time of molecules in the confocal volume and the 

camera detection rate in TIRF microscopy set an intrinsic timescale of reference for the 

corresponding measurements, usually in the range of milliseconds. Another timescale is 

given by the time-data bin used to analyze the data. There are no special limitations in 

the range of binning times that can be applied besides the intrinsic limitations due to the 

detection rate, whether related to the acquisition rate of the instrument (e.g., camera frame 

rate) or to the emission rate of the fluorophores (e.g., only a limited number of photons 

are observed in freely diffusing molecules). However, the choice of bin width dictates the 
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averaging of FRET information over the selected time range. As a tangible example of what 

this assumption can mean, let us assume the case of two different conformational states with 

distinct conformations. When exchange dynamics are slower than the binning time, the two 

states will appear as separated peaks with distinct mean transfer efficiencies and widths. 

When dynamics are faster than the binning time, the transfer efficiencies associated with 

the two states will be averaged out together, giving rise to a single population. When using 

intermediate binning times, a partial averaging of the two populations occurs. Therefore, 

analysis of transfer efficiency histograms as a function of time binning can provide insights 

on conformational changes and dynamics [103,108,109].

When the distribution of transfer efficiencies is broader than shot-noise, Photon Distribution 

Analysis (PDA) can provide insights into the underlying populations as well as 

interconversion between different states [99–101]. The method appears to be more sensitive 

to interconversion occurring between 0.01 and 10 times of the burst duration [110]. Whereas 

PDA considers the differences in transfer efficiency among all the detected molecules, 

Burst Variance Analysis (BVA) quantifies how the transfer efficiency changes inside each 

molecule (burst) over time [98]. Consequently, BVA provides a measure of dynamics on 

timescale longer than the minimum binning of photons required to compute the transfer 

efficiency variance within the burst. Analysis of the photon trajectory with maximum 

likelihood methods do not require time binning and can provide access to fast dynamics 

(up to the microsecond timescale) by studying the statistics of detected photons [111].

Another intrinsic timescale in single-molecule measurements is the fluorescence lifetime of 

the fluorophore, which is typically in the nanosecond range. Therefore, contrasting the donor 

lifetime in the presence of the acceptor (Eq. 5) with the transfer efficiency determined from 

the number of acceptor and donor photons detected in a burst (Eq. 4) provides a useful test 

for the occurrence of fast dynamics compared to the burst duration. Indeed, Eq. 5 provides 

information on the transfer efficiency adopted by the system on the lifetime timescale [112–

115]. Instead, Eq. 4 computes transfer efficiencies from the number of donor and acceptor 

photons detected in a burst and, therefore, probes the transfer efficiency on the timescale 

associated with burst duration (or with the data binning time). The burst duration of freely 

diffusing species is commonly on the millisecond timescale. In the case of a rigid distance, 

we expect an identical transfer efficiency on the nanosecond and millisecond timescale 

probed by lifetime and bursts, respectively, as indicated by the linear relation between the 

two terms in Eq. 4 and 5. As a result, the measured static distribution should fall on the 

corresponding predicted linear trend. A deviation from this linear behavior is expected when 

the molecule of interest samples a broad conformational ensemble on a timescale longer 

than nanoseconds but shorter than milliseconds, as in the case of many IDRs [111,116,117]

τDA/τD = 1 − E + σ2

1 − E (8)

where σ represents the variance of transfer efficiency due to fluctuations in the donor-

acceptor distance.
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A similar dependence can also be found when studying the characteristic delay acceptor 

emission [111]. If we denote P(r) as the distribution of conformations adopted by the 

interdye distance and we assume the interdye dynamics are slower than the dye tumbling 

but significantly faster than the interphoton times, we can compute the average τDA from the 

dynamic distribution as defined by,

τDA = ∫
0

∞
tI(t)dt/∫

0

∞
I(t)dt (9)

where I(t) is the time-dependent fluorescence intensity and is given by [115],

I(t) = I0∫
0

∞
P (r)e−t/τDA(r)dr (10)

By integrating over the distance r, Eq. 10 assumes that the lifetime decay occurs faster than 

the conformational change in r as sampled by the distribution of distances given by P(r).

The corresponding mean transfer efficiency is computed as,

E = ∫
0

lc
E(r)P (r)dr (11)

where lc is the contour length between the dyes if the protein segment was fully extended.

Dye orientation is commonly described in terms of a parameter defined as κ, with the typical 

result of “κ2 = ⅔” for isotropic orientation of the fluorophores[25,27]. This is commonly 

valid if the dye tumbling is faster than the protein dynamics. However, if the dynamics of 

the protein are instead much faster than the tumbling of the dyes, the relative orientation of 

the dyes becomes coupled to the transfer efficiency. Under this regime, the mean transfer 

efficiency is given by the combination of the distribution of distances sampled by the protein 

and of k sampled by the fluorophores with the transfer efficiency dependence of distance 

and k:

E = ∫
0

4∫
a

lc
E r, κ2 P (r)p κ2 drdκ2 (12)

where a is contact radius between the dyes, P(r) is the inter-dye probability distribution as 

described previously, E(r, κ2) is the transfer efficiency dependence on κ is as given by,

E r, κ2 = 1 + 2
3κ2 r/R0

6
(13)

and the probability distribution p(κ2) is given by:

p κ2, 0 ≤ κ2 ≤ 1 = 1
2 3κ2 ln(2 + 3) (14)

and,
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p κ2, 1 ≤ κ2 ≤ 4 = 1
2 3κ2 ln 2 + 3

κ2 + κ2 − 1
(15)

Analogously, if the chain dynamics are faster or comparable to the fluorescence lifetime, the 

energy transfer rate will depend on the distribution of states sampled by labeled molecules,

E = ∫
a

lc
R0/r 6P (r)dr/ 1 + ∫

a

lc
R0/r 6P (r)dr (16)

where, as before, lc is the contour length of the chain and a the dye-dye contact radius.

Experimentally, time-resolved lifetime and anisotropy measurements can provide 

information on the tumbling rate of the fluorophores [118], and more extensive discussion 

of the influence of the different timescales at play on transfer efficiency histograms can be 

found in the fundamental works of Gopich and Szabo [96,97,112,119].

Finally, the functional form of the inter-dye probability distribution P(r) is typically 

approximated using simple polymer models or inferred from molecular simulations. While 

the mean transfer efficiency can be used to constrain the mean value of the distribution, the 

variance of transfer efficiency fluctuations σ can be used as a further constraint [120] for the 

distribution given that,

σ2 = ∫
0

∞
E(r)2P (r)dr − E 2

(17)

Various closed-form analytical and numerical models have been applied to describe FRET 

data, including the freely jointed (or Gaussian) chain, worm-like chain, and the self-avoiding 

walk [27,121–124]. Popularity of these models is largely due to the fact that they rely on 

single fitting parameters, enabling association of the mean transfer efficiency with a mean 

square distance, persistence length, or excluded volume term. While the worm-like chain 

and self-avoiding walk distributions provide descriptive parameters to capture excluded 

volume effects (and repulsive interaction in general), more advanced polymer models are 

required to capture the transition from good to poor solvent often observed by tuning 

solution conditions (e.g., denaturant), temperature, or by altering the sequence [125–129]. 

Ziv et al. adapted the coil-to-globule theory of Sanchez, introducing a conversion factor 

between the mean radius of gyration and the corresponding distribution of end-to-end 

distances [121,130,131]. More recently, by comparing single-molecule FRET and small-

angle X-ray scattering (SAXS) data with simulations, Zheng et al. have proposed an 

empirical adaptation of the self-avoiding walk distance distribution that depends on the 

solvent quality through the scaling exponent ν [120,132]. These polymer models have been 

employed extensively to study disordered and unfolded proteins in many different contexts, 

where they have shown remarkable success [34,35,133–136].
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2.4 Fluorescence correlation spectroscopy

Fluorescence correlation spectroscopy (FCS) is a powerful complementary tool to smFRET 

that measures the correlations of fluorescence fluctuations caused by diffusion and dynamics 

of labeled molecules as well as other photophysical effects [137–141]. This correlation can 

be computed as,

G(τ) =
I(t)I(t + τ) t

I(t) t
2 (18)

where ⟨...⟩t represents the average over all measured times, τ is the lag time at which the 

correlation is computed, and I(t) and I(t + τ) is the fluorescence intensity at times t and (t+τ).

