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Simple Summary: In this study, we monitored FMISO-hypoxia during chemo-radiotherapy (CRT)
in head-and-neck cancer patients and we aimed to develop a radiomics model for prediction of
treatment outcome. The protocol for the prospective patient cohort (N = 35) involved FMISO-PET/CT
imaging at three time-points during treatment (weeks 0, 2 and 5). FMISO-hypoxia monitoring was
quantified in terms of variations in the size, in the location and in the radiomics features (delta
radiomics) of the hypoxia subvolume within the tumor. Local recurrence, distant metastasis, overall
survival and progression free survival were employed for the characterization of CRT outcome.

Abstract: Tumor hypoxia is associated with radiation resistance and can be longitudinally moni-
tored by 18F-fluoromisonidazole (18F-FMISO)-PET/CT. Our study aimed at evaluating radiomics
dynamics of 18F-FMISO-hypoxia imaging during chemo-radiotherapy (CRT) as predictors for treat-
ment outcome in head-and-neck squamous cell carcinoma (HNSCC) patients. We prospectively
recruited 35 HNSCC patients undergoing definitive CRT and longitudinal 18F-FMISO-PET/CT scans
at weeks 0, 2 and 5 (W0/W2/W5). Patients were classified based on peritherapeutic variations of
the hypoxic sub-volume (HSV) size (increasing/stable/decreasing) and location (geographically-
static/geographically-dynamic) by a new objective classification parameter (CP) accounting for
spatial overlap. Additionally, 130 radiomic features (RF) were extracted from HSV at W0, and their
variations during CRT were quantified by relative deviations (∆RF). Prediction of treatment outcome
was considered statistically relevant after being corrected for multiple testing and confirmed for the
two 18F-FMISO-PET/CT time-points and for a validation cohort. HSV decreased in 64% of patients at
W2 and in 80% at W5. CP distinguished earlier disease progression (geographically-dynamic) from
later disease progression (geographically-static) in both time-points and cohorts. The texture feature
low grey-level zone emphasis predicted local recurrence with AUCW2 = 0.82 and AUCW5 = 0.81 in
initial cohort (N = 25) and AUCW2 = 0.79 and AUCW5 = 0.80 in validation cohort. Radiomics analysis
of 18F-FMISO-derived hypoxia dynamics was able to predict outcome of HNSCC patients after CRT.
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1. Introduction

Radiotherapy constitutes a treatment mainstay for patients with head-and-neck squa-
mous cell carcinomas (HNSCC) and is often combined with concomitant chemotherapy
for locally/locoregionally advanced cancers [1,2]. However, the radiation resistance of
individual tumors has been shown to strongly depend on the presence and dynamics of
tumor-associated hypoxia [3–5]. Several means are available to assess and monitor tumor-
associated hypoxia, including direct oxygen measurements, gene/protein expression anal-
yses in tissue specimens and hypoxia imaging [6]. In this respect, hypoxia PET/CT allows
longitudinal and non-invasive measurement of tumor hypoxia. Additionally, hypoxia PET
tracers such as 18F-fluoroazomycin arabinoside (18F-FAZA) or 18F-fluoromisonidazole
(18F-FMISO) have been extensively studied to monitor hypoxia in HNSCC. 18F-FMISO-
PET has been reported to reflect cell reoxygenation and could therefore be suitable for
monitoring therapeutic efficiency [7,8].

Considering the significant influence of tumor-associated hypoxia on the response of
HNSCCs to radiotherapy, different treatment strategies have been proposed and tested
in exploratory analyses, especially escalating treatment doses to high-risk tumor subvol-
umes [9–11]. Consequently, monitoring spatial and temporal hypoxia responses by PET
imaging might provide information to design response-adapted therapy strategies [12].
However, the identification of patients that could benefit from such strategies, as well
as the identification of critical subareas is still a matter of discussion, and more studies
addressing these issues specifically are needed.

Radiomics is an emerging field developing descriptive or predictive computational
models for image analyses to improve individualized diagnosis or treatment selection [13–15].
Radiomics relies on the extraction of a large amount of quantitative imaging features
(radiomic features) such as first-order statistics (histogram and shape parameters), and
second or higher-order statistics simultaneously providing spatial and voxel intensity
information (texture features). Radiomics has been successful in the prediction of treatment
outcome in several cancer sites: lung [16,17], glioblastoma [18,19] and prostate [20,21]. In
our study, we aimed at identifying 18F-FMISO radiomics-processed spatial information
about critical tumor subvolumes that correlate with adverse outcome and may therefore
contribute to models for hypoxia-directed treatment adaptation in HNSCC patients.

