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In-silico identification of the vaccine 
candidate epitopes against the 
Lassa virus hemorrhagic fever
Prabin Baral1,4, Elumalai pavadai1,3,4, Bernard S. Gerstman1,2 & Prem P. chapagain1,2 ✉

Lassa virus (LASV), a member of the Arenaviridae, is an ambisense RNA virus that causes severe 
hemorrhagic fever with a high fatality rate in humans in West and Central Africa. Currently, no FDA 
approved drugs or vaccines are available for the treatment of LASV fever. The LASV glycoprotein 
complex (GP) is a promising target for vaccine or drug development. It is situated on the virion 
envelope and plays key roles in LASV growth, cell tropism, host range, and pathogenicity. In an effort 
to discover new LASV vaccines, we employ several sequence-based computational prediction tools 
to identify LASV GP major histocompatibility complex (MHC) class I and II T-cell epitopes. In addition, 
many sequence- and structure-based computational prediction tools were used to identify LASV 
GP B-cell epitopes. The predicted T- and B-cell epitopes were further filtered based on the consensus 
approach that resulted in the identification of thirty new epitopes that have not been previously 
tested experimentally. Epitope-allele complexes were obtained for selected strongly binding alleles 
to the MHC-I T-cell epitopes using molecular docking and the complexes were relaxed with molecular 
dynamics simulations to investigate the interaction and dynamics of the epitope-allele complexes. 
These predictions provide guidance to the experimental investigations and validation of the epitopes 
with the potential for stimulating T-cell responses and B-cell antibodies against LASV and allow the 
design and development of LASV vaccines.

Lassa virus (LASV), a member of the Arenaviridae1, is an ambisense RNA virus that causes a severe hemorrhagic 
Lassa fever in humans. LASV is endemic, particularly in the West African countries of Sierra Leone, The Republic 
of Guinea, Nigeria, and Liberia2,3. The transmission of LASV to humans occurs through the urine or feces of 
infected Mastomys rats and the virus spreads human-to-human through direct contact with the blood, urine, 
feces, or other bodily secretions of an infected person. LASV can be fatal and no approved effective therapeutics 
are currently available. The development of therapeutics such as antibodies and vaccines for the treatment of 
LASV is therefore of significant urgency4–6.

Of the four proteins that are encoded by the two RNA segments of the LASV genome, the glycoprotein (GP) 
is the only protein on the viral surface. GP results from the cleavage of a 75 kDa precursor polypeptide, GPC by 
signal peptidase and then further glycosylated and processed into GP1 and GP27. GP1 is the receptor-binding 
subunit, and GP2 is the membrane-spanning fusion subunit8–10. The virion envelope protein spikes are composed 
of three heterotrimers, with each heterotrimer containing signal peptide, GP1, and GP211,12, shown in Fig. 1. A 
chalice-like GP trimer interacts with receptors on the cell surface, for example matriglycan, which mediates the 
entry of the virus into the host cell. In addition, the GP also interact with ERGIC-53 in the exocytic pathway, 
which helps to form infectious virions13. GP is considered to be a key factor for LASV growth, cell tropism, host 
range and pathogenicity, and as it is the only protein situated on the LASV virion surface, GP becomes a primary 
target for vaccine design4.

The crystal structure of the trimeric LASV GP in complex with the 37.7 H neutralizing antibody from a human 
survivor (PDB ID: 5VK2, Fig. 1) has been determined, thereby providing insight into the structural basis for 
antibody design. Analysis of the GP-37.7 H antibody complex shows that the antibody simultaneously binds to 
two GP monomers at the base of the GP trimer. The binding involves four discontinuous regions of LASV GP: 
two in site A and two in site B. Site A contains residues 62 and 63 of the N-terminal loop of GP1 and residues 387 
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to 408 in the T-loop (residues 365–384) and HR2 (residues 400–412) regions of GP2. Site B contains residues 269 
to 275 of the fusion peptide and residues 324 to 325 of HR1 (residues 311–355) of GP24,14. Although the antibody 
predominantly binds to GP2, GP1 is required to maintain the proper prefusion conformation of GP2 for antibody 
binding4.