When applied to single-photon counting measurements, the expression in Eq. 18 can be 

interpreted as the joint probability of observing a photon at time t and (t + τ) compared to 

the joint probability of observing two photons at any time,

G(τ) = p(pℎoton at t and t + τ)
p(pℎoton at any t)2 (19)

Eq. 19 provides an intuitive way to understand how the correlation decays of FCS relates 

to molecular diffusion through the confocal volume or other physical properties. If the lag 

time is shorter than the average residence time of a molecule in the confocal volume, the 

joined probability of observing two photons that are separated by that given lag time will 

be high since they are emitted by the same molecule. When the lag time increases and 

approaches the average residence time of the molecule in the confocal, the decrease in the 

joined probability reflects the increased probability of the emitting molecule exiting the 

confocal volume without being immediately replaced by a new one. Ultimately, if the lag 

time is much longer than the average residence time of the molecule, the joined probability 

of observing two photons at times t and (t + τ) will be identical to the probability of 

observing two photons at any time. Therefore, for very long lag times, the correlation (as 

described by Eq. 18 and Eq. 19) tends to unity. The same reasoning can be applied to 

understand the correlation decay connected to photophysical effects that result in dark states 

(e.g., quenching or triplet states).

To better understand the properties of the correlation function, we can express the intensity 

as,

I(t) = ∑j ij(t) + Ibg(t) (20)

with ijand Ibg being the intensity of a single fluorophore and the background intensity at 

time t, respectively. Under this description, the correlation function from Eq. 18 adopts the 

form,

G(τ) =
N i(t)i(t + τ) t + N(N − 1) i(t) t

2 + 2N Ibg(t) t + Ibg(t) t
2

N2 i(t) t
2 (21)
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Assuming that ⟨ Ibg(t) ⟩t has a negligible contribution compared to other quantities, Eq. 21 

reduces to,

G(τ) ≃
i(t)i(t + τ t

N i(t) t
2 + 1 (22)

where the amplitude of the correlation clearly depends on the inverse of the average 

number of molecules Nobserved in the confocal volume. As implied by Eq. 22, FCS is 

not exclusively restricted to the single-molecule regime and is often applied in conditions 

under which multiple molecules diffuse through the confocal volume. Importantly, when 

measurements are performed at sufficiently low concentrations of N molecules, the 

background term may contribute to the correlation amplitude and, if not accounted for, 

can affect a proper determination of N. Importantly, the ability to function at extremely 

low concentrations makes FCS an ideal technique in the context of IDRs that are prone to 

undergo self-assembly [142,143].

Nanosecond FCS (nsFCS) extends conventional FCS to sub-microseconds timescales 

by distributing photons across multiple detectors. The application of multiple detectors 

circumvents the intrinsic limitations (deadtime after pulse) that affect the correlation on 

individual detectors. Access to the sub-microsecond timescales allows the assessment of 

the contribution of static quenching (e.g., caused by dye-residues and dye-dye stacking), 

protein dynamics, and other photophysical effects [134,144,145]. Of particular interest 

in the context of IDRs is the application of nsFCS to provide an estimate of chain 

conformational dynamics. ns-FRET-FCS provides a measure of the protein dynamics 

through the characteristic correlated relaxation in the donor-donor and acceptor-acceptor 

correlations and the anti-correlated relaxation of the donor-acceptor cross-correlation. The 

anti-correlated decay directly reflects the anticorrelated intrinsic nature of FRET, where an 

increase in acceptor emission corresponds to a decrease in the donor emission and vice 

versa. When performed at the single-molecule level in a subpopulation specific way, the 

amplitude of the dynamic component (in the absence of quenching) of the correlation is 

directly related to the variance of transfer efficiency fluctuations in the solution, according to 

[146,147],

Cij(τ) = Aij 1 − cABe−τtτAB 1 − cTe−τtτT 1 − cb
ije−τττCD (23)

withi, j = A, D, cb
DD = σ2

E 2, cb
AA = σ2

1 − E 2, cb
AD = σ2

E 2 1 − E 2

Here, Aij is an amplitude component related to the number of fluorescent molecules in the 

confocal volume, cAB is the antibunching amplitude, τ is the lag time between the two 

detected photons, τAB is the correlation time of the antibunching component, cT is the 

amplitude of the triplet component, τT is the correlation time of the triplet component, and 

τb is the correlation time associated with chain dynamics.
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It is important to stress that the relaxation time τb of these three correlations represents a 

FRET-filtered value of the real reconfiguration time of the protein. Gopich et al. determined 

a simple correction factor that enables the extraction of the reconfiguration time of the 

protein [146]. This reconfiguration time can be directly linked to polymer quantities such as 

the characteristic times derived in Rouse and Zimm models [148–152]. Finally, since this 

approach provides access to the variance in the transfer efficiency fluctuations, it can be 

combined with single-molecule FRET and lifetime measurements to infer properties of the 

distribution of transfer efficiencies.

Single-molecule contact formation dynamics can also be probed using photon-electron 

transfer (PET) between a single fluorophore and an aromatic residue (or other quencher 

attached to the protein) [134,143,145,153,154]. In PET-FCS experiments, the fluorophore 

forms transient static complexes with the quencher. Therefore, the amplitude cq and 

characteristic time τq associated with the static quenching in the correlation contains 

information on both the on- and off-rate of contact formation: τq = 1/(kon + koff) and cq 

= kon/koff. Importantly, static quenching is not diffusion limited, such that the on-rate must 

be calibrated with a known diffusion-limited quenching process to extract the real on-rate 

of contact formation. For comparison, the dynamic quenching between dyes and aromatic 

residues, as measured by changes in the fluorescence lifetime, has been found very close to 

the diffusion-limited regime and offers a convenient strategy for extracting correction factors 

for reaction-limited quenching.

Furthermore, the on-rate of contact formation as measured in PET-FCS experiments can 

be related to the reconfiguration time measured by ns-FRET-FCS when computing the 

first passage time of the corresponding polymer model [134,155,156]. In the scenario 

where internal friction dominates the protein dynamics, Cheng et al. proposed a convenient 

equation where the contact time τcIF  is computed by using the Szabo-Schulten-Schulten 

theory[157] in terms of 1D diffusion in a potential of mean force for the Rouse and Zimm 

model for internal friction [150]. This leads to the remarkably simple expression,

τcIF = π
6

0.5 R
Rc

τi (24)

Where τi is the internal friction characteristic time, R is the root-mean-square separation 

between the dye and the quencher and Rc is the contact radius for quenching.

2.5 Challenges and practical considerations in single-molecule fluorescence 
spectroscopy

Recent cross-lab verification demonstrated that smFRET can provide highly reproducible 

results across different laboratories when the instruments are properly calibrated [158]. 

Calibration of experimental setups can be obtained by measuring reference samples that 

provide an estimate of the excitation and detection efficiency of the detectors and correct for 

the different quantum yields of the fluorophores [25,27]. An elegant solution has recently 

been proposed [158–161] and relies on the use of alternating-laser excitation (ALEX) 

[162,163] or pulsed interleaved excitation (PIE) [164,165]. In brief, fluorescence detection 

of donor-only and acceptor-only molecules provides insights on the direct excitation of 
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acceptor and cross talk, while a comparison of the stoichiometry ratio of donor-acceptor 

labeled molecules as a function of transfer efficiency (e.g., polyproline or other systems 

of interest) enables estimates of the relative corrections for detection efficiency and 

quantum yield across the donor and acceptor channels. Investigating the dependence of 

the stoichiometry ratio vs. transfer efficiency requires either multiple samples with different 

mean transfer efficiency or altering transfer efficiency by changing the solution conditions 

of the same sample, although it should be noted that altered solution conditions may alter 

the quantum yield of the fluorophores or introduce quenching, which may further complicate 

this analysis.

