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Abstract: A microfluidic bioreactor with an easy to fabricate nano-plasmonic surface is 

demonstrated for studies of biofilms and their precursor materials via Surface Enhanced 

Raman Spectroscopy (SERS). The system uses a novel design to induce sheath flow 

confinement of a sodium citrate biofilm precursor stream against the SERS imaging surface 

to measure spatial variations in the concentration profile. The unoptimised SERS 

enhancement was approximately 2.5 × 10
4
, thereby improving data acquisition time, 

reducing laser power requirements and enabling a citrate detection limit of 0.1 mM, which 

was well below the concentrations used in biofilm nutrient solutions. The flow confinement 

was observed by both optical microscopy and SERS imaging with good complementarity. 

We demonstrate the new bioreactor by growing flow-templated biofilms on the microchannel 

wall. This work opens the way for in situ spectral imaging of biofilms and their biochemical 

environment under dynamic flow conditions. 

Keywords: Surface Enhanced Raman Spectroscopy; spectral imaging; microfluidic; 

biofilm; electroless deposition; bioreactor; plasmonic surfaces 

 

1. Introduction 

Microfluidic (MF) technology is finding new opportunities in biomaterial synthesis due to 

exceptional control of reaction variables, control over mixing, reduction of material consumption, and 
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isolation of the growth environment from ambient conditions. In addition, the well-established 

fabrication of MF devices opens the way for rapid optimization of complex channel designs [1,2] 

achieving desired flow properties, precise timing between stages of material synthesis [3], 

parallelisation [4], and integration of functional components such as electrodes, valves, and temperature 

control elements [5–7]. The use of MFs for studies of biofilms is very attractive due to the ability to 

precisely control the wall shear stress, temperature and chemical gradients. Generally, in situ imaging of 

biofilms and other biomaterials is accomplished by 2D or confocal microscopy techniques [8–10]. 

However, the rapid pace of MF-based material development has placed strong demands on in situ 

characterization [11]. To this end, there has been increasing demand for new spectral imaging methods 

that can simultaneously report on a broad range of chemical properties without needing foreign probe 

molecules. Elegant approaches to spectral imaging, include those based on attenuated total reflection 

infrared (ATR-IR) spectroscopy, synchrotron-radiation based infrared (SR-IR) spectroscopy and 

magnetic resonance imaging (MRI) [12–16]. These approaches are promising, but are not widely 

utilized due to the complexities in their setup and their interface with the MF environment, cost, and 

challenges in time of acquisition, spatial resolution and sensitivity. Raman spectral imaging solves some 

of these problems. Photons from laser excitation and inelastic scattering are in the visible spectrum, 

which are not absorbed strongly by most common MF fabrication materials or by aqueous environments. 

Raman also supports excellent spectral resolution, a wide spectral window and has very good 

diffraction-limited spatial resolution on the order of microns supporting studies of mass transport, 

chemical reactions and material synthesis [17–19]. Reaction kinetics and other quantitative studies can 

be conducted by Raman using the linear relation between scattering intensity and analyte concentration 

given by:  

      
        (1) 

where IR is Raman scattering intensity, σ is the inelastic scattering cross-section, v is excitation laser 

frequency, P is the laser power, t is acquisition time and C is analyte concentration. However, one of the 

major drawbacks of Raman spectroscopy is its low sensitivity due to values of σ that are on the order of 

10
−30

 to 10
−25

 cm
2
. This is especially challenging for sensing biofilms and their precursor materials due 

to their low densities and concentrations, respectively. Attempts to overcome this problem by increasing 

v, P, or t in Equation (1) can result in sample heating or thermal breakdown of analytes, whereas long 

acquisition times are not desirable, nor feasible for biomaterials that change their morphology relatively 

rapidly. In addition, high frequency photons can induce fluorescence in organic molecules and polymer 

MF fabrication materials.  