2. Materials and Methods
2.1. Patients

Our study involved 35 patients with histologically confirmed locally advanced HN-
SCC of the oral cavity, oropharynx, hypopharynx and larynx. All patients underwent
definitive CRT. Radiation treatment was delivered as conformal intensity-modulated ra-
diation therapy with a total dose of 70 Gy in 2 Gy fractions: the planning target vol-
ume received 50 Gy in 25 fractions and the boost volume additionally received 20 Gy in
10 fractions. The boost target volume was contoured by an expert radiation oncologist,
based on clinically relevant regions (both primary tumor and nodal volumes) determined
by multimodality imaging. The hypoxic sub-volume (HSV) observed within the boost
volume was evaluated. Cisplatin was administered in weeks 1, 4 and 7 (100 mg/m2 body
surface area). The analysis was applied to two different cohorts: for the initial cohort
25 patients were prospectively recruited between March 2013 and August 2017 and for the
validation cohort 10 additional patients were prospectively recruited from January 2019 to
October 2020. Clinical characteristics of the patient cohorts are summarized in Table 1. For
HPV status definition, P16 overexpression was used as surrogate parameter for tumor’s
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HPV status, and p16 overexpression was assumed if ≥70% of cells (cytoplasm and nuclei)
were p16-positive.

Table 1. Clinical characteristics of the patient cohorts.

Clinical Characteristics Initial Cohort
(n = 25)

Validation Cohort
(n = 10)

Clinical Trial Register DRKS00003830 DRKS00003830
Age (years, mean ± standard deviation,

range) (59 ± 8, 41–79) (63 ± 9, 48–76)

Sex
Female/Male 2 (8%)/23 (92%) 2 (20%)/8 (80%)

Smoker (yes) 20 (80%) 9 (90%)
HPV-Status (positive) 6 (24%) 4 (40%)

T-Stage (*)
T2/T3/T4 1 (4%)/8 (32%)/16 (64%) 1 (10%)/5 (50%)/4 (40%)

T-Site
oral cav-

ity/oropharynx/hypopharynx/larynx/
2 (8%)/9 (36%)/8 (32%)/1 (4%)/5 (20%) 1 (10%)/6 (60%)/1 (10%)/0 (0%)/2 (20%)

N-Stage
N0/N1/N2b/N2c/N3 2 (8%)/1 (4%)/5 (20%)/17 (68%)/0 (0%) 0 (0%)/2 (20%)/2 (20%)/5 (50%)/1 (10%)

Local Recurrence (yes) * 12 (48%) 1 (10%)
Distant Metastasis (yes) 6 (24%) 3 (30%)

Progression Free Survival *
(months, mean ± standard deviation,

range)
(22 ± 19, 3–61) (8 ± 7, 0–24)

Overall Survival *
(months, mean ± standard deviation,

range)
(32 ± 16, 5–61) (11 ± 8, 0–24)

(*) p < 0.05 clinical characteristics not comparable between cohorts.

2.2. 18F-FMISO-PET Imaging

Each patient underwent three 18F-FMISO-PET scans: one before CRT (W0) and two
additional scans in weeks 2 (W2) and 5 (W5) during CRT. The 10 min 18F-FMISO-PET
acquisitions were planned 160 min post-injection of a tracer activity of 4 MBq/kg body
weight. All patients were imaged with a Philips Gemini TF BigBore 16 PET/CT (Eindhoven,
The Netherlands). The scanner fulfilled the requirements indicated in the European Associ-
ation of Nuclear Medicine (EANM) imaging guidelines and obtained EANM Research Ltd.
(EARL) accreditation. PET data were corrected for random- and scatter-coincidences and
photon attenuation, based on the corresponding CT dataset. The reconstruction method
was a LOR-based ordered-subset iterative time-of-flight algorithm using spherical coor-
dinates (BLOB-OS-TF) with three iterations, 33 subsets and a relaxation parameter for
smoothing of 0.35. Of the two isotropic PET reconstruction voxel sizes available in our
PET/CT system (4 and 2 mm), the smaller one was chosen (matrix: 512 × 512). This is
the PET image resolution currently employed at our institution in the clinical workflow
for HNSCC patients. The voxel intensities were normalized to decay-corrected injected
activity per kg body weight (standardized-uptake-value SUV (g/mL)).

All patients were immobilized with a thermoplastic head-and-neck mask in the ra-
diation treatment position. 18F-FMISO-PET image co-registration was performed using
the respective CT images by applying a rigid registration within the open source software
3D-Slicer (https://www.slicer.org/, accessed on 9 June 2021). Registered images were
visually confirmed or corrected before being involved in the analysis.

2.3. Segmentation

Based on previous publications, HSV was determined by using a target-to-background-
ratio (TBR) of 1.4 [22,23]. A detailed description of background (BG) segmentation is pro-
vided in the Appendix A. The proposed semi-automatic segmentation method minimizes

https://www.slicer.org/
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inter- and intra-variability. HSV were segmented on each of the three 18F-FMISO scans:
HSV_W0, HSV_W2 and HSV_W5.