An important decision in designing smFRET experiments is the choice of the experimental 

strategy, e.g., whether one is investigating freely diffusing or immobilized molecules. Which 

approach to take is determined by several factors, including the accessible experimental 

setup and the biophysical or biochemical question being addressed. A common solution 

for the investigation of immobilized molecules is the use of Total Internal Reflection 

Fluorescence (TIRF). TIRF microscopy relies on evanescent illumination of samples 

tethered to the surface [166,167], reducing background fluorescence from labeled molecules 

in solution. TIRF microscopy often uses camera-based detection, enabling the simultaneous 

observation of multiple molecules and the study of out of equilibrium kinetics. Confocal 

single-molecule fluorescence microscopy enables measurements of both freely diffusing and 

immobilized molecules.

The use of single-photon counting avalanche photodiodes and Time Correlated Single 

Photon Counting (TCSPC) electronics provide access to fast dynamics, kinetics, and 

photophysical properties of the systems such as triplet and fluorescence lifetimes. Owing 

to the high temporal resolution, confocal single-molecule fluorescence experiments have 

captured even rare events such as the transition path time from a folded to unfolded state 

or from a bound to unbound state [23,168]. Several approaches have been developed to 

enable the investigation of higher concentrations regimes and out of equilibria phenomena 

in confocal setups. For example, zero-mode waveguides have been used to extend 

the concentration boundaries of single-molecule confocal detection up to micromolar 

concentrations [169,170]. Similarly, microfluidic devices with fast mixing allows following 

the kinetics of the system of interest, at the single-molecule level, from hundreds of 

microseconds up to tens of seconds. [171–177]. Recurrence analysis of single particles 

(RASP) also captures the kinetics of freely diffusing molecules by identifying those 

molecules that after passing through the confocal volume re-enter in the confocal volume. 

By studying how the conformations of these molecules changes at different lag times, 

information on kinetics can be reconstructed [178,179]

Once the experimental setup and strategy have been chosen, the next step is the selection of 

appropriate labeling positions. The average Förster radius across the fluorophores suitable 

for single-molecule FRET lies between 5 and 7 nm, limiting the sensitivity of the method 

to distances approximately larger than 2–3 nm and smaller than 10 nm (see Fig. 4c). 

While knowledge of the protein structure allows for the tailoring of dye placement in 

folded proteins, more difficult is the choice of label position when studying IDRs, since 

the sequence properties of the chain can significantly alter the root-mean-square interdye 
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distance. A distance of approximately 50 – 60 amino acids provides an appropriate dynamic 

range for sequences with a broad range of charge compositions, ranging from expanded 

polyelectrolytes to collapsed polyampholytes [180]. It is important to note that proline-rich 

sequences can adopt very extended configurations [38,181]. Sampling different interdye 

positions within the same IDR can further improve the ability to to quantify the dependence 

of the related interdye distance with the sequence length of the measured segment, providing 

access to the associated scaling exponent [20,65,133,182]. As mentioned, an estimate of the 

expected distance between two pairs of residues can be derived using appropriate polymer 

models or simulations [66,67,109,180,181,183–187].

The amino acid sequence raises additional constraints with respect to the optimal strategy 

for labeling. Both FCS and FRET measurements rely on covalently labeling proteins of 

interest with one or more fluorescent dyes. The labeling strategies typically take advantage 

of endogenous cysteine residues or introduce novel cysteines via mutation. These cysteine 

residues can be covalently modified with fluorescent dyes via maleimide chemistry [188]. 

Given the general scarcity of cysteine residues in most protein sequences, it is not 

uncommon for an IDR of interest to contain one or even zero endogenous cysteines. In 

this scenario, mutations that convert small polar amino acids (e.g., serine or glutamine) 

to cysteine (or vice versa when removing unwanted endogenous cysteines) are generally 

expected to have minimal impact on the conformational behavior of a disordered protein 

owing to the approximate chemical equivalence of the residues. Nevertheless, scenarios 

in which altering the number of cysteine residues in the protein can arise, in which case 

alternative labeling strategies are required.

The introduction of non-natural amino acids and enzymatic reactions for site-specific 

labeling presents a set of approaches that move beyond the intrinsic limitations of cysteine-

based labeling methods. For example, the use of the enzyme sortase A has enabled site 

specific labeling of proteins that contain substantial cysteines and would be otherwise 

unamenable to site specific labeling by maleimide chemistry [189,190]. Sortase A catalyzes 

the ligation of an “LPETG” motif with a “GGG” motif [191,192]. In this way, a linker 

containing a fragment of a protein that harbors a single cysteine can be utilized to enable 

maleimide chemistry on the sole cysteine residue [193]. The rest of the protein that contains 

multiple cysteines can be ligated to the singular-cysteine containing protein fragment. 

Conversely, the use of split-inteins can enable maleimide labeling of multiple cysteine 

residues across a protein that has been separated into fragments that contain one cysteine 

each, followed by ligation of the fragments with native chemical ligation [194,195]. Non-

natural amino acids, alone and in conjunction with Click chemistry, can enable site specific 

labeling which can be critical in the context of three- or four-color smFRET experiments, 

although the incorporation of non-natural amino acids can lead to complications in protein 

expression yields [135,196–202]. Additionally, in sequences where mutating endogenous 

cysteine residues is likely to disrupt protein conformation, non-maleimide chemistry 

methods offer an alternative labeling strategy. For example, short peptide sequences (A4/

Q-Tags) have been used to site-specifically label several proteins [203–207]. Q tags utilize 

a transglutaminase catalyzed reaction to ligate cadaverine functionalized fluorophores to 

the glutamine residue present in Q-tag motifs (PNPQLPF, PKPQQFM, GQQQLG) [203]. 
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Unlike sortase or maleimide chemistry, the A4 tag utilizes a phosphopantetheinyl transferase 

reaction to conjugate CoA conjugated substrates to the serine present in the A4 motif 

(DSLDMLEM) [205,208–210]

The subsequent key step rests on the choice of dye. With the advent of superresolution 

microscopy, a broad range of fluorophores and donor-acceptor combinations have become 

available, each with different photophysical and chemical properties. It is worth mentioning 

that, when targeting the cellular environment in single-molecule experiments, a choice of 

red-shifted fluorophores (compared to the often used 480–520 nm range of excitation) 

has proven to reduce the fluorescence contribution originated by the cellular background 

[179]. Each fluorophore differs not only in excitation and emission wavelengths, but also in 

terms of geometry, hydrophobicity, net charge and linker flexibility and length. As a result, 

different dyes have different possible impacts on protein conformation, depending on the 

sequence-encoded physical chemistry of the given protein.

Although several studies have implicated dyes as a source of non-native interactions that 

can alter conformational behavior [211–214], with careful dye selection and validation, these 

issues can be minimized, and a number of studies have found that dyes can have a minimal 

impact on ensemble behavior [35,65,215,216]. However, some relevant examples do require 

attention. Due to the high hydrophobicity, the popular ATTO 647N dye has been reported 

to cause a substantial collapse of an IDR, at variance with many other dyes [34]. This 

result suggests that caution must be taken when using this fluorophore on IDRs. Focusing 

on the role of dye charges, many of the commonly used fluorophores, such as Alexa 488 

and 594, carry a −2 negative charge each. This net charge may become particularly relevant 

when investigating polyampholytic sequences with local regions of net positive charge, or 

with proteins that possess a net positive charge, such that these electrostatic effects must be 

accounted for when modeling or interpreting the experimental data [180]. Finally, the choice 

of the dye may also depend on the specific environment in which the protein is located: 

recent work has revealed preferential interaction of specific fluorophores with lipids [217].

The reality is that there is no “one-size fits all” solution for choosing dyes. For some 

proteins, certain dyes will likely have an impact on molecular details, while in others they 

will not. The determinants of dye effects reflect the physicochemical properties of dyes and 

the sequence-encoded physical chemistry present in a given protein. As such, due diligence 

is required when considering if and how dyes may be impacting conformational behavior. 

This may include testing different combinations of dye pairs to ascertain if different 

dyes reveal different results. Ideally, orthogonal verification with other techniques (either 

computational and/or experimental) offers a convenient route to refute or confirm findings 

[215].

When approaching the data analysis of smFRET experiments, several assumptions undergo 

transforming the measured transfer efficiency into a distance distribution. The most 

commonly cited assumption is the isotropic orientation of the fluorophores described by 

the κ2 parameter in the definition of the Förster radius (R0). Although simulations may 

achieve a quantitative estimate of κ2, a measurement of the steady-state and/or time resolved 
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anisotropy of the two fluorophores provides quantitative insight into possible conformational 

restrictions of fluorophores orientation [118,218].