Surface Enhanced Raman Spectroscopy (SERS) is a useful approach that takes advantage of 

plasmonic properties of metal nanostructures to increase Raman scattering intensity by orders of 

magnitude due to strong increases in local electric fields between metal nanostructures. Fluorescence 

quenching, which is known to occur at the surfaces of many metals used for SERS, is an additional 

benefit. To date, most studies using SERS in MF environments, including those focusing on 

biomaterials, have utilised suspended gold or silver nanoparticles [20–24]. However, there are several 

drawbacks to this approach. First, signal instability due to differential SERS enhancement in time and 

space can undermine the goal of quantitative spectral imaging. For example, continuous processes, such 

as nanoparticle build-up on channel walls, sedimentation and other so-called memory effects, can slowly 
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change SERS enhancement [25,26]. In addition, spatial uniformity requires strong mixing of nanoparticle 

colloids. Aggregation in salt-containing growth solutions can destabilize nanoparticles colloids, which 

rely on electrostatic repulsion. Second, nanoparticles are lost in MF reactors due to washout. Lastly, 

SERS measurements at the MF channel wall, where biomaterials tend to grow, is difficult using 

nanoparticle colloids because the majority of the signal comes from the bulk liquid phase. As an 

alternative, the addition of solid nanostructured metal SERS surfaces to microchannel walls is attractive 

because they are stable and enhancement is localised where biomaterial deposition and growth occurs. 

Photo induced nanostructuring can be achieved by photoreduction of silver precursors or fast thermal 

annealing of thin gold films to obtain nanostructured silver [27,28] and gold [29] SERS surfaces, 

respectively. However, these techniques require femtosecond laser pulsing or strong UV lasers. The 

latter can cause heat damage and photo-breakdown of MF fabrication materials. In another approach, 

metal is deposited over nanostructured substrate within the microchannel, but this requires complex 

lithographic steps in advance of metal deposition [30–34]. 

In response to the need for new, user-friendly fabrication of SERS for spectral imaging in MFs, we 

present a MF bioreactor with the following functionalities: (1) strong signal enhancement for rapid, 

low-background measurements of mM biofilm precursor solutions using a low-power laser; (2) the 

ability for localized deposition of biofilm precursor materials and flow-templated biofilm growth on a 

single MF wall; (3) the ability for unobstructed optical and spectroscopic imaging of the entire 

cultivation surface. The system was demonstrated by generating one-dimensional spectroscopic images 

of the local concentration of a spatially confined precursor solution and compared to optical micrographs 

of the flow stream and flow-templated biofilms cultivated under the same flow conditions. 

2. Experimental Design and Methods 

Microfluidic bioreactors were made from polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning, 

Midland, MI, USA). Bonding PDMS to secondary PDMS levels or to glass coverslips was accomplished by 

exposing bonding surfaces to air plasma for 90s using a plasma cleaner (PCD-001 Harrick Plasma, 

Ithaca, NY, USA) operated at 600 mTorr at a power of 29.6 W. Nanostructuring of metal layers was 

achieved by exposure to air plasma from the same plasma system and settings, but for different times.  

Liquids were introduced into the MF bioreactor via syringe pumps (PHD 2000, Harvard Apparatus, 

Holliston, MA, USA). All liquids were first degassed in order to prevent bubble formation. Chemicals 

used for electroless deposition of metal layers included silver nitrate, L-tartaric acid, glucose, gold(III) 

chloride and sodium bicarbonate (Sigma Aldrich, Saint-Louis, MO, USA). Sodium citrate was provided 

by Sigma Aldrich. Ultrapure water with a resistivity of 18.1 MΩ∙cm
−1

 was used for all solutions. Due to 

short shelf life, Tollens reagents were made fresh by adding ammonium hydroxide to AgO2 precipitate 

prepared by mixing silver nitrate solution with sodium hydroxide solution until dissolution. Food 

colours were used for visualisation of the flow (McCormick, London, ON, Canada). 

Atomic force microscopy (AFM, Nanoscope III Multimode, Digital Instruments, Santa Barbara, CA, 

USA) was used to perform topographic analysis of the silver SERS layer. The AFM measurements were 

conducted in tapping mode at ambient conditions. A J-scanner was used with NSC15\AlBS silicon 

standard probes (Mikromasch, Lady’s Island, SC, USA). The silver layer was deposited following the 

same protocol as adopted for the preparation of SERS active microfluidic channels. Each measurement 

was performed on a total scan area of 100 µm
2
. Scan rate was 0.25 Hz and the amplitude set point was 
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between 1.3 V and 1.6 V. Height, amplitude and phase images were collected simultaneously. Data 

acquisition and roughness analysis was performed using the Nanoscope software version 5.30r3. 