2.4. Parameters for the Quantification of Variations in Size and Localization of Hypoxia Volumes

Changes in size of hypoxia during treatment (increasing-hypoxia (IH), stable-hypoxia
(SH) and decreasing-hypoxia (DH)) and changes in localization (geographically-static
(gS) and geographically-dynamic (gD)) were evaluated [24,25]. For this purpose, a new
classification parameter (CP) was proposed to objectively quantify the variation of hypoxia.
This CP used the relative volume difference (∆V) and three parameters accounting for
spatial overlapping, namely dice-similarity-coefficient (DICE), sensitivity (Sens.) and
positive-predictive-volume (PPV). In this way, the high subjectivity conveyed by a visual
classification assessment was avoided. A detailed description of the parameters accounting
for spatial overlapping is provided in the Appendix B.

The CP takes into account changes of the HSV size based on relative volume dif-
ference: increasing-hypoxia when the volume increases more than 15% (IH: ∆V ≥ 15%),
stable-hypoxia when hypoxia does not vary more than 15% (SH: 15% > ∆V > −15%), and
decreased-hypoxia when volume decreases more than 15% (DH: ∆V < −15%). The 15%
criterion for stability is based on previous investigations [26]. Once ∆V has been calcu-
lated, depending on the resulted classification (IH, SH or DH), CP is defined by different
parameters: for stable hypoxia CP = DICE, for increasing-hypoxia CP = Sens. and for
decreasing-hypoxia CP = PPV. In this way, geographically-static hypoxia (total overlapping
of the contours) corresponds to CP = 1 independently of the variation in size of the hypoxia
volumes. By using the combination of the 3 parameters (DICE, Sens. and PPV) in CP
definition, we could therefore distinguish between static (high values of CP) and dynamic
hypoxia (low values of CP) independently of the variation in hypoxia size, Figure 1.

Cancers 2021, 13, x  4 of 16 
 

 

2.3. Segmentation 
Based on previous publications, HSV was determined by using a target-to-back-

ground-ratio (TBR) of 1.4 [22,23]. A detailed description of background (BG) segmentation 
is provided in the Appendix A. The proposed semi-automatic segmentation method min-
imizes inter- and intra-variability. HSV were segmented on each of the three 18F-FMISO 
scans: HSV_W0, HSV_W2 and HSV_W5. 

2.4. Parameters for the Quantification of Variations in Size and Localization of Hypoxia Volumes 
Changes in size of hypoxia during treatment (increasing-hypoxia (IH), stable-hy-

poxia (SH) and decreasing-hypoxia (DH)) and changes in localization (geographically-
static (gS) and geographically-dynamic (gD)) were evaluated [24,25]. For this purpose, a 
new classification parameter (CP) was proposed to objectively quantify the variation of 
hypoxia. This CP used the relative volume difference (∆V) and three parameters account-
ing for spatial overlapping, namely dice-similarity-coefficient (DICE), sensitivity (Sens.) 
and positive-predictive-volume (PPV). In this way, the high subjectivity conveyed by a 
visual classification assessment was avoided. A detailed description of the parameters ac-
counting for spatial overlapping is provided in the Appendix B. 

The CP takes into account changes of the HSV size based on relative volume differ-
ence: increasing-hypoxia when the volume increases more than 15% (IH: ∆V ≥ 15%), sta-
ble-hypoxia when hypoxia does not vary more than 15% (SH: 15% > ∆V > −15%), and de-
creased-hypoxia when volume decreases more than 15% (DH: ∆V < −15%). The 15% crite-
rion for stability is based on previous investigations [26]. Once ∆V has been calculated, 
depending on the resulted classification (IH, SH or DH), CP is defined by different pa-
rameters: for stable hypoxia CP = DICE, for increasing-hypoxia CP = Sens. and for decreas-
ing-hypoxia CP = PPV. In this way, geographically-static hypoxia (total overlapping of the 
contours) corresponds to CP = 1 independently of the variation in size of the hypoxia vol-
umes. By using the combination of the 3 parameters (DICE, Sens. and PPV) in CP defini-
tion, we could therefore distinguish between static (high values of CP) and dynamic hy-
poxia (low values of CP) independently of the variation in hypoxia size, Figure 1. 

 
Figure 1. Scheme of the classification employed for classifying variations in size and location of tumor hypoxia during
treatment. The classification parameter (CP) takes into account variations in size and location simultaneously.



Cancers 2021, 13, 3449 5 of 16

2.5. Radiomics Features Extraction

The segmentation of hypoxia on the 18F-FMISO-PET image acquired before treat-
ment (HSV_W0) was transferred to all co-registered PET series. The 130 radiomic fea-
tures [27] were computed for each 18F-FMISO time-point using an open-source code based
on MATLAB® (The MathWorks Inc., Natick, MA, USA) [28]. As recommended by previ-
ous investigations, SUV values of the voxels within the contour were discretized with a
fixed bin width (W = 0.01) for texture feature computation [27,29]. Texture features were
derived from five matrices: the 3D version of the gray-level co-occurrence matrix (GLCM);
the gray-level run length matrix (GLRLM), the gray-level size zone matrix (GLSZM) and
the neighborhood gray tone difference matrix (NGTDM). A wavelet band-pass filtering
(WF), with a weight ratio 1:2 between band-pass sub-bands and other sub-bands, and an
equal-probability quantization algorithm (Q), by using the function histeq of MATLAB®,
were also obtained. The features used in this study are listed in the supplementary material
(Table S1).