Less discussed but equally important when comparing results from single-molecule 

fluorescence experiments with simulations is an appropriate estimate of the characteristic 

timescales at play. It is crucial to consider the timescales’ impact on the interpretation of 

the mean transfer efficiency, with particular attention needed with respect to the rate of 

fluorophore tumbling and fluorescence lifetime, as well as chain dynamics. As mentioned 

in section 2.3, Eq. 6 assumes that the dynamics of the chain are faster compared to the 

interphoton time, but slower than both dye tumbling and the fluorescence lifetime (Fig. 

5). This behavior is a precondition for invoking the approximation that fluorophores are 

experiencing isotropic orientation.

Once all these aspects are considered, a root mean square distance is extracted based on the 

mean transfer efficiency ⟨E⟩. The measured distances provide a readout on the separation 

of the fluorophore, as opposed to a direct readout on the residue-residue distance between 

labeling positions and fluorophores linker needs to be accounted for [118]. For the dye pair 

Alexa 488 and 594, the dye linkers’ contribution to the root-mean-square interdye distance 

for an unstructured protein corresponds to an increase in the protein sequence length of 

about nine amino acids [184,185,219].

2.7 Approaches for the integration of single-molecule fluorescence spectroscopy and 
simulations

Various theoretical frameworks appropriate for the integrations of single-molecule 

fluorescence spectroscopy with results from atomistic simulations have emerged over the 

last decade, with many of these being directly applicable to the study of disordered proteins. 

Rather than providing an exhaustive technical description of these methods, we will briefly 

overview the conceptual approaches and practical methodologies available.

The most straight-forward approach involves performing unbiased molecular simulations of 

a protein of interest without dyes, computing relevant observables from the simulations, 

and then comparing those observables with the analogous values obtained from experiment 

[20,220,221]. In the context of smFRET experiments, this would involve computing 

distributions of inter-residue distances and then comparing those distances with the 

analogous distribution obtained from experiments [161]. For FCS, this would involve 

computing a hydrodynamic radius (Rh) from simulations and comparing that value with the 

apparent Rh obtained from the diffusion constant [222,223]. For nsFCS, this would involve 

computing molecular reconfiguration times and comparing those times with timescales 

measured by experiment [134,224,225]. This approach makes two key assumptions. 

Firstly, it assumes that the dyes do not significantly contribute to the conformational 

ensemble obtained from simulations, such that the ensemble generated in the presence/

absence of dyes is equivalent. Secondly, it assumes that analytical models (i.e., P(r), for 

determining inter-dye distance, see section 2.3) offer an appropriate route to back-calculate 

molecular properties that can also be obtained from simulations. Both these assumptions 

are reasonable, well established for many systems, and often taken to be true irrespective 

of if a comparison between simulation and experiment is to be performed. This naive 
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comparison offers a convenient first approach to demonstrate agreement between simulation 

and experiment. Moreover, if the agreement is poor, it provides a starting point to diagnose 

the origin of discrepancies.

While simulations lacking fluorophores are – by definition – reporting on the naturally 

occurring state of the protein, for a quantitative comparison with single-molecule 

spectroscopy, this approach has some shortcomings. For one, the absence of explicit 

dyes ignores their conformationally heterogeneous nature, and as such, these simulations 

are unable to interpret/assess dye-protein interactions, should they occur. Furthermore, a 

simulation that lacks explicit dyes does not generally take dye photophysics into account. 

Consequently, an alternative approach involves the explicit inclusion of dyes in the 

simulations [147,161,215,226]. Here, simulations of biomolecules with fluorescent dyes 

are run, and then relevant observables (e.g., FRET transfer efficiencies) are calculated 

from ensembles using dye orientation directly. The resulting computationally-derived FRET 

results can then be directly compared with mean transfer efficiencies obtained from 

smFRET experiments. While conceptually appealing, the inclusion of fully parameterized 

dyes in all-atom simulations is somewhat less common than one might expect. This reflects 

several challenges that dyes introduce in the context of all-atom simulations.

One challenge in the inclusion of explicit dyes is the appropriate forcefield parameters. 

As mentioned, even for protein-only systems, correctly parameterized force fields that 

accurately describe IDR configurational rearrangement and dynamics are challenging. This 

is despite the wealth of data surrounding protein physical chemistry and structure. In 

contrast, large heterocyclic aromatic dyes are comparatively less well-studied. Consequently, 

the validity of dye parameters is less clear. Furthermore, there is good reason to expect that 

fixed-charge force fields may struggle to correctly capture the physical chemistry of large 

heterocyclic dyes due to the complex delocalized electron systems that are distributed across 

them. Finally, interpreting transfer efficiencies directly from dyes requires consideration 

of the dye photophysics, including the orientational dependence of the dipole-induced 

energy transfer that gives rise to FRET [161,226]. In principle, the explicit inclusion of 

fluorophores allows the impact of dye-protein interactions and the associated photophysics 

to be directly taken into account when computing transfer efficiencies, which, on the 

surface, appears ideal. However, in practice, it also introduces many potentially poorly-

defined parameters that may bias or confound the calculation of FRET transfer efficiencies 

if done incorrectly. Moreover, given fluorescent lifetimes are inherently stochastic, this 

necessitates sufficient sampling to capture both IDR conformational rearrangement and 

dye-rearrangement. Taken together, the inclusion of explicit dyes is certainly the appropriate 

long-term strategy. However, with the exception of a small number of groups who have 

pioneered the aforementioned technical and theoretical issues, in the absence of well-

characterized parametrization of dye and protein force fields, it remains unclear if the 

additional challenges introduced by including explicit dyes is more of a help or hindrance.

A final approach is one in which simulations are performed initially without dyes, but in 

a post hoc processing step the resulting ensemble has dyes (or clouds of dyes per protein 

conformation) rebuilt [35,87,118,227–230]. Using this approach, transfer efficiencies (or 

dye-dye distances) can be back-calculated. This offers a convenient middle-ground in that 
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dye geometry and size are explicitly taken into account, yet the challenges associated 

with dye parameters are avoided. It does, however, operate under the assumption that 

the presence of dyes has no impact on the conformational ensemble explored in the 

simulations. Depending on the implementation details, this approach also runs the risk 

of over-representing conformations in which dye-attachment residues are more exposed, 

given only conformers where dyes can be added are included in the calculations of transfer 

efficiencies. Finally, this type of reconstruction requires further assumptions regarding the 

timescales associated with the fluorophores tumbling. The reconstruction of dye ensembles 

can be achieved in a number of ways and is facilitated by specific software tools 

[187,228,231].

The three approaches described above far operate under the assumption that simulation and 

experiment will agree “out of the box”. In reality simulations and experiments frequently do 

not show quantitative (and sometimes even qualitative) agreement. This is generally taken 

(fairly or unfairly) to reflect weaknesses on the side of the simulations, specifically due to 

force field errors and/or limited sampling. One solution to this challenge is development and 

improvements in both force fields (as mentioned) and the development of more powerful 

supercomputers [232–234]. In parallel, a number of approaches for ensemble re-weighting 

(also known as ensemble refinement) have emerged. These reweighting strategies alter the 

probability of each conformation in the ensemble to shift the expected values to better 

match the experiment. While a mismatch between simulations and experiments is generally 

taken to mean the simulation is at fault, this need not necessarily be the case, and scrutiny 

with respect to possible experimental artifacts (e.g., fluorophore quenching altering transfer 

efficiencies) should be taken [144].