Diffuse reflectance UV-Vis spectra were recorded using a Cary 500 Scan spectrophotometer (Varian, 

Palo Alto, CA, USA) with a Praying Mantis™ diffuse reflectance accessory (Harrick Scientific, 

Pleasantville, NY, USA).  

Raman spectra were recorded using a LABRAM 800HR Raman spectrometer (Horiba JobinYvon, 

Villeneuve d’Ascq, France) coupled with an Olympus BXmicroscope with a 100× long focal objective 

(NA 0.75) in backscattering mode. An Ar
+
 laser (Coherent, INOVA 70C Series Ion Laser, Santa Clara, 

CA, USA) provided the excitation source v = 514.5 nm. Measurements were conducted with a 200 µm 

slit and 100 µm confocal hole. For SERS measurements, laser power was reduced from 100 mW to  

10 mW using a neutral filter with an optical density of 1. The full spectra were acquired in three spectral 

windows for total acquisition time of one minute. Optical micrographs were recorded using an Axioskop 

microscope (Zeiss, Jena, Germany) with an external light source (Illuminator, Cole-Parmer Canada, 

Montreal, QC, Canada). A home-built polycarbonate holder was used to accommodate the fluidic 

connections and achieve the proper orientation for Raman and optical inspection.  

Raman and UV-Vis spectra were treated and analysed using Grams/AI 8.0 for baseline correction, 

peak deconvolution and intensity measurements. Optical density data were extracted from micrographs 

using the open source software ImageJ V1.47.  

For descriptions of processes related to bacterial culture, system sterilization, inoculation and biofilm 

culturing, readers are referred to the section on biological materials preparation in the Supplementary 

Materials of this paper.  

2.1. Fabrication of a Two-Level Bioreactor for Flow Confinement against the SERS Surface 

The present microbioreactor was a two-level system (Figure 1A) fabricated in PDMS. The channel 

structures were fabricated by casting uncrosslinked PDMS against a silicon mould with patterned 

photoresist features. These features had the inverse dimensions of the required channels, but resulted in 

the required channel dimensions in the PDMS following casting. Levels 1 and 2 consisted of channels 

with dimensions of width w = 2 mm, height h = 305 µm and length l1 = 32 mm and l2 = 9 mm, 

respectively (Figure 1B). The two levels were aligned and bonded such that the channels therein were 

collinear and there was overlap between them. A cylindrical junction was formed between the 

overlapping segments using a punch (diameter = 500 µm). The punch angle was 45 degrees, such that 

the liquid entering the channel in Level 1 had some component of its velocity in the x-direction in order 

to: (i) keep the biofilm precursor stream close to the bottom of the Level 1 channel; (ii) reduce shear 

forces between the two streams and (iii) maintain smooth laminar flow. Level 1 channel was sealed by a 

glass cover slip with thickness of 170 μm, which matched the working distance of the Raman 

spectrometer system. Confining liquid (pure water) and biofilm precursor liquids (bacterial inoculants 

and citrate solutions) were introduced into Level 1 and Level 2 channels via Inlet 1 and Inlet 2, with a 

flow rate Q1 and Q2, respectively. Figure 1C shows a cross-section of the sealed Level 1 channel with 

three metalized channel walls and the glass sealing layer. Characterization took place against the bottom 

surface in Level 1. The entire assembled bioreactor is shown in Figure 1D. 
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Figure 1. (A) Schematic showing the cross-section of a two-level MF bioreactor in the x-z 

plane. Inlet 1 is used to introduce the sheath flow solution (red) at flow rate Q1. Inlet 2 is used 

to introduce the biofilm precursor flow (blue) at flow rate Q2. The red flow confines the blue 

flow at the bottom of the microchannel. (B) Schematic of the two levels in the x-y plane. The 

junction, the inlets and the outlet are represented by circles. (C) Schematic showing the 

cross-section of the Level 1 channel in the y-z plane. The channel walls consist of PDMS 

(grey) covered with an opaque metal layer (black) on the side walls (i, ii) and the bottom 

SERS sensing surface (iii). A glass sealing layer defines the fourth channel surface (iv). The 

channel dimensions are h = 305 µm and w = 2 mm (not to scale). (D) Photograph of an 

operational MF bioreactor with inlet tubes delivering red and blue coloured solutions to 

inlets 1 and 2, respectively. The MF bioreactor is oriented with the glass side up for 

inspection by Raman spectrometer and optical imaging. The holder provides space on the 

PDMS side of the bioreactor for tubing to be connected to inlets and outlet via metal  

elbow joints. 