Relative differences in radiomic features (∆RF) between W0 and W2 and between W0
and W5 were calculated. The correlations between the 130 ∆RF and the treatment outcome
were evaluated.

2.6. Statistical Analysis

Statistical analysis was performed using an in-house software based on Wolfram
Mathematica v 11.2 (Wolfram Research Europe Ltd., Witney, UK).

The Fisher-ratio-test was applied for the comparison of clinical characteristics in the
training and the validation cohort. In the analysis of treatment response, overall survival,
progression-free survival, locoregional recurrence and distant metastases were evaluated.
For overall and progression-free survival, time intervals were calculated from the start of
the treatment. Kaplan–Meier curves were estimated, and groups were compared with the
log-rank test. Multivariate Cox regression was used for estimation of hazard ratios (HR)
with 95% confidence intervals (CI). In the analysis of binary outputs (local recurrence and
distant metastases), the Mann–Whitney U test was used for non-pairwise comparison of
groups. An open-source code for binary logistic regression analysis was applied [28]. It
involved imbalance-adjusted bootstrap resampling in prediction performance estimation
and in the computation of model coefficients. In order to avoid redundancy, we also
assessed strong correlations (Spearman test with r > 0.8) between different ∆RF showing
good prediction performance, and only the feature with the most statistically significant
prediction was selected. p-Values were adjusted for multiple testing by controlling the false
discovery rate with Benjamin and Hochberg’s method [30].

Outcome prediction analyses were done for the relative deviation observed at W2
and afterwards validated regarding the relative deviations for W5. The prediction value of
∆RF was only considered relevant for positive findings at both time-points. In addition, a
second patient cohort was used as a validation cohort in order to confirm the results.

3. Results
3.1. Variations in Size and Localization of Hypoxia Volumes: CP Predicts Progression
Free Survival

Inhomogeneous dynamics of HSV over time were observed for the analyzed patients.
The number of patients that could be classified in each hypoxia variation status according
to ∆V and CP is presented in Figure 2. Decreasing hypoxia volumes were observed in
16 of 25 patients (64%) at W2, and in 20 patients (80%) at W5. Only 24% of patients
showed geographically-stable tumor hypoxia (CP>>) during the whole treatment. Detailed
information of hypoxia variation status and treatment outcome for each patient and each
week is provided in the supplementary materials, Figure S1.



Cancers 2021, 13, 3449 6 of 16

Cancers 2021, 13, x  6 of 16 
 

 

geographically-stable tumor hypoxia (CP>>) during the whole treatment. Detailed infor-
mation of hypoxia variation status and treatment outcome for each patient and each week 
is provided in the supplementary materials, Figure S1. 

 
Figure 2. Status classification based on variations during treatment in size and localization of hy-
poxic volumes. Patients without hypoxic volume in the current time-frame by † and patients with-
out hypoxic volume at both W0 and the current time-frame are represented by *. 

The predictive values for CP, ∆V, DICE, PPV and Sens. were investigated, and results 
are presented in Table 2. CP distinguished between patients with earlier and later pro-
gression at W2 (p = 0.018) and its prediction was confirmed at W5 (p = 0.035). No other 
parameter (∆V, DICE, PPV, Sen.) has shown statistically significant outcome prediction 
independently of the time-point of the 18F-FMISO acquisition. Kaplan–Meier curves for 
CP are presented in Figure 3. Specifically, patients with higher values of CP (geograph-
ically-static HSV), exhibited significantly prolonged progression free survival. 

Table 2. p-Values for the prediction of the treatment response at week 2 and 5 (W2/W5) during CRT. 
No statistically significant prediction was represented by “n.s.”. 

Parameters 
Overall 
Survival 
W2/W5 

Progression 
Free Survival

W2/W5 

Local  
Recurrence 

W2/W5 

Distant  
Metastasis 

W2/W5 
Relative volume difference (∆V) n.s./n.s. n.s./n.s. n.s./0.026 n.s./n.s. 

Dice Similarity Coefficient 
(DICE) 

0.049/n.s. 0.004/n.s. 0.004/n.s. 0.018/n.s. 

Positive Predictive Value (PPV) n.s./n.s. n.s./0.046 n.s./0.046 n.s./n.s. 
Sensitivity (Sens.) n.s./n.s. n.s./n.s. n.s./n.s. n.s./n.s. 