Identification of epitopes is an essential step for understanding disease etiology, immunotherapy, immunodi-
agnostics, and the discovery and development of epitope based-vaccines. An epitope-based vaccine has fewer side 
effects compared to conventional vaccines. Experimental identification of a promiscuous epitope involves many 
expensive and time-consuming steps, including the production of antibodies to map antigenic regions on a target 
protein, animal models, and determination of the crystal structure of antigen-antibody complexes using X-Ray 
crystallography. Computational identification of epitopes is often employed as a powerful and fast approach to 
facilitate the identification of potential epitope candidates that can decrease the number of validation experi-
ments and time15,16. Multi-epitope based vaccine development has already proven effective against several viral 
infections and cancer17,18. In this study, we have identified and characterized T and B-cell epitopes for the LASV 
GP using different sequence and structure-based computational epitope prediction methods. We then selected 
potential B and T-cell epitopes for the LASV GP based on a consensus approach, and the novelty of the epitopes 
was examined with the Immune Epitope Database (IEDB) tools. Subsequently, we identified strongly binding 
alleles to the MHC-I T-cell epitopes and modeled the allele structures and performed docking to understand the 
interaction between alleles and epitopes. We further investigated the stability and dynamics of the epitope-allele 
complexes using molecular dynamics simulations. Analyses of root-mean square deviations, hydrogen bond, 
interaction energy, and solvent accessibility showed that epitope-allele complexes are stable, indicating that the 
epitopes strongly bind to the alleles. The identified B and T-cell epitopes of LASV GP in the study can be useful 
for the development of effective vaccines against Lassa hemorrhagic fever.

Materials and methods
Selection of LASV GP sequence and 3D structure. The sequence of GP for different LASV strains 
was obtained from the NIAID Virus Pathogen Database and Analysis Resource (ViPR)19. Subsequently, mul-
tiple sequence alignments were performed between the sequences using Clustal Omega20 to select a conserved 
LASV GP for sequence-based epitope prediction. The corresponding X-Ray crystal structure of the Mouse/Sierra 
Leone/Josiah/1976 LASV GP was obtained from the Protein Data Bank (PDB ID: 5VK2)4,21 for structure-based 
B-cell epitope prediction. The missing residues were modeled using the Charmm-Gui22–24.

Prediction of B-cell epitopes. Sequence-based B-cell epitope prediction was performed with the 
use of BepiPred2.025, BCPREDS26 and BcePred27 servers separately. These servers predict epitopes based on 
physico-chemical properties of amino acids, and these servers accept the primary sequence of LASV GP as an 
input.

Figure 1. 3D structure of the LASV GP trimer consisting of the three GPs (GP-A, GP-B, GP-C). Each GP has 
a GP1 subunit and a GP2 subunit (zoomed view). Each monomer is colored differently in the GP trimer. In the 
zoomed view, the GP2 subunit is lightly shaded to differentiate from the GP1 subunit, and some of the antibody 
binding sites (Site A, Site B) are highlighted (figure generated from the crystal structure of the LASV GP in the 
Protein Data Bank21, PDB ID: 5VK24).
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Structure-based B-cell epitope prediction for the LASV GP (PDB ID: 5VK2) was carried out using three dif-
ferent programs separately: ElliPro28, Epitopia29 and DiscoTope30. These servers predict epitopes regions based on 
the geometrical and solvent surface-accessibility of a protein structure, and these servers accept the 3D structure 
of a protein as input. The consensus epitopes from both sequence and structure-based predictions were selected 
as potential epitopes for further analysis.

Prediction of T-cell epitopes. Sequence-based MHC-I T-cell epitope predictions for LASV GP were car-
ried out by using three different servers, ProPred-I31, CTLPred32 and NetCTL1.233. To predict their alleles, the 
consensus epitopes among these three prediction methods were analyzed using IEDB34. The epitopes that strongly 
bind to the alleles (lowest IC50) were selected for further analysis.

Sequence-based MHC-II T-cell epitope predictions for LASV GP were performed with the use of three dif-
ferent servers: ProPred35, NetMHCII2.336 and EpiTOP3.037. The antigenicity score of the selected epitopes was 
predicted by VaxiJen 2.038.