 

2.2. Electroless Metal Deposition on Microchannel Walls  

The bottom and side walls of the of the Level 1 channel were covered with a metallic layer via 

electroless deposition [35]. Unlike electrodeposition, this approach enabled deposition against 

non-conducting PDMS microchannel surface. Electroless deposition of a silver layer was achieved by 

combining an aqueous solution of glucose, tartaric acid and ethanol with a Tollens reagent. The 

bioreactor was masked using an adhesive film (HDClear, Henkel Corp., Düsseldorf, Germany) such that 

only the channel section was exposed. Before deposition, the microchannels were treated by air plasma 

at 600 mTorr at 29.6 W for 90 s in order to increase their hydrophilicity which allowed a better wetting 

by the aqueous solution. After the reaction was complete, the excess solution was removed and the 

channel was washed with ultrapure water and dried with filtered nitrogen. After deposition, the bottom 

and side walls of the channel were coated by a matt grey silver film. This conductive layer had a 

resistivity of 110 Ω/m. The mask, which protected the bonding surfaces, was then removed leaving 

silver in the channel only. Gold layers were formed in a similar way, but the results are not reported here 

because further optimisation is required to improve their SERS enhancement. 
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2.3. Transformation of the Metal Surface to a Sensitive SERS Surface for Spectral Imaging  

After metal deposition, a weak signal enhancement was observed, presumably due to the slightly 

roughened surface after the Tollens reaction. Nevertheless, further enhancement was required to observe 

low citrate concentration solutions in biofilm growth media. This was accomplished by exposing the 

metal surface to air plasma, which enhanced nanostructuring and helped clean residual organic 

impurities left over from the electroless deposition process via sputtering and oxidation [36–38]. 

Nanostructuring, plasmonic enhancement, and resulting SERS were observed after different plasma 

exposure times by atomic force microscopy (AFM), UV-Vis and Raman spectroscopy, respectively. As 

shown in Figure S1, AFM images of the plasma treated metal surfaces showed an initial rapid increase 

followed by a plateau after nearly 20 min exposure. Over this time frame, the total increase in mean 

surface roughness (Ra) was over 40%, as expected [39,40]. The resulting plasmonic absorption bands 

were observed from UV-Vis spectra collected in diffuse spectral reflectance mode. The band increased 

in both magnitude and width with plasma exposure time.  

Figure 2. (A) UV-Vis spectra of the silver surface after 1 (blue), 5 (red), 10 (orange) and 19 

(green) minutes of plasma treatment. Spectra were acquired in diffuse reflectance mode with 

an integration time of 0.6 s and 1nm data intervals. Each absorbance spectrum in (A) was 

generated using the spectrum of the silver surface after 0 min plasma treatment as the 

background spectrum. The green broken line at 514.5 nm in (A) represent the wavelength of 

the excitation laser source; (B) Raman intensity for the νC-COO band of sodium citrate at 

952 cm
−1

 with increasing plasma treatment times using a 514.5 nm excitation laser. Air 

plasma treatments were done at power of 29.6 W at pressure of 600 mTorr. Error bars were 

generated for separate measurement at different locations on the same substrate. 