Classification Parameter (CP) n.s./n.s. 0.018/0.035 n.s./0.041 n.s./0.043 
  

Figure 2. Status classification based on variations during treatment in size and localization of hypoxic
volumes. Patients without hypoxic volume in the current time-frame by † and patients without
hypoxic volume at both W0 and the current time-frame are represented by *.

The predictive values for CP, ∆V, DICE, PPV and Sens. were investigated, and results
are presented in Table 2. CP distinguished between patients with earlier and later pro-
gression at W2 (p = 0.018) and its prediction was confirmed at W5 (p = 0.035). No other
parameter (∆V, DICE, PPV, Sen.) has shown statistically significant outcome prediction
independently of the time-point of the 18F-FMISO acquisition. Kaplan–Meier curves for CP
are presented in Figure 3. Specifically, patients with higher values of CP (geographically-
static HSV), exhibited significantly prolonged progression free survival.

Table 2. p-Values for the prediction of the treatment response at week 2 and 5 (W2/W5) during CRT.
No statistically significant prediction was represented by “n.s.”.

Parameters
Overall
Survival
W2/W5

Progression
Free Survival

W2/W5

Local
Recurrence

W2/W5

Distant
Metastasis

W2/W5

Relative volume
difference (∆V) n.s./n.s. n.s./n.s. n.s./0.026 n.s./n.s.

Dice Similarity
Coefficient (DICE) 0.049/n.s. 0.004/n.s. 0.004/n.s. 0.018/n.s.

Positive Predictive
Value (PPV) n.s./n.s. n.s./0.046 n.s./0.046 n.s./n.s.

Sensitivity (Sens.) n.s./n.s. n.s./n.s. n.s./n.s. n.s./n.s.
Classification

Parameter (CP) n.s./n.s. 0.018/0.035 n.s./0.041 n.s./0.043

3.2. Variations in Radiomic Features: Prediction of Local Recurrence and Progression Free Survival

From the 130 radiomic features analyzed in this dataset, 35 were able to predict treat-
ment outcome at W2. They are listed in Table S2, supplementary material. For 18 of them,
the outcome prediction was confirmed at W5, see Table 3. The 18 radiomics features with
predictive value are listed in Appendix C. No one of the clinical parameters in Table 1
showed statistically significant outcome prediction, when applying Benjamin–Hochberg
correction for multiple testing. After removing redundant radiomics features by Spear-
man’s correlation test, the best prediction performances were observed for variations in
low gray-level zone emphasis (LGZE) and for variations in the correlation of co-occurrence
matrix (CCM), Figure 4. Concretely, the relative deviation of LGZE (∆LGZE) discriminated
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between patients with and without locoregional recurrence, with an area-under-the-curve
(AUC) of 0.82 and a specificity of 0.79 at W2 and AUC of 0.81 and specificity of 0.81 at W5.
In addition, ∆CCM distinguished between patients with earlier and later progression with
p = 0.003 at W2 and p < 0.001 at W5. Examples for two patients are shown in Figure 5.
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showed statistically significant outcome prediction, when applying Benjamin–Hochberg 
correction for multiple testing. After removing redundant radiomics features by Spear-
man’s correlation test, the best prediction performances were observed for variations in 
low gray-level zone emphasis (LGZE) and for variations in the correlation of co-occur-
rence matrix (CCM), Figure 4. Concretely, the relative deviation of LGZE (∆LGZE) discrimi-
nated between patients with and without locoregional recurrence, with an area-under-
the-curve (AUC) of 0.82 and a specificity of 0.79 at W2 and AUC of 0.81 and specificity of 
0.81 at W5. In addition, ∆CCM distinguished between patients with earlier and later pro-
gression with p = 0.003 at W2 and p < 0.001 at W5. Examples for two patients are shown in 
Figure 5. 

Table 3. Number of FMISO radiomic features able to predict treatment outcome. Benjamin–
Hochberg multiple-test correction was applied to determine statistical significance. 

Time Point Overall 
Survival 

Local Recurrence Distant 
Metastasis 

Progression 
Free Survival 

W2 6 17 2 10 
confirmed at W5 0 15 0 3 

 
Figure 4. Prediction of treatment outcome by variations in low gray-level zone emphasis (∆LGZE) and by variations in the
correlation of co-occurrence matrix (∆CCM). On the left, the model for prediction of local recurrence by ∆LGZE at W5 is
shown. On the right, Kaplan–Meier curves and log-rank test for prediction of disease progression free survival by ∆CCM at
W2 are shown. CI = Confidence Interval.
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Figure 5. Example of 18F-FMISO-PET/CT images, HSV contours and values of CP, ∆CCM and ∆LGZE, for (a) P01, patient
without local recurrence and longer progression free survival, and for (b) P20 patient with local recurrence and shorter
progression free survival. All 18F-FMISO-PET images were represented with a scale of (0, 2) g/mL and superimposed to the
corresponding CT.