To summarize briefly, reweighting involves the process of re-defining the probability of each 

conformation in an ensemble. For clarity, we define conformation here in terms of a frame or 

snapshot of the simulation - i.e., in the case of a non-reweighted, correctly sampled set of n 
conformations taken from an NVT ensemble it is assumed that any conformation i selected 

at random from the ensemble is present with probability,

pi = 1
n (25)

Where, as for any discretized probability distribution,

∑i = 1
n pi = 1 (26)

As such, the ensemble-average value for any given observable with an instantaneous value 

(e.g., end-to-end distance, ⟨Re⟩) can be computed as,

Re = ∑i = 1
n piRe

i
(27)

where Re
i reflects the end-to-end distance of conformation i. There is nothing complex 

about Eq. 27 - in fact, this is simply a reformatted version of the arithmetic mean. When 

we calculate the mean we inherently assume every element in that calculation is equally 
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important, such that every element appears with the same probability of 1/n. Reweighting 

reflects a change in this assumption where we instead re-define the probabilities such that 

not every element is equally likely, under the constraint that the probabilities must sum to 1.

Several key factors must be considered for ensemble refinement. Firstly, when re-

weighting a large ensemble of states, we typically wish to apply systematic changes that 

simultaneously alter our observable to match some experiment while doing so in a manner 

that minimizes the loss of entropy. As such, maximum entropy-based methods have emerged 

as a key component of most reweighting schemes [235–237].

During maximum entropy reweighting, the collection of conformation-specific probabilities 

are altered such that the resulting probability distribution of an observable matches a 

prescribed distribution, or the reweighted ensemble average matches some experimentally 

observed value.

This requirement is reached under a constraint in which probabilities must sum to 1 and the 

entropy S(p), defined as,

S(p) = − ∑i = 1
n piln pi (28)

is maximized.

Entropy-maximization does not explicitly take uncertainty into account. This uncertainty 

can lie on the side of the experiment in terms of precision or accuracy but can also reflect 

uncertainty in the simulation. This uncertainty is often considered through some kind of 

Bayesian approach that allows fine-tuning of uncertainty in a variety of ways [238–243]. 

Specifically, Bayesian inference provides a general framework through which a posterior 

model can be generated based on a prior model and the inclusion of newly observed 

data [235]. Several modern frameworks have emerged to facilitate simulation reweighting 

with large ensembles of disordered proteins in mind. These include Bayesian Inference of 

Ensembles (BioEn), Convex OPtimization for Ensembl Reweighting (COPER), Bayesian/

Maximum Entropy (BME), and Extended Experimental Inferential Structure Determination 

(X-EISD) [238,240,241,243]. Although these tools have been recently developed and 

applied to disordered proteins, a large number of additional tools have been developed over 

the years (as reviewed by Bonomi et al. [236]). An in-depth discussion of the theoretical 

and practical differences between these methods goes beyond the scope of this review. 

However, each approach offers distinct advantages and disadvantages, and in principle are 

compatible with the integration of multiple different types of experimental data with distinct 

uncertainties.

An important caveat with respect to reweighting strategies reflects the fact that these 

approaches are ultimately limited by the quality of the starting ensemble [244,245]. Put 

another way - you cannot reweight what is never observed in the original simulations. 

Consequently, when starting ensembles are sufficiently large and sufficiently close to reality, 

reweighting can be a powerful approach to fine-tune simulation results to improve the 

signal-to-noise. However, if a starting ensemble is sufficiently incorrect, no amount of 
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reweighting can rescue it. The gold standard here is to include two orthogonal methods and 

show that re-weighting simulation results with respect to one experimental dataset improves 

agreement with the other [135,245]. In this context, small-angle X-ray scattering is a good 

complementary technique to verify reweighted ensembles generated when ensembles are 

reweighted based on results from single-molecule spectroscopy.

As a final note, rather than reweighting unbiased simulations to match experimentally 

measured distributions, an alternative set of methodologies involve applying restraints or 

bias terms directly to the simulation. In this approach, a cost function that penalizes 

conformational behavior that deviates from experimentally compatible results is applied 

[66,246–249]. The nature of the cost function, how it is applied over long-timescale 

simulations, or how experimental uncertainty is dealt with vary depending on the 

implementation. While this approach has been used extensively in the context of structure 

determination, it has been used less frequently in the context of integrating single-

molecule spectroscopy with all-atom simulations. For a comparison between restraints and 

reweighting in molecular simulations see work by Rangan et al. [250]

The preceding section introduced maximum entropy and Bayesian inference as theoretical 

frameworks through which reweighting or restraining can be achieved. It is worth noting that 

the alternative and complementary approaches including maximum parsimony, maximum 

likelihood, and maximum caliber provide alternative theoretical frameworks for ensemble 

selection and reweighting. These approaches can be applied either to bias simulations or as a 

post-facto reweighting strategy, as reviewed by Bonomi, Gaalswyk, and Ghosh, respectively 

[236,246,251].

3. Results

Having established the key features of all-atom simulations, single-molecule spectroscopy, 

and the integration of these methods, we will finish by considering a number of examples in 

which integrative experimental and computational modeling has revealed synergistic insight.

3.1 Single-molecule spectroscopy and solvent quality

The impact of solvent quality on denatured proteins was evident already in early studies 

of protein denaturation with single-molecule FRET [109,252] as a shift in the transfer 

efficiency population associated with the unfolded state. The work of Sherman & Haran 

directly implied a coil to globule transition in the conformations of the unfolded state 

[131]. In this context, important early work that integrated single-molecule spectroscopy 

and simulations was performed by Best, Gopich, Eaton, and Schuler [185,253]. Using both 

all-atom MD simulations and simple coarse-grained Langevin simulations, Merchant et al. 
showed a continuous transition in global dimensions of Protein L and cold shock protein 

CspTm observed by smFRET is reproduced as a function of solvent quality by simulations 

[253]. The integration of simulation and experiment here played a crucial role in helping to 

interpret smFRET data by demonstrating that the inferred radius of gyration (Rg) obtained 

from smFRET matched the Rg values obtained from simulations. This study represents 

one of the earliest examples in which all-atom simulations and smFRET were combined, 

and in many ways, defined the template for this class of study. Subsequent work using 
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coarse-grained models has arrived at similar conclusions and shows good agreement with 

extant smFRET data [68,254].

The importance of solvent quality for disordered and unfolded proteins was again the topic 

of further study by Best and Schuler. In a series of papers, a comprehensive investigation 

of chain dimensions in response to denaturant concentration combined several different 

disordered proteins and a collection of methods including all-atom simulations, FCS, 

smFRET [34,78,220]. In work by Zheng et al., unbiased all-atom simulations without 

explicit dyes were performed as a function of denaturant concentrations [220]. Using these 

ensembles, intermolecular distances were then back-calculated, revealing a modest but 

continuous expansion in IDR global dimensions as a function of denaturant concentration. 

These computational results compared favorably with analogous measurements made by 

smFRET and SAXS. In a separate study by Borgia & Zheng et al., smFRET and SAXS 

data were used to reweight ensembles generated from all-atom simulations using a Bayesian 

approach. The resulting ensembles were compared against changes in global dimension 

obtained by FCS and dynamic light scattering (DLS) [34]. This study also identified a 

modest but meaningful chain ‘contraction’ as denaturant concentration is decreased (Fig. 6). 

In parallel, analogous integrative biophysical studies made on several other systems came to 

similar conclusions, supporting a model in which the solvent quality tunes the dimensions 

of unfolded protein ensembles, but that these ensembles do remain relatively expanded 

[135,255,256]. This is in reasonable agreement with measurements made by SAXS that 

inferred that if any chain-compaction occurred at all, it would be modest [257,258]. Taken 

together, these results have helped establish that as unfolded polypeptides transition from 

high concentrations of denaturant into native conditions, there is a sequence-dependent 

contraction in global and local chain dimensions. The magnitude of this contraction depends 

on the chemical nature of the denaturant and protein sequence. In many foldable proteins, 

this contraction appears to be in the range of 10–25% in global dimensions prior to bona 
fide folding [256]. For disordered proteins the extent of compaction (or lack thereof) this 

contraction can range from a few percent to over 50%, depending on the amino acid 

sequence and denaturant [24,34,38,133,220,259,260].

Despite this substantial effort, a quantitative and absolute agreement between SAXS and 

FRET-derived measurements remains contentious for at least some systems [211,212,256]. 

Despite the valid and important concerns regarding the impact of dyes, a general consensus 

that disordered/unfolded proteins are sensitive to changes in their solution environment 

seems undeniable [256]. These conclusions need not be at odds with the observation that 

foldable proteins undergo a sharp folding transition when solution condition conditions 

permit [261].