 

As seen in Figure 2A the band is near 400 nm, as expected for silver. Figure S2 shows the results of 

the mathematical deconvolution of this peak into three distinct absorption bands, which included the 

main band at 397 nm, and two smaller bands at 439 nm and 466 nm. Figure S2 shows the evolution of the 

individual band intensities with plasma exposure time, which featured a high initial slope followed by a 

plateauing after long exposure times, resembling the Ra response. The band broadening occurred on the 

low frequency side, due to the growth of two secondary bands. It was primarily the low frequency tail of 

the 466 nm band, which overlapped with the 514.5 nm Raman excitation source. We followed the 
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resulting SERS intensity of a 5 mM citrate solution after five different plasma treatment times. Figure 2B 

shows that intensity of the νC-COO citrate band was nearly unchanged at exposure times of 15 min or 

less, but increased after that. This corresponded to the spectral density increases at the Raman laser 

excitation frequency shown in Figure 2A. Future optimisation should include longer plasma exposure 

times, to maximize Ra, and the use of higher frequency excitation lasers, to achieve better overlap with 

the silver absorption band.  

Figure 3. (A) Raman spectra of (i) PDMS, (ii) 500 mM sodium citrate solution, and  

(iii) SER spectra of 5 mM sodium citrate solution over the opaque SERS substrate. The 

PDMS spectrum in (i) was acquired directly at the surface of PDMS. Sodium citrate 

spectrum (ii) was acquired in a glass capillary. The region marked by the double star (**) 

shows the νCH2 and νCH3 absorption peaks of citrate and PDMS, respectively analysed in (B). 

The region marked by a single star (*) in (iii) corresponds to the νC-COO stretching region 

of the sodium citrate which is used for the SERS measurements in the next section. The 

region marked by the double star (**) shows the νCH2 and νCH3 absorption peaks of citrate 

and PDMS, respectively analysed in (B); (B) Spectra of 500 mM sodium citrate solution 

(red) and water (black) as measured with the focal point 50 µm away from the microchannel 

wall. Solid lines show spectra that were acquired in channels where surfaces are coated by  

an opaque silver layer and broken lines represent measurements in channels with 

PDMS-exposed walls. 

 

3. Results and Discussion 

3.1. Eliminating Background Signals from SERS Measurements 

The MF bioreactor described here was designed to confine and measure the biofilm precursor flow 

streams along the channel wall where measurements are taken. Due to the close proximity of the channel 

wall and the analyte molecules, the SERS surface should both enhance sensitivity and block background 

signals originating from the PDMS channel wall. The latter was critical because PDMS CH3 symmetric 
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and asymmetric stretching bands (2,907 cm
−1

 and 2,967 cm
−1

, respectively) [41] overlap with signals 

from most organic molecules, such as citrate CH2 symmetric and asymmetric stretching (2,935 cm
−1

 and 

2,986 cm
−1

, respectively) (Figure 3A) [42]. For example, measurements of pure water in the absence of 

an opaque silver layer at the channel wall revealed νCH3 bands from PDMS even in when the confocal 

measurement point was displaced 50 µm above the channel surface wall (Figure 3B). Even absorption 

bands from a 500 mM sodium citrate solution were significantly blocked by PDMS νCH3 bands. 

Therefore, SERS surfaces required a continuous opaque metal layer along the channel wall, such that no 

laser excitation radiation could reach the underlying PDMS. This eliminated interfering PDMS bands, 

revealing the true spectral characteristics from pure water and the 500 mM sodium citrate solution.  

3.2. Calibration of the SERS Sensing Surface  

The efficacy of our method for achieving good SERS substrates in a microchannel was tested by:  

(i) the determination of the limit of detection for sodium citrate using a calibration curve; (ii) verification 

that signals are independent of the flow rate and (iii) determining fast signal response time after a rapid 

change in analyte concentration. 

A calibration curve correlates Raman scattering intensities to known chemical concentrations in order 

to quantitatively determine concentrations in unknown solutions. This is particularly important when 

using SERS surfaces in microchannels because the plasmonic enhancement is very sensitive to the 

SERS fabrication technique. We generated a calibration curve using the citrate band associated with 

νC-COO at 952 cm
−1

 (Figure 4A). We chose this band over the vCH2 because it was stronger and did not 

have any overlap with vO-H band from water, which we used for normalization. Figure 4B shows the 

normalized intensity of the 952 cm
−1 

band. The curve was collected at the SERS surface prepared as 

described in Sections 2.2 and 2.3 using data acquisition time t = 60 s, laser power P = 10 mW. The total 

flow rate Q = 0 mL/hr was used to eliminate any flow induced cooling, thereby demonstrating the benefit 

having a low P, which resulted in no heat-induced bubble formation. Other measurements using  