3.3. Confirmation of the Abbility to Predict Treatment Outcome by CP and ∆LGZE in the
Validation Cohort

In order to validate the outcome predictions performance observed for CP, ∆LGZE,
and ∆CCM in a second patient cohort, we prospectively recruited 10 additional patients.
Clinical characteristics of the validation cohort are presented in Table 1. Local recurrence
was observed for only one patient. Consequently, for the part of the validation focused on
the prediction of the local recurrence by ∆LGZE, 5 patients with local recurrence from the
initial cohort were included.

Results are presented in Table 4. The prediction of disease progression by ∆CCM was
not confirmed in the validation cohort. ∆LGZE predicted local recurrence with very good
performance independently of the time-point. In addition, disease progression prediction
by CP was statistically significant (p = 0.009) at W5. At W2, although the disease progression
prediction by CP was not statistically significant (p = 0.19), patients with geographically-
stable hypoxia (CP>>) showed an average for disease progression of 11.21 months and
patients with dynamic hypoxia (CP<<) showed earlier progression with an average of
7.8 months, Figure 6.

Table 4. Prediction of treatment outcome in the validation cohort: progression free survival by CP
progression free survival by ∆CCM and local recurrence by ∆LGZE.

Time-Point CP ∆CCM ∆LGZE

W2 p = 0.19 p = 0.49 AUC = 0.78 specificity = 0.89
W5 p = 0.009 p = 0.29 AUC = 0.79 specificity = 0.76
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4. Discussion

To the best of our knowledge, we presented the first study that simultaneously linked
variation in size, location and heterogeneity of hypoxia distribution based on 18F-FMISO-
PET image quantification to the outcome of HNSCC patients undergoing CRT. We proposed
a new classification parameter to objectively quantify temporary variations in hypoxia
localization. This classifier showed a statistically significant prediction of treatment out-
comes in our dataset. Additionally, the application of radiomics analysis on longitudinal
18F-FMISO images showed that the texture feature low grey-level zone emphasis predicted
local recurrence. Results for the CRT-outcome prediction were successfully confirmed on a
second 18F-FMISO acquisition time-point during treatment (W5) and in a validation cohort.

It was observed that the percentages of patients showing decreasing hypoxia during
the course of treatment (64% in W2 and 80% in W5) were in good agreement with the
remarkable reduction in tumor hypoxia observed in most studies performed so far. Specifi-
cally, in previous publications, decreasing or resolving hypoxia during or after treatment
was more frequent than residual or increasing hypoxia with percentages of 89% in W4 [27],
58% in W5 [19], 50% in W4 [5] and 79% in W4–W5 [28]. In our cohort, although a trend
towards decreasing hypoxia volumes during treatment was confirmed, no statistically
significant correlation between variations in size (∆V) and treatment outcome could be
observed. However, the variations in hypoxia localization quantified by CP (static against
dynamic) were able to significantly predict treatment outcomes independently of the ac-
quisition time of the 18F-FMISO-PET/CT exam. Patients with hypoxia remaining in the
same location during treatment had later disease progression (recurrence, metastasis or
death) than patients with dynamic hypoxia. Therefore, measuring spatial hypoxia dynam-
ics during CRT seems useful to monitor treatment and to develop treatment adaptation
strategies for HNSCC patients.

In HNSCC, previous publications have shown significant correlations between tumor
hypoxia and metastasis [29] or between hypoxia and decreased OS [28,30–34]. In our
study, in addition to the outcome prediction by CP discussed above, relative deviations
for the texture feature ∆LGZE were able to differentiate between patients with and without
local recurrence. LGZE is a texture feature that quantifies tracer (18F-FMISO) distribution
heterogeneity by emphasizing regions with low concentration. In our initial cohort, LGZE
decreased in both time-points: µLGZE(W0) = 0.05 and µLGZE(W2) = µLGZE(W2) = 0.01.
As reference for LGZE values, the NEMA-phantom sphere (diameter = 37 mm) in the
EARL-Accreditation measurement presented a value for LGZE (homogeneous) of 0.01 [35]
and for a set of heterogeneous home-made simulated lesions LGZE (heterogeneous) values
were around 0.0001 [36]. From the correlation between LGZE and local recurrence observed
at both time-points, we could conclude that local recurrence is less probable for patients
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in which 18F-FMISO heterogeneity within the initial hypoxic volume increased during
treatment. The lower probability of local recurrence associated with an increase in the
18F-FMISO heterogeneity (increasing low concentration regions) might be explained by an
improvement in tumor cell re-oxygenation given by CRT. This behavior was confirmed
in the validation cohort. Local recurrence prediction was statistically significant indepen-
dently of the 18F-FMISO-PET acquisition time-point during CRT. This result implies an
important advantage for the implementation of 18F-FMISO radiomics monitoring in clinical
routine and may provide a way of rendering resource-intensive longitudinal measurements
obsolete. Furthermore, this prediction model would allow to overcome the variability in
tumor hypoxia quantification by 18F-FMISO imaging [37–39] and to avoid determining the
optimal 18F-FMISO-PET time point during treatment [19,20].