Homology modeling and epitope-allele docking. The structure of HLA-A*02:06 (A1) [PDB ID 
3OXR39], HLA-A*02:03 (A2) [PDB ID: 3OX839], and HLA-B*35:01 (A3) [PDB ID: 2CIK40] were obtained from 
the PDB. The experimental structure for the HLA-A*32:01 (A4) allele is not available, and thus, the sequence 
of this allele was obtained from the UniProt database (UniProtKB ID: P01892), and subsequently its structure 
was modeled using Swiss-Model41–43. The selected consensus MHC-1 epitopes were extracted from the crystal 
structure of LASV GP (PDB: 5VK2). The epitopes and the alleles were prepared for docking using Autodock 
Tool version 1.5.644. Autodock Vina 1.1.245 was used for peptide docking with a grid space that covered the 
entire allele. The best peptide-allele complexes were selected for further investigation based upon visual inspec-
tion of peptide-allele interactions and the Autodock Vina criteria. The stability and dynamics of the selected 
peptide-allele complexes were further studied using molecular dynamics simulations.

Molecular dynamics simulations. All-atom, explicit-solvent molecular dynamics (MD) simulations 
were performed to investigate the stability and dynamics of the MHC-1 T-cell epitope-allele complexes using the 
CHARMM36m force field46 with the NAMD 2.12 software package47. The systems were minimized for 10,000 
steps followed by 200 ps of equilibration. This was followed by MD production runs for 200 ns at a tempera-
ture of 300 K using a 2 fs time-step. The long-range ionic interactions were calculated using the particle mesh 
Ewald (PME) method48 while the covalent hydrogen atoms were constrained by using a SHAKE algorithm49. 
The temperature was controlled by using the Langevin temperature coupling with a friction coefficient of 1 ps−1 
and pressure was controlled using the Nose-Hoover Langevin-Piston method50. Visualization, and rendering of 
trajectories and pictures were performed using VMD51.

Results and Discussion
The multiple sequence alignment of the 84 LASV GP sequences resulted in the LASV GP Mouse/Sierra Leone/
Josiah/1976) [UniprotKB ID: P08669] as a highly conserved strain, and we thus selected this strain for the 
sequence-based MHC-I and MHC-II T-cell epitope predictions and for both structure and sequence-based B-cell 
epitope predictions. In addition, a search of this strain with the experimentally determined structure available 
in the PDB displayed the 3.2 Å resolution crystal structure of the prefusion GP trimer of LASV in complex with 
the human neutralizing antibody 37.7 H. [PDB ID: 5VK2] as shown in Fig. 1. This structure was used for the 
structure-based B-cell epitope prediction. A schematic representation of the epitope prediction cascade is shown 
in Fig. 2. We have adopted multiple methods to predict and rank the epitopes as they use different criteria for 
their predictions. Some approaches may incorporate some properties that are similar such as solvent accessi-
ble surface area, but the predicted epitopes are different. Previous studies52,53 have suggested that the consensus 

Figure 2. The workflow cascade for epitope identification of (a) T-cell and (b) B-cell.
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approach would improve the specificity and accuracy of the epitope prediction as it can reduce the false positives. 
Therefore, we employ a consensus approach; for example, an epitope can be considered if it overlaps with even a 
single residue by at least two prediction methods. Our consensus approach selected several nanomer epitopes for 
MHC-I (Table S1). Although the predicted epitopes for MHC-II T-cell vary in length, the consensus core region 
between predicted MHC-II epitopes is a nanomer (Table S2) which is considered54 an optimal length for the HLA.

Prediction of T-cell Epitopes. MHC-I T-cell epitope prediction with the LASV GP sequence was per-
formed using three different methods separately: ProPred-1, CTLPred, and NetCTL1.2, and the results are shown 
in Supplementary Table S1. The epitopes listed by at least two of the methods are listed in Table 1 along with their 
binding affinity (IC50), antigenicity, and allele. Among these four consensus epitopes, the nanomer E1 epitope 
FATCGLVGL shows the lowest average IC50 value of 34 nM against the A1 allele as predicted by the IEDB, and 
it has also a reasonable antigenicity score of 1.65. This was followed by the E3 epitope FSRPSPIGY, which has an 
average IC50 value of 88 nM against the A3 allele, and also has a better antigenicity score of 2.50 compared to the 
FATCGLVGL epitope. Interestingly, the E4 epitope RRGTFTWTL is predicted by all three methods though its 
IC50 and antigenicity scores are not as good as the other epitopes (Table 1). All four of these consensus epitopes 
were docked to the alleles and we performed the MD simulations to investigate the stability and dynamics of the 
allele-epitope complex as discussed later.