P = 100 mW resulted in bubble formation at the channel wall except at high flow rates. In addition, the 

reduction in energy supplied to the system enabled by SERS, should also strongly reduce other negative 

effects related to analyte heating, such as photodegradation of analyte molecules and flow distortions 

due to thermal driven convection cells resulting from heating of the SERS surface at the bottom of the 

channel. On the other hand, Figure 5B shows the resulting linear calibration curve in the concentration 

range 0.1 mM and 5 mM. We did not calibrate for lower concentrations because this range was sufficient 

for the current work, and non-linearities may exist outside of this range [29,43]. Therefore, 

concentrations below 0.1 mM can only be used for qualitative purposes. For comparison, without the 

SERS substrate, the limit of detection was 10 mM for acquisitions of t = 600 s at laser power of  

P = 250 mW. The enhanced sensitivity in the sub mM range will enable future kinetic studies into 

biocatalytic degradation of citrate by biofilms. Moreover, the large reduction in acquisition time allows 

faster generation of spectral images with better spatial resolution.  
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Figure 4. (A) Spectra of stationary sodium citrate solutions over silver SERS substrate in the 

region of C-COO stretching in the concentration range from 0.1 mM to 5 mM acquired using 

P = 10 mW, v = 514.5 nm and t = 60 s. The spectra were normalized with the νO-H band of 

water at 3,535 cm
−1

. Each spectrum shown is the average of four spectra at same 

concentration; (B) Calibration curve for sodium citrate using the band at 952 cm
−1

. The 

standard deviations of four measurements at each concentration were used for the error bars. 

 

Next, we verified that the flow rate had no effect on the measurements. In these experiments a 5 mM 

citrate solution was pumped into the MF bioreactor at flow rates ranging between 0 mL/h and 3 mL/h. 

Measurements using t = 60 s and P = 10 mW were conducted multiple times at each flow rate. 

Comparing their averages, it was determined that there was no statistical difference in average signal 

intensity (data not shown). The signal response in the time following a rapid change in concentration, 

was achieved by flowing a 5 mM sodium citrate solution at Q2 = 0.5 mL/h and then rapidly reducing the 

flow to Q2 = 0 mL/h while increasing the flow of pure water from Q1 = 0 mL/h to Q1 = 0.5 mL/h. The 

change in measured signal intensity with time (Figure S3) shows a rapid decrease in peak intensity 

following an initially slow decrease, which we attribute to residual flow through the system following 

changes to the pump flow rates. 

3.3. Spectral Imaging and Validation of Biofilm Precursors 

Next, SERS imaging along the cross-section (perpendicular to the direction of flow) of the 

flow-confined 5 mM citrate stream was conducted to determine its coverage and concentration along the 

SERS surface. Validation was accomplished using optical microscopy with dyes added for visualization. 

Figure 5A shows an optical micrograph of a stream of citrate solution (Q2 = 0.15 mL/h) flowing along 

the SERS surface after emerging from the junction between channels in levels 1 and 2. The confinement 

phase flow rate was Q1 = 0.34 mL/h. In order to demonstrate the ability to use the platform to template 

biofilm growth, we inoculated the MF bioreactor with Pseudomonas sp. bacteria and cultured it under a 

flow-confined citrate growth solution with the same flow conditions used as in Figure 5A. Figure 5B 

shows a representative high contrast optical micrograph of a spatially confined biofilm after 48 h 

following inoculation. 
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Figure 5. (A) An image of the microchannel in the vicinity of the junction with solutions of 

pure water (red) and 5 mM citrate (blue), respectively. (B) Micrograph the flow-templated 