Our findings may also have clinical implications for the radiation therapy of HNSCC
patients. Dynamic hypoxia within the tumor volume may confer a worse prognosis and
may therefore require treatment modification in these patients. However, escalation of the
treatment doses, as proposed, may not adequately target areas of dynamic hypoxia and,
hence, other means such as systemic hypoxia modification (e.g., with nimorazole) may
be more advisable in this setting [40–42]. Additionally, the radiomic feature LGZE may
predict significant hypoxia reduction over the course of treatment and in this respect help
to identify beneficial 18F-FMISO dynamics early into treatment. Considering that early
information of dynamic tumor hypoxia is crucial to dynamically adapt and personalize
treatment strategies, the radiomics data may hold potential stratifying HNSCC treatment
as they proved independent of the 18F-FMISO scanning time point.

Methods involved in our analysis (segmentation, objective parameter for quantifi-
cation of variations in size, computation of image features based on open-source code,
validation tests conventionally performed (KM, log-rank) or open-source, etc.) have been
chosen with the purpose of being easily reproducible by other institutions. Concerning
LGZE, in our previous evaluation with experimental phantom measurements [43] LGZE
has been proved to be robust with respect to: 3 different PET/CT systems, CT metal artifacts
in a head-and-neck configuration and two PET segmentation approaches (40% threshold
and a tumor-to-background based threshold). From all these findings the predictive value
of LGZE in a new cohort of patients from other institutions could be expected.

Cervical nodal necrosis is a negative prognostic parameter for HNSCC patients un-
dergoing radiotherapy [44,45]. As FMISO has been shown to accumulate in viable but
not in necrotic cells, FMISO does not accumulate in the necrotic core but rather in the
perinecrotic hypoxic region [46]. In malignant brain tumors, there was a strong correlation
between the FMISO uptake and the presence of histopathological necrosis [47]. As we did
not routinely perform post-therapeutic tissue biopsies or post-therapeutic multiparametric
MRI, we were not able to quantify tumor necrosis after chemoradiation in our cohort. It
is known that tumor cells can become apoptotic or necrotic in case of long-lasting severe
hypoxia [48]. Geographically static hypoxia over several weeks may therefore result in
necrosis induction. Warren and Partridge have incorporated those considerations and
developed a computational model of FMISO uptake [49]. In this context, it remains to
be elucidated whether the development of tumor necrosis could explain the different
prognostic role of geographically static and non-static hypoxia.

The main limitation of this study is the relatively small size of the clinical data sample.
For a proper understanding of the sample size, the complexity implied by the recruitment of
patients for this prospective trial should be taken into consideration: immobilized patients
were imaged by different modalities (FGD-PET, FMISO-PET, CT and MR), acquisitions
had to be performed at three different time-points during treatment (W0, W2 and W5)
and by the same system. While the size of our cohort was limited (N = 35), the number
of patients is still comparable or larger than the cohort size evaluated in previous related
publications [5,19,28]. The size of our data samples prevented us from reporting a predic-
tion model and from following an optimal workflow for a proper model validation [50].
Concretely, in the prediction of progression free survival by CP, the analysis focused on the
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quantification of the discrimination in terms of differences (log-rank test) of Kaplan–Meier
curves for each subgroup (CP high, CP low). However, no model was reported. If our
results are confirmed in a larger data sample, a model for prediction of progression free
survival based on CP values will be reported. The accuracy of the model should then
be quantified by Harrell’s C-index [51], which is a robust estimator of the concordance
between outcome and prediction of the model. In addition, for the validation of the predic-
tion of local recurrence by LGZE, patients from the initial cohort were included. This was
necessary in order to have a representative sample of local recurrence (40%), even though
it compromises the significance of the accuracy performed by the prediction. Nevertheless,
we should remark that a selective analysis was employed in order to ensure the significance
of the predictions reported and in order to reject 18F-FMISO quantification parameters
casually linked with treatment outcome. Concretely, on the one hand, our criteria employed
correction for multiple testing to identify statistically significant correlations. On the other
hand, outcome predictions by imaging features were validated for a second 18F-FMISO
acquisition time-point and a validation cohort. Although a larger data sample is required in
order to confirm our results, the current study already provides an internal validation, and
the findings reported here should be understood as a proof-of-concept to support further
investigations of the role of hypoxia for the chemoradiation treatment of HNSCC patients.