As a final point, the magnitude, modality, and physical origin of solution-dependent changes 

in IDR conformational behavior will depend on the amino acid sequence and the chemical 

nature of the co-solute [255,262–265]. This sequence-encoded sensitivity has been proposed 

to offer IDRs a mechanism to act as biological actuators and sensors of cellular state 

[36,260].
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3.2 Reconciling length-scale dependent conformational heterogeneity with smFRET and 
simulations

The apparent discrepancy between SAXS and smFRET has an additional possible origin: 

residual structure leading to deviations from homopolymer models used to infer smFRET-

derived distances [35,69,70,266]. Analytical homopolymer models are remarkably good at 

quantitatively describing the conformational behavior of IDRs [20,133,136]. However, for 

IDRs with a substantial amount of residual structure or peculiar sequence patterning, there is 

an expectation that homopolymer models will become progressively less reliable [67,266].

The possible impact of structural heterogeneity was examined simultaneously and 

independently in two studies. Song et al. applied simulations and theory to analyze extant 

smFRET data for unfolded proteins to argue that anisotropic biases in the underlying 

conformational ensemble could explain apparent discrepancies between SAXS and smFRET 

data [69–71]. Using coarse-grained simulations to construct transfer efficiency distributions, 

the authors show that even relatively small but persistent conformational biases can have a 

substantial impact on distances derived from transfer efficiencies.

In independent but complementary work, Fuertes & Ruff et al. performed an integrative 

study that combined all-atom simulations, smFRET, and SAXS of both labeled and 

unlabelled IDRs under native and strongly denaturing conditions. In this work, a dye-

reconstruction approach was applied in which clouds of dyes were rebuilt around 

simulations run in the absence of dyes. A key result from this study reflects the fact 

that homopolymeric models are better equipped to describe conformational behavior under 

denaturing conditions. This result reflects the fact that in the limit of high denaturant 

concentration, the chain has - in effect - become a bona fide homopolymer. In contrast, 

under native conditions, sequence-dependent residual structure can lead to deviations from 

true homopolymeric behavior, limiting the accuracy when pairwise intra-chain distances are 

used to inform on global dimensions.

An analogous study by Gomes et al. integrated smFRET with nuclear magnetic resonance 

(NMR) spectroscopy, SAXS, and simulations and came to similar conclusions [216]. Here, 

coarse-grained simulations in which explicit dyes with modeled photophysics were used 

to construct realistic transfer efficiency histograms. In agreement with Fuertes & Ruff, the 

authors found that integrative modeling is necessary to fully reconcile seemingly discordant 

observations due to local conformational biases. The need for several distinct methods 

that provide unfolded-state behavior across distinct length-scales has also emerged in other 

systems [24,135,267].

Taken together, the application of homopolymer models remains a critical tool for the 

analysis and interpretation of IDRs. As it turns out, the specific choice of polymer 

models often introduces only small systematic variations on the extracted root-means-square 

distances from single-molecule data [27,120]. However, underlying assumptions baked into 

polymer models may not hold true across various interdye distances of the protein due to 

long-range anisotropic interactions or local residual structure [22,35,268]. It is therefore 

important to test whether the assumptions associated with a given model are robust across 

multiple interdye distances. Polymer models can be assessed by comparing the persistence 
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length for a wormlike chain model or the Kuhn segment for a Gaussian Chain. The origins 

of any observed deviations must then be examined. At the same time, heteropolymer 

theories often describe the local contribution of compositional heterogeneity over a specific 

inter-residue distance in terms of an effective bond segment that rescales the second moment 

of the ideal chain distribution. Different segments of the chain will adopt different effective 

bond lengths, such that no single effective bond length is expected to fit an entire chain. 

The expected heterogeneity in the effective bond lengths along a heteropolymeric protein 

provides a possible explanation for the empirical success of using freely jointed chain (or 

similar) homopolymer models on systems that are clearly far from theta-solvent conditions. 

As such, one should carefully consider the physical meaning of the extracted distance in the 

context of appropriate theories and models. In this respect, the application of homopolymer 

models to the interpretation of heteropolymeric IDRs should be used under the guise 

of “What is the homopolymer that best describes my data?” as opposed to “Does my 
heteropolymer behave as a homopolymer?”. [267].

3.3 Conformational dynamics as assessed by single-molecule spectroscopy and 
simulations

The ability of single-molecule spectroscopy to provide direct insight into the molecular 

dynamics of a given IDR has opened up additional avenues of experimental characterization 

and comparison between simulation and experiment.

Soranno et al. combined simulations, single-molecule spectroscopy, and theory to build 

a complete molecular dissection of the determinants of internal friction in unfolded 

proteins [115,134]. By combining smFRET and ns-FCS, the authors were able to probe 

how fast chain dynamics depends on the interdye sequence length and solvent viscosity, 

demonstrating that under native condition protein dynamics are often not dictated only by 

solvent conditions, but more significantly by internal friction effects, where internal refers to 

intrinsic properties of the protein, such as transient intramolecular interactions and dihedral 

angle constraints. These results were in remarkable agreement with extant simulation data 

performed by Piana et al. [73,134]. Moreover, the conclusions drawn in this study were 

further confirmed via integrative analysis of alpha-synuclein dynamics using smFRET, 

NMR, and MD simulations [224]. The integration of simulation and experiments provided a 

comprehensive molecular readout that implicates non-local intramolecular interactions and a 

second contribution from the retardation of dihedral rotation, although these two effects may 

be inherently coupled.

Integrating smFRET with simulations allowed Metskas & Rhoades to reconcile apparent 

discrepancies between published structures of the intrinsically disordered C terminal domain 

of troponin-1 [269]. Multiple high-resolution structures lacked agreement with each other 

and with NMR based measurements, highlighting the conformational heterogeneity that 

exists in the system. MD simulations performed with discordant published structures as 

starting points allowed them to gain an understanding of the conformational landscape the 

protein adopted. Interestingly, although good agreement between smFRET measurements 

and MD simulations was obtained when comparing folded subregions, substantial 

disagreement was arrived at when smFRET measurements of the intrinsically disordered C 

Alston et al. Page 24

Methods. Author manuscript; available in PMC 2021 December 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



terminal domain were compared with MD simulations. Hypothesizing that this discrepancy 

reflected a difference in the timescales of the techniques, the authors applied MC 

simulations to construct a large ensemble of conformations for the disordered region. 

This ensemble showed good agreement between smFRET, MD, and MC simulations, 

and the most populated conformations present in the MC simulations matched the three 

published structures that were ‘incongruent.’ This study elegantly demonstrates that if 

distinct timescales are probed, it is possible to obtain apparently contradictory yet entirely 

valid results.

Zosel et al. integrated extensive single-molecule fluorescence data and all-atom simulations 

to assess complex binding kinetics between the disordered protein ACTR and its 

conformationally heterogeneous folded partner NCBD [23]. Single-molecule experiments 

revealed that an evolutionarily conserved proline in NCBD undergoes slow cis-trans 

isomerization. The binding affinity of NCBD for ACTR depends heavily on the 

isomerization state of this slow-switching proline. MD simulations provided a cogent 

molecular explanation for the proline-dependent affinities and demonstrated that the 

molecular structure of the bound complexes differs depending on the proline isomerization 

state. The ability to reconcile complex and counterintuitive kinetic behavior was entirely 

dependent on the ability to observe conformational rearrangement on a range of timescales 

and length scales. Similarly, the ability to offer a cogent structural explanation for 

this behavior rests on the application of molecular simulations to the binding event. 

Taken together, this study offers an example in which simulations and experiments offer 

complementary insights into the structure and dynamics of a complex molecular mechanism.

Medina et al. utilized MD simulations paired with smFRET and hydrogen-deuterium 

exchange mass spectrometry to probe the conformational heterogeneity and dynamics 

present within intermediate binding steps of FOXP1 [270]. This approach allowed 

the authors to probe low-population conformations that would be hidden if ensemble 

experiments were used exclusively. By applying single-molecule spectroscopy and 

simulations, this complex structural landscape was disentangled, enabling the development 

of a model in which domain switching involves intermediate states populated by a 

heterogeneous population of conformations.