MHC-II T-cell epitope prediction with the LASV GP sequence was performed using three different meth-
ods separately: ProPred, NetMHCII 2.3, and EpiTOP 3.0, and the results are shown in Supplementary Table S2. 
ProPred uses a quantitative matrix35 approach and NetMHCII2.3 uses ANN36, while EpiTOP 3.0 uses Quantitative 
Structure–Activity Relationship models (QSAR)37 to predict the MHC-II T-cell epitopes. The epitopes that were 
predicted by at least two methods are listed in Table 2. Among these consensus MHC-II T-cell epitope predic-
tions, the E9 and E13 epitopes were predicted by all three methods and have a reasonable antigenicity score 
of 0.7, indicating that these two epitopes can be potential candidates for the design of MHC-II T-cell based 
vaccines. ProPred and EpiTOP 3.0 predict most epitopes as nanomers whereas NetMHCII 2.3 predicts vary-
ing lengths of epitopes (Table 2). Interestingly, the 15-mer epitopes predicted by NetMHCII have the consensus 
core nanomer epitopes, suggesting that the core region is responsible for strong binding of the epitope into the 
MHC-II binding site55–57.

Prediction of B-cell epitopes. In addition to the T-cell epitope predictions, we also predicted the linear 
B-cell epitopes for the LASV GP using sequence-based methods BepiPred 2.025, BCPREDS26, and BcePred27. 
The BepiPred predicts the epitopes based on a random forest algorithm trained on epitopes annotated from 
antibody-antigen structures. BCPREDS predicts epitopes by using SVM combined with a different kernel 
method, including string kernels, radial basis kernels, and subsequence kernels. The BcePred locates B-cell 
epitopes using four physicochemical properties like hydrophilicity, polarity, exposed surface and beta-turns27. 
The epitope E30 containing 10 residues was predicted by all three of these sequence methods (Table 3) but with a 
negative antigenicity score.

We also performed structure-based B-cell epitope prediction using three representative structural and 
geometrical properties-based methods: ElliPro, Epitopia and DiscoTope. For this, the experimental 3D structure 
LASV GP (PDB ID: 5VK2) with the modeled missing residues was used. ElliPro predicts linear and confor-
mational epitopes by incorporating the antigenicity, solvent accessibility, and flexibility of protein structures28. 
Epitopia uses a machine learning algorithm to analyze the antigenic features on protein structure and predicts the 
probable conformational epitope regions29. DiscoTope uses amino acid statistics, spatial information, and surface 
accessibility on the protein 3D structure to predict residue-by- residue conformational epitopes30. The E24, E29, 
E32 and E33 structure-based epitopes in Table 3 are especially interesting as potential candidates as they were 
predicted by all three methods. In Table 3, we also ranked each epitope based upon how many of the sequence 
and structure-based methods predicted each epitope, which do not always correlate with the highest antigenicity 
scores of E24, E26, E28, E29 and E31.

Robinson et al.14 have recently reported the cloning of many human monoclonal antibodies derived from 
memory B cells of Lassa fever survivors in West Africa. These antibodies specifically bind to both GP1 and GP2 
epitopes of LASV. The comparison of our predicted B-cell epitopes with those epitopes shows that there are five 
consensus epitopes (Table 3) that share similarity with Robinson et al. (Table S3), and another five epitopes that 
do not share similarity, indicating that our consensus epitope prediction strategy has identified new epitopes.

Epitope surface mapping. For efficacy of vaccines, the epitopes should be located on an accessible region 
of the protein so that the epitope will be able to bind with antibodies53. This is especially important for the six 
epitopes that we list in the Tables above that do not share any part of their sequence with known epitopes: E1, 

Epitope Sequence Interval

Prediction method

Antigenicity

IC50 (nM)

AlleleProPred-1 CTLPred
NetCTL 
1.2 ANN SMM

E1 FATCGLVGL 38–46 ✓ ✓ × 1.65 11.91 55.79 HLA-A*02:06 (A1)

E2 IINHKFCNL 112–120 ✓ ✓ × 1.23 101.6 214.8 HLA-A*02:03 (A2)

E3 FSRPSPIGY 233–241 × ✓ ✓ 2.50 81.63 94.1 HLA-B*35:01 (A3)

E4 RRGTFTWTL 258–266 ✓ ✓ ✓ 1.04 109.6 727.7 HLA-A*32:01 (A4)

Table 1. Consensus prediction of the MHC-I T-cell epitopes. The epitope predicted by all three methods is 
highlighted in boldface.
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E4, E18, E22, E27, E29. In Fig. 3, we highlight the positions of these epitopes on LASV GP. We also highlight the 
positions of E2 and E3 because the four MHC-I T-cell epitopes have IC50 information readily available. Figure 3 
shows that the E1, E2, E3, E4, E18, E22 and E27 epitopes are well located on the exposed regions and thus can 
interact well with the alleles.