Pseudomonas sp. bacterial biofilm after 48 h growth at 22 °C (with no dyes present in either 

solution phase) cultivated under the same flow conditions as in (A). (C) Cross-sections  

of the citrate solution and a flow-templated biofilm determined by optical density 

measurements and SERS. Concentrations profile of the citrate solution (black data points) 

was measured by SERS along the path marked in (A).The citrate concentration was 

determined by the conversion of the intensity ratio of νC-COO (952 cm
−1

) and νO-H  

(3,435 cm
−1

) using a calibration curve (Figure 4B). Error bars were derived from the 

uncertainty on the linear regression that defined the calibration curve. The black broken line 

is for eye guidance. The cross-section of the citrate analyte stream from (A) was acquired by 

image analysis of the blue colour optical density at various paths positions along the length 

of the channel and averaging their results (solid blue line). The optical density cross-section of a 

flow-templated biofilm (solid green line) was acquired by averaging data from individual 

micrographs acquired between 48 and 56 h after inoculationin the region shown in (B). Scale 

bars in A and B are 500 μm. The flow rates used in A-C were Q2 = 0.15 mL/h and  

Q1 = 0.34 mL/h. 

 

The cross-sections of the citrate solution and the flow-templated biofilm from Figure 5A,B were 

measured quantitatively by a combination of optical density measurements and SERS imaging and 

plotted in Figure 5C. For SERS images, no dyes were used in order to eliminate extra vibrational 

absorption bands and to prevent possible fluorescence. Near the channel walls, the measured citrate 

concentration along the SERS surface was zero, indicating the presence of only the pure water 

confinement phase. At short distance from either wall, the citrate concentration rapidly increased until it 

reached a plateau at 5 mM, as expected. The width of the plateau was approximately 1,100 µm. Since 

SERS efficiency rapidly decreases at distances farther than 3 nm from the metallic surface [44], the 

plateau width represents the width of the citrate stream along the bottom of the channel. For validation 

purposes, we measured the optical density from the micrograph along the same path used for SERS. The 

profile for these measurements had a bell-shaped curve (Figure 5C). The difference in the curves 

acquired using the two methods arose because transmission optical microscopy produces averaged 

colour density along the z-direction, whereas SERS only measures the surface concentration. Since the 

biofilm precursor phase emerges from the bottom of the Level 1, it is widest at the bottom of the channel. 
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Therefore, the location where the optical intensity begins to increase marks the precursor/confinement 

phase boundary at the SERS surface. This is discussed further in Supplementary Material. The measured 

width was 1,150 µm, which agrees well with the SERS measurements.  

The optical density profile of the templated biofilm from Figure 5B is also plotted in Figure 5C. As 

expected, biofilm growth was confined to the centre of the channel where the concentration of citrate 

was non-zero. We note that the biofilm profile followed approximately the same trend as the citrate 

optical density profiles rather than the citrate SERS profiles. From this information, we deduce that the 

height of the precursor solution layer near the precursor/confinement solution interface must be too 

small to provide sufficient nutrients to adsorbed bacteria, thereby preventing growth. This approach can 

be used in future studies to gain further insights regarding MF studies of biofilms as well as other 

chemical or biochemical phenomena occurring at microchannel walls. 

In addition, the SERS chemical concentration data shows concentration gradients between the zones 

containing 5 mM and zero citrate concentration. We hypothesize that these are the result of diffusing 

citrate molecules along the SERS surface between the two solutions. Future experiments are planned to 

measure concentration gradients and correlate them to molecular diffusion properties along the  

SERS surface. 

4. Conclusion and Outlook 

A bioreactor with integrated plasmonic surface for SERS has been demonstrated for the spectral and 

optical imaging of biofilms and their precursor materials. The SERS surface was easily fabricated using 

equipment available to most research groups and can be applied to large complex channel geometries 

and is not limited to any microfluidic fabrication material in particular. Enhanced sensitivity was enough 

to enable sub millimolar sensitivity, fast data acquisition and low laser power. The novel two-level 

architecture induces sheath flow confinement of the biofilm precursor solution against the plasmonic 

surface, enabling unobstructed optical and SERS imaging. We observe good complementarity in the 

flow profile using optical microscopy and SERS imaging. Finally, we successfully flow-templated a 

Pseudomonas sp. bacterial biofilm under dynamic flow conditions. Further optimisations can include 

exploration of plasma treatment times and conditions, and utilization of laser frequencies that more 

closely match the plasmonic band of the SERS surface. The microfluidic device and methodology 

developed opens the way for future in situ spectral imaging of biofilms and their biochemical 

environment under dynamic flow conditions. 
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