Finally, while not strictly an IDR, Chung et al. utilized a combination of long-timescale 

simulations and single-molecule spectroscopy to determine the physical basis for slow 

protein folding in a small triple-helix designed protein [168]. By first analyzing photon 

trajectories from FRET histograms using a maximum likelihood method [271] to obtain 

relaxation rates, the authors reveal a sharp pH dependence on the folding rates, where 

folding is dramatically faster at low pH. A similar pH dependence on folding is also 

observed in all-atom molecular dynamics simulations. By strengthening or weakening the 

non-bonded interactions associated with salt bridges by altering the underlying forcefield, 

the authors are able to perform a computational experiment to decouple the observed rate 

effects on salt-bridge strength vs. net charge of the molecule. This ingenious analysis 

revealed that salt-bridge strength is the key determinant of the transition time, providing a 

clear example in which the types of theoretical experiments that simulations afford offers 

direct insight into a physical process that would otherwise be impossible to measure.
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3.4 Multi-molecular assemblies as measured by single-molecule spectroscopy and 
simulations.

The integration of single-molecule spectroscopy and simulations has more recently 

played key roles in providing a high-resolution window into dynamic protein:protein and 

protein:RNA complexes [65,230,272]. Ensemble methods typically hide the heterogeneous 

nature of IDPs, masking dynamic interactions that may underlie biological function. In a 

series of papers exploring polyelectrolytic complexes, the integration of smFRET, nsFCS, 

and MD simulations has been essential to deconvolve complex heterogeneous systems.

In a landmark study, Borgia, Borgia, & Bugge et al. demonstrated that a binary complex 

formed between the negative polyelectrolyte prothymosin alpha (ProTα) and the positive 

polyelectrolyte linker histone H1.0 (H1) formed a high-affinity complex in which both 

proteins remain fully disordered [65]. Using a bespoke coarse-grained model that is directly 

compared against 28 distinct intra- and inter-molecular distances measured by smFRET, the 

authors demonstrate remarkably good agreement and provide a comprehensive molecular 

picture of the resulting high-affinity complex. Importantly, on the experimental side, the 

authors compare results with two different sets of dye pairs, and on the computational 

side, simulations are run both with and without explicit dyes. In addition to smFRET and 

simulations, extensive NMR data corroborate the disordered nature of the complex and 

provide additional key insights.

In two subsequent studies, Holmstrom and Heiðarsson & Mercadante probed the dynamic 

nature of intrinsically disordered proteins in the context of protein:protein, protein:RNA, and 

protein:DNA interaction [272,273]. In both of these studies, single-molecule spectroscopy 

was combined with coarse-grained MD simulations were able to capture the dynamic nature 

of the association of an IDP with another protein or nucleic acid. In the bound state, the 

IDP in question remains both disordered and dynamic upon association with its ligand, 

where this dynamic association underlies the biological function. For Holmstrom et al. this 

dynamic association enhanced the folding of an RNA hairpin, providing an electrostatic 

screening effect analogous to high concentrations of monovalent salts. For Heiðarsson & 

Mercadante et al. a ternary electrostatic competition mechanism driven through a dynamic 

protein assembly enabled the dissociation of Histone H1 from the nucleosome.

In addition to providing insight into individual molecules or small complexes in a dilute 

solution, single-molecule fluorescence spectroscopy can be used to peer into the interior 

of biomolecular condensates formed through liquid-liquid phase separation [24,274,275]. 

Martin, Holehouse, & Peran et al. combined turbidity, FCS, and coarse-grained simulations 

to calculate full phase diagrams of the low-complexity domain of the RNA binding protein 

hnRNPA1 [24]. More broadly, both smFRET and FCS offer a means to examine the 

conformational behavior of IDRs inside and around phase-separated droplets [274,275].

3.5 The application of simulations and single-molecule spectroscopy to offer molecular 
insight into biophysical mechanism

The true power of integrating molecular simulations with single-molecule spectroscopies 

lies in the ability to uncover novel biophysical mechanisms. In our final results section, 
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we consider a collection of studies in which specific molecular details have been unraveled 

through the combination of single-molecule fluorescence spectroscopy and simulations.

A long-standing question in cell biology pertains to the molecular basis of recognition 

and translocation of nuclear transport receptors by the phenylalanine and glycine-rich 

(FG) disordered regions that line the interior of the nuclear pore complex [276–279]. 

An integrative study by Milles & Mercadante et al. combined all-atom simulations 

with smFRET, NMR, and SAXS to offer a direct molecular picture of the nature 

of FG interactions with their associated cargo proteins [280]. This work revealed a 

degenerate network of transient molecular contacts between a nuclear pore protein and its 

corresponding nuclear transport receptors. These interactions were encoded by distributed 

adhesive phenylalanine residues in FG motifs where they interact in a multivalent fashion 

across the surface of the cognate transportin proteins. Despite the lack of specific binding 

sites and the microscopically weak binding affinities of individual motifs, the resulting 

macroscopic binding affinity is remarkably high. As such, nuclear transport receptors are 

tightly bound, yet relatively free to diffuse. This work provides a molecular explanation for 

the selective partitioning and rapid translocation of transportin-bound cargo proteins across 

the nuclear pore complex.

The physical basis for temperature-induced collapse of disordered and unfolded proteins has 

been examined via smFRET interpreted via all-atom replica exchange molecular dynamics 

simulations, pointing to the role of sidechain solvation in driving compaction [183]. This 

observation was confirmed in subsequent work where temperature-dependent free energies 

of solvation were used with all-atom implicit-solvent Monte Carlo (MC) simulations to 

explain corresponding smFRET experiments for a number of different IDRs [281]. In both 

cases, unbiased simulations without explicit dyes were performed and the radius of gyration 

(Rg) from simulations compared with the apparent Rg calculated from smFRET-derived 

inter-dye distances.

Beyond these classic examples, there are many cases in which single-molecule spectroscopy 

and simulations have been combined to address specific mechanistic questions. In the 

context of protein folding, all-atom MD simulations have been used to identify transient 

non-native salt bridges that are the dominant determinant of transition-path times along 

the folding barrier [168]. All-atom simulations have been used in conjunction with 

smFRET of aggregation-prone polyglutamine (polyQ) to demonstrate that – contrary 

to naive expectation – the biophysical behavior of polyglutamine tracts do not show 

a discontinuous transition as polyQ length extends between physiological and disease-

associated lengths [87,142]. In a similar vein, residual structure in the monomeric state 

of the aggregation-prone amyloid-beta peptide was examined through an in-depth study 

that combined smFRET will all-atom MD simulations where explicit dyes were included 

[147]. By combining FCS and simulations, Mao et al. demonstrated that the sequence 

net charge plays a crucial role in determining the global dimensions of disordered 

regions [221]. Similarly, FCS, smFRET, and simulations help demonstrate that sufficiently 

long polyglutamine and polyglycine repeats undergo chain collapse to form compact yet 

heterogeneous ensembles [87,142,255]. By combining MD simulations and an extensive 

set of smFRET experiments, Vancraenenbroeck et al. showed that IDR-binding affinity can 
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be directly modulated by solution-dependent changes to conformational behavior, hinting 

at a complex, environmental-dependent protein:protein interaction network inside cells, a 

conclusions supported by more recent work that combines simulations and ensemble FRET 

[20,260].

IDRs are frequently involved in molecular recognition, and single-molecule spectroscopy 

and molecular simulations are well-poised to provide molecular detail on those interactions. 

A crucial aspect of microtubule function in axons is their ability to undergo dynamic 

instability, where they experience periods of elongation and depolymerization, a process that 

is highly regulated by a family of intrinsically disordered Tau proteins[282,283]. To better 

understand the first step of microtubule assembly, where tau protein binds soluble tubulin 

heterodimers, Melo et al. completed an extensive mapping of free and tubulin-bound tau 

conformations using smFRET [284]. Subsequently, they generated an ensemble of possible 

tau conformations using Monte Carlo simulations constrained by distances generated from 

their smFRET measurements. When modeled in proximity of coarse grained tubulin dimers 

it was possible to visualize how tau binding to multiple dimers could be accomplished. 