Epitope Sequence Interval

Prediction Method

AntigenicityProPred
NetMHCII 
2.3

EpiTOP 
3.0

E5 MGQIVTFFQ 1–9 ✓ × ✓ −0.1820

E6 VYELQTLEL 65–73 ✓ × ✓ 0.8600

E7 LNMTMPLSC 78–86 ✓ × ✓ 0.9390

E8 INHKFCNLS 113–121 ✓ × ✓ 1.5060

E9

MSIISTFHL 134–142 ✓ ✓ ✓ 0.7080

LYDHALMSIISTFHL 128–142 × ✓ × 0.2896

YDHALMSIISTFHLS 129–143 × ✓ × 0.4907

DHALMSIISTFHLSI 130–144 × ✓ × 0.4809

HALMSIISTFHLSIP 131–145 × ✓ × 0.1949

ALMSIISTFHLSIPN 132–146 × ✓ × 0.2066

LMSIISTFHLSIPNF 133–147 × ✓ × 0.2428

E10 FNQYEAMSC 147–155 ✓ × ✓ 0.5520

E11 ISVQYNLSH 162–170 ✓ × ✓ 1.1310

E12

LQTFMRMAW 188–196 ✓ ✓ × 0.2620

VANGVLQTFMRMAWG 183–197 × ✓ × 0.1328

ANGVLQTFMRMAWGG 184–198 × ✓ × 0.1683

NGVLQTFMRMAWGGS 185–199 × ✓ × 0.0579

GVLQTFMRMAWGGSY 186–200 × ✓ × 0.1572

VLQTFMRMAWGGSYI 187–201 × ✓ × 0.1895

E13

MRMAWGGSY 192–200 ✓ ✓ ✓ 0.7630

GVLQTFMRMAWGGSY 186–200 × ✓ × 0.1572

VLQTFMRMAWGGSYI 187–201 × ✓ × 0.1895

LQTFMRMAWGGSYIA 188–202 × ✓ × 0.1902

QTFMRMAWGGSYIAL 189–203 × ✓ × 0.3470

TFMRMAWGGSYIALD 190–204 × ✓ × 0.4434

FMRMAWGGSYIALDS 191–205 × ✓ × 0.3543

E14

YQYLIIQNT 217–225 ✓ ✓ × 0.4720

DCIMTSYQYLIIQNT 211–225 × ✓ × 0.6600

CIMTSYQYLIIQNTT 212–226 × ✓ × 0.7075

IMTSYQYLIIQNTTW 213–227 × ✓ × 0.6029

TSYQYLIIQNTTWED 215–229 × ✓ × 0.6874

E15 LIIQNTTWE 220–228 ✓ × ✓ 0.9100

E16 IGYLGLLSQ 239–247 ✓ × ✓ 1.5300

E17 LLSQRTRDI 244–252 ✓ × ✓ 1.7310

E18

IYISRRRRG 252–260 ✓ ✓ × 1.5560

SQRTRDIYISRRRRG 246–260 × ✓ × 1.6434

QRTRDIYISRRRRGT 247–261 × ✓ × 1.5276

RTRDIYISRRRRGTF 248–262 × ✓ × 1.7213

TRDIYISRRRRGTFT 249–263 × ✓ × 1.4112

RDIYISRRRRGTFTW 250–264 × ✓ × 1.5207

DIYISRRRRGTFTWT 251–265 × ✓ × 1.4261

IYISRRRRGTFTWTL 252–266 × ✓ × 1.2680

E19 WMLIEAELK 283–291 ✓ × ✓ 1.3250

E20 IQLINKAVN 334–342 ✓ × ✓ 0.7710

E21 LINDQLIMK 344–352 ✓ × ✓ −0.0481

E22 LRDIMCIPY 355–363 ✓ × ✓ 1.0590

E23 LVSNGSYLN 387–395 ✓ × ✓ 0.3450

Table 2. Prediction of the MHC-II T-cell epitopes. The epitopes predicted by all three methods are highlighted 
in boldface with Italic font. The consensus core regions highlighted in boldface are in the epitopes predited by 
NetMHCII 2.3.
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MHC-I T-cell Allele and epitope modeling and docking. Swiss-Model identified the 1.61 Å resolution 
crystal structure of the HLA class I antigen (PDB ID: 6EI2) as the best template for constructing models. The 
sequence identity between A4 and the template was 92%. The best model was then selected based on multiple val-
idation methods, including GMQE (Global Model Quality Estimation) and QMEAN. The GMQE and QMEAN 
values41,58 of the model are 0.75, and 0.6, respectively. In addition to these analyses, Ramachandran plots and 
ERRAT were also used for the model validation. Analysis of Ramachandran plot59 of the model shows 99.6% of 
residues are either in favored or in allowed regions (Supplementary Fig. S1), indicating that backbone torsion 