5. Conclusions

From our knowledge, this is the first study assessing variation in size, location and
heterogeneity of hypoxia distribution based on longitudinal 18F-FMISO-PET quantifica-
tion during CRT of HNSCC patients and confirms a trend of decreasing-hypoxia during
CRT. In our data sample, variations of volume and target-to-background of HSV did not
show statistically significant prediction of the treatment outcome; however, the CP, which
quantifies variation in location of HSV, and the ∆LGZE, which quantifies the variations in
the number of low 18F-FMISO concentration regions, showed predictive value and could
therefore be of interest for the definition of adaptive radiation therapies. The proposed
CP may help to facilitate the classification and comparison of hypoxia variations, and to
predict patient outcomes. The predictive value of the texture feature LGZE additionally
supports the role of hypoxia monitoring in radiation oncology.
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Appendix A. Automatic FMISO Segmentation Using the Parotid Contour from
Radiotherapy Planning

Segmentation of FMISO hypoxia is usually based on a threshold of 1.4 to 1.8 times
the mean standard-uptake value (SUVmean) within a manual contour of muscle [22]. In
order to facilitate the implementation of hypoxia volumes in RT and to minimize the
variability observed for manual delineation, we proposed a simple and automatic FMISO
segmentation of the background, using the parotid contour from radiotherapy planning.
Segmentation process involved the following three steps:

• Firstly, CT from radiotherapy planning is co-registered with FMISO-image by the
corresponding CT and contralateral parotid contour (Vparotid) is transferred to all
FMISOs.

• Then, for each voxel of Vparotid the intensities derived from the tree FMISOs (W0, W2
and W5) were multiplied and voxels that resulted in zero were removed from the
contour. This step took into account the possibility of having part of the Vparotid out of
the FMISO image.

• Finally, the background (Bgparotid) was defined selecting the voxels with highest
uptake until filling a volume of 6 mL. By focusing on higher uptake voxels, we could
minimized the partial volume effect (PVE) given in voxels in the peripheral zone of
the body and the co-registration error. Additionally, a volume of 6 mL permitted to
minimize the PVE in the computation of SUVmean.

Our proposed method for background definition was compared with the manual
delineation of the muscle employed as background in previous publications [23]. Therefore,
a sphere within the sternocleidomastoid was manually delineated by an oncologist and
established as a reference for background (Bgref). SUVmean stability during the treatment
and comparison of SUVmean for both background approaches (Bgref and Bgparotid) were
evaluated by Wilcoxon-Rank-Test (WRT) and Bland-Altman-Plot-analysis (BA). Results
proved that Bgref and Bgparotid provided comparable SUVmean. In addition, the stability of
SUVmean during RT was also confirmed for both contours, with non-statistically significant
variations. Consequently, results confirmed that the contour of parotid, required for RT
planning, could be employed for automatic FMISO segmentation, avoiding an additional
manual delineation of the muscle. The method proposed could therefore minimize the
time and the variability implied by manual contouring and consequently, in the current
paper BG refers to Bgparotid.

The HSV was therefore determined by applying a threshold of 1.4 times SUVmean
(BG). All voxels within the boost target volume of the radiotherapy planning with SUV
values above this threshold were segmented. Only the largest closed surface was labelled
as hypoxia. See example in Figure A1. We could validate our approach by visual inspection:
we did not observe hypoxia within the boost incorrectly rejected. The boost target volume
was contoured by an expert radiation oncologist, based on clinically relevant regions (both
primary tumor and nodal volumes) determined with multimodality imaging. In the boost
volume a total dose of 70 Gy was delivered.
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Figure A1. Example of contours for patient P08. 18F-FMISO-PET/CT slices: coronal (left), axial
(middle) and sagittal (right). All 18F-FMISO -PET images of were represented with a scale (0, 2) g/mL
and superimposed to the corresponding CT.

Appendix B. Parameters Accounting for Spatial Overlapping

For a reference segmented volume (A) and a second segmented volume (B), the
parameters accounting for spatial overlapping are defined as follows:

• Dice Similarity Coefficient (DSC) which represents the size of the union of two vol-
umes [52]:

DSC =
2(A ∩ B)
(A + B)

(A1)

(0: no spatial overlap, 1: complete overlap)

• Sensitivity (Sen.) and Positive Predictive Value (PPV). To take into account the false
positives (FP: Error Type I) and false negatives (FN: Error Type II), Sen. and PPV are
employed, Figure A2:

Sen =
(A ∩ B)

(A ∩ B) + (A\B) =
TP

TP + FN
(A2)

PPV =
(A ∩ B)
(B)

=
TP

TP + FP
(A3)

where TP means true positives.
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Appendix C. Radiomic Features with Predictive Value Independentl of the Time-Point
during Treatment

Local recurrence: LGZE, SZLGE, LZLGE, LGRE, SRLGE, LRLGE, WFLGZE, WFS-
ZLGE, WFLZHGE, WFLGRE, WFSRLGE, WFLRLGE, WFGLV2, QLGZE and QSZLGE.

Progression free survival: CCM, LZLGE, WF-Busyness.
All image features are defined in Table S1 of the supplementary materials.
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