Importantly, this gave insight into the dynamic nature of the interaction. Instead of adopting 

a fixed structure upon tubulin binding, a “fuzzy complex” is observed, where the disordered 

nature of Tau allows for the binding of multiple tubulin dimers and highlighted the 

significance of conformational flexibility upon binding, a phenomena later seen with other 

IDP binding interactions as well [65,272,273].

Finally, in an integrative study that combined MD and MC simulations with single-molecule 

spectroscopy, Cubuk et al. performed a comprehensive dissection of the three disordered 

regions in the SARS-CoV-2 nucleocapsid protein [136]. This work revealed distinct 

structural features that provide a molecular explanation for several previously described 

binding interactions.

In short, the ability to ascribe atomistic-level insight from simulations with analogous 

observations for a specific subset of intramolecular distances affords high-resolution 

physical descriptions of complex phenomena in a way that most other techniques do not.

3. Discussion

The integration of single-molecule spectroscopy and simulations has emerged as a fruitful 

approach to provide molecular insight into the complex and heterogeneous behavior of 

disordered proteins. A recurrent theme in many of the studies described above is the need 

to consider a range of length-scales and time-scales to construct a holistic understanding of 

IDR conformational behavior. While smFRET provides high spatial accuracy and precision 

with respect to specific pairs of distances, it is largely blind to conformational behavior 

that occurs distally to the labeling positions. In contrast, while simulations provide high-

precision insight into both global and local conformational behavior, they are limited by 

possible force field or sampling inaccuracies. As such, the most comprehensive – and 

arguably informative – studies are those in which smFRET empowers confidence in the 

simulations (either by confirming simulated results or providing a means to refine them), 

which in turn allows simulations to report on features that are not directly captured by 
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smFRET [34,35,65,134,168,253,272]. When smFRET and simulations can be combined to 

make predictions that can be tested via orthogonal methods such as FCS, SAXS, NMR, 

DLS, or any additional method, the accuracy of inferences made through integrative studies 

can be directly assessed [65,73,216,240,280].

Despite substantial successes, several open challenges remain for the effective integration 

of single-molecule spectroscopy and simulations. A significant challenge is the need for 

better methods to describe dyes and their photophysics. A number of groups have pioneered 

work in this arena, yet despite notable successes, the inclusion of dyes in all-atom or 

coarse-grained simulation simulations is by no means standard practice [65,120,161,226]. 

As mentioned in the introduction, large heterocyclic dyes are inherently challenging for 

fixed-charge force fields due to their aromatic nature. The emergence of polarizable force 

fields offers a potential solution to this challenge [285–288]. While in fixed-charge all-atom 

force fields, each atom has a fixed partial charge, in polarizable force fields the local charge 

density is responsive and variable, depending on the local chemical environment. As a result, 

polarizable dyes models may offer a more realistic route to describe their physicochemical 

effects and, potentially, help identify scenarios in which protein:dye interactions are likely. 

Beyond facilitating better interpretation of smFRET data, an accurate and transferable 

description of fluorescent dyes would allow experimental groups to computationally screen 

distinct pairs of dyes to help identify those which are least likely to interact with a given 

protein. While polarizable models (such as AMOEBA) have historically been viewed as 

substantially slower than fixed-charge models, recent major efforts to improve performance 

have yielded simulation times on the order 10–30 ns/day in AMOEBA [289,290]. As a result 

timescales relevant for comparison with single-molecule spectroscopy are firmly within 

reach, suggesting further application of polarizable forcefields is a promising future avenue.

A more general challenge for simulations of disordered proteins represents robust methods 

for the quantification and assessment of conformation sampling. While limitations in 

standard molecular force fields persist with respect to disordered proteins, even if a perfect 

forcefield existed, it would not guarantee that accurate estimates of chain conformations 

and dynamics could be reached. Recent work from Lincoff et al. has argued that while 

over compaction of standard force fields when describing IDRs is a known problem if 

better conformational sampling was available, some of the force field limitations may be 

less severe than they appear [291,292]. This is not to suggest that forcefield limitations 

are overblown, but simply to urge a critical assessment of local and global conformational 

heterogeneity when performing molecular simulations of disordered proteins. Simulations 

of a few hundred nanoseconds are rarely sufficient for even modestly sized disordered 

proteins. General best-practices for assessing conformational sampling in IDRs are lacking 

but would help to guide researchers to understand if poor agreement between simulation 

and experiment is due to forcefield weaknesses, insufficient conformational sampling, or a 

combination of the two

4. Conclusions

The integration of single-molecule fluorescence spectroscopy and all-atom simulations 

has been instrumental in our modern understanding of sequence-encoded conformational 
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behavior in disordered proteins. As more advanced methods for multi-dimensional data 

integration emerge, integrative studies in which multiple experimental techniques are used 

to better understand a specific system will likely become more commonplace and more 

effective. The ability to obtain insight over multiple length-scales and timescales is an 

essential feature that integrative studies provide. For disordered proteins especially, the need 

to consider a range of length scales and timescales reflects the inherently heterogeneous and 

stochastic nature of the conformational transition. Given the fact that molecular simulations 

and single-molecule fluorescence spectroscopy offer a comparative spatial and temporal 

resolution, they are an inherently complementary and powerful combination.
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Highlights

• Single-molecule spectroscopy offers a collection of methods that provide 

high-resolution insight into the conformational and dynamical behavior of 

disordered proteins

• Molecular simulations can provide atomistic insight into both local and global 

conformational biases and dynamics

• Despite their strengths, single-molecule spectroscopy and molecular 

simulation have a number of limitations

• When combined and integrated together, these tools offer complimentary 

insight with largely orthogonal weaknesses
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Figure 1. 
Proteins exist along a continuum of structural heterogeneity. While some proteins adopt 

well-defined tertiary structures (far right), intrinsically disordered protein regions (IDRs) 

lack a defined reference state (far left). Importantly, all proteins are defined by an ensemble, 

where function is ultimately determined by the combination of chain dynamics and 

preferential conformations [11,12,14]. IDRs are not fundamentally different from folded 

proteins but are distinguished by conformational fluctuations so large that a single native-

state reference frame is no longer applicable nor useful.
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Figure 2. 
Examples of distinct levels of granularity of the representation schemes. As the number 

of degrees of freedom increases (from left to right), as does the computational cost. In 

principle, more degrees of freedom should yield a higher accuracy model, although this 

depends on the actual fidelity of the model. A model with many degrees of freedom is only 

more accurate if those degrees of freedom and described correctly.
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Figure 3. 
Snapshots taken from a simulation trajectory of α-synuclein reveal a scenario in which a 

subregion of the protein is kinetically trapped while the N and C-termini explore a diverse 

collection of conformational states.
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Figure 4. 
Overview of single-molecule FRET experiment and data (a) Schematic representation of 

disordered proteins with different mean end-to-end distances. (b) Histograms of photon 

bursts for the hypothetical ensembles in corresponding panels in (a). (c) The black curve 

represents the dependence of the mean transfer efficiency on the inter-dye distance as 

predicted by Förster’s theory (eq. 3), shown with conformations annotated. The blue curve 

depicts the transfer efficiency of a fluctuating Gaussian chain as a function of the average 

root mean square inter-dye distance.
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Figure 5. Experiments and simulations inform over a broad range of timescales.
Schematic detailing the different timescales accessible to single-molecule fluorescence 

spectroscopy and simulations. (1) Time-resolved fluorescence provides access to donor and 

acceptor lifetimes (which are influenced by the FRET process) and to anisotropies (which 

reports about tumbling of the dyes and of the overall molecule. (2) The correlate decay in 

the donor (DD) and acceptor (AA) autocorrelations as well as the anticorrelated rise in the 

donor-acceptor (AD/DA) cross-correlation reports about protein dynamics. (3) 2D-histogram 

of donor lifetime in the presence of the acceptor (normalized by the donor lifetime in 

the absence of the acceptor) vs. transfer efficiency. The diagonal line represents the result 

for a static configuration of the protein and the curved line represents dynamics exchange 

in the protein conformational ensemble. (4) Transfer efficiency trajectory of immobilized 

molecules can reveal slow conformational changes of the protein up to minutes.
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Figure 6. 
The conformational ensemble of the 71-residue ACTR as a function of denaturant, as 

obtained from smFRET and all-atom simulation by Borgia & Zheng et al. [34].
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