angles of these models are acceptable. The ERRAT overall quality factor60 score was computed as 99, which is 
greater than the normally accepted score range for a high quality model of 50. These analyses show that the model 
is within a high quality range and can be used for further analysis.

Docking of the four consensus MHC-I epitopes (Table 1) was performed using Autodock Vina, which ena-
bled the docking of epitopes obtained from the sequence-based MHC-1 T-cell prediction into the promising 
allele structures. The Autodock Vina docking protocol has been previously demonstrated to successfully dock 
epitopes into allele structures45. However, we validated the capability of the docking protocol before docking the 
epitopes by redocking the epitopes into the allele crystal structure (PDB ID:3OX8) to see whether the crystal 
bound conformation of the peptide could be reproduced or not. The docked allele-epitope complex showed the 
same residue-epitope interactions observed in the epitope bound crystal structure, indicating that the Autodock 
Vina docking protocol was capable of reproducing the experimentally observed binding mode of the epitope. 
We applied Autodock Vina to each of the four MHC-I allele-epitope complexes. Autodock Vina found that the 
highest ranked docking structure had the following binding affinities: −5.5 kcal/mol for A1::E1 −5.0 kcal/mol 

Epitope Sequence Interval

Sequence based Structure based

Rank AntigenicityBepiPred BCPREDS BcePred ElliPro Epitopia DiscoTope

E24 LSDAHKKNLYD 120–130 ✓ × ✓ ✓ ✓ ✓ 5/6 0.74

E25 PNFNQYEA 145–152 ✓ × ✓ ✓ ✓ × 4/6 0.4565

E26 DFNGGKI 156–162 × ✓ × ✓ ✓ × 3/6 0.7315

E27 LSHSYAGDAANHCGT 168–182 ✓ × × ✓ ✓ × 3/6 0.0814

E28 LDSGCGNWDCIMTSYQY 203–219 × ✓ × ✓ ✓ × 3/6 1.0802

E29 ISRRRRGT 254–261 × × ✓ ✓ ✓ ✓ 4/6 1.2517

E30 SDSEGKDTPG 267–276 ✓ ✓ ✓ ✓ ✓ × 5/6 −0.0739

E31 NHTTTGRT 373–380 × ✓ ✓ ✓ ✓ × 4/6 0.9941

E32 ETHFSDDIE 396–404 ✓ × ✓ ✓ ✓ ✓ 5/6 0.4989

E33 MLQKEYMERQ 414–423 × ✓ ✓ ✓ ✓ ✓ 5/6 −0.14

Table 3. Prediction of the B-cell epitopes. The epitopes predicted by either all three sequence- or structure-
based methods are highlighted by boldface. Conformational epitopes chosen by all three structure-based 
methods are indicated in italics.

Figure 3. Mapping of some representative epitopes are highlighted on the LASV GP. Mapping of: (a) secondary 
structural elements, (b) surface accessibility. The location of the epitopes on the GP suggests that they are on the 
solvent exposed region, indicating promiscuity as they have easy access to alleles.

https://doi.org/10.1038/s41598-020-63640-1


7Scientific RepoRtS |         (2020) 10:7667  | https://doi.org/10.1038/s41598-020-63640-1

www.nature.com/scientificreportswww.nature.com/scientificreports/

for A2::E2, −6.8 kcal/mol for A3::E3, and −6.0 for A4::E4. These epitopes-alleles docking complexes are shown 
in Fig. 4.

Dynamics of the allele-epitope complex. In order to investigate the dynamics and stability of the four 
MHC-I allele-epitope complexes, we performed 200 ns all-atom, explicit solvent MD simulations. To quanti-
tatively understand the stability of the allele-epitope complex, we calculated the root mean square deviations 
(RMSD) of the backbone atoms of the allele-epitope complexes as a function of simulation time as shown in 

Figure 4. Snapshots of allele-epitope complexes. (a) A1::E1, (b) A2::E2, (c) A3::E3, and (d) A4::E4 at the 
beginning and end of the MD simulations: t = 0 (minimized structure), t = 200 ns. Allele is gold and epitope is 
green.
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Fig. 5. Figure 5 also includes curves of the RMSD of the backbone atoms of just the allele, and separately, just the 
backbone atoms of the epitope. All alleles have an RMSD compared to their initial structures of approximately 
2 Å, whereas the allele-epitope complexes have a bit higher RMSD of approximately 2.5 Å, indicating that the 
epitopes make the complexes more flexible. Interestingly, in the case of A3::E3, the allele and the complex show 
almost the same RMSD, suggesting that the complex is especially stable. To pinpoint why the complexes show a 
higher RMSD, we further computed the RMSD of only the backbone atoms of the epitope in each the complex. 
Figure 4 shows that the initial configuration of epitopes E1 and E4 is compact, and that both of these epitopes 
rearrange their configuration in the binding site and elongate during the 200 ns MD simulation. This elongated 
configuration is consistent with the investigations of Antunes et al.61 on MHC-I epitopes.

Since the interactions between protein and epitope peptide are mostly influenced by non-covalent interac-
tions, we computed the number of hydrogen bonds and the interaction energy between the allele and epitope as 
a function of the MD simulation time. The hydrogen bond was calculated between the protein interface atoms 
with a distance cut-off of 3.5 Å and angle cut-off of 30o between the donor and acceptor heavy atoms. As shown 
in Fig. 6, the number of H-bonds fluctuates during the MD simulations for all the complexes. The A3 complex has 
the largest number of H-bonds. Table 4 shows that during the last 50 ns of the MD simulation trajectory, the A3 
complex averages 2.5 H-bonds. Additional analysis of the hydrogen bonding between allele and epitope are listed 
in Supplementary Table S4.

Figure 6b shows the interaction energy (electrostatic interaction + van der Waals contacts) throughout the 
entire MD simulation and Table 4 lists the average over the last 50 ns. The A3::E3 and A4::E4 display relatively 
stronger interaction energies than the A1:E1 and A2::E2 complexes. The comparison of RMSD, hydrogen bond, 
and interaction energy information indicates that the E3 epitope is an especially promising epitope candidate.

Novelty analysis. The novelty of the four MHC I T-cell epitopes in Table 1, the nineteen MHC II T-cell 
epitopes in Table 2, and the ten B-cell epitopes in Table 3 identified in this study were analyzed using IEDB34. The 
IEDB database contains the epitopes that are annotated based on scientific literature. The IEDB showed that the 
E1, E4, E18, E22, E27, E29 epitopes, which bind to solvent exposed regions on the protein (Fig. 3), have not been 
previously reported as LASV epitopes or vaccine candidates. In addition, this analysis further indicates that 24 
other epitopes (E2, E3, E5, E6, E7, E8, E10, E11, E12, E14, E15, E16, E17, E19, E20, E23, E24, E25, E26, E28, E30, 
E31, E32, E33) have partial segments of their sequence reported as subsets of other epitopes, whereas E9, E13, E21 
are exact match to previously reported sequences. For these epitopes, a comparison showing the overlap between 
the predicted epitopes in this study and previously known epitopes documented in IEDB is given in Table S5. In 
addition to the epitopes in the IEDB, we compared our consensus predicted epitopes with the previously reported 
predictions62–67 in Table S6. This comparison shows a varying degree of overlap in the predicted sequences. The 

Figure 5. Root-mean-squared deviations (RMSD) calculated for the backbone atoms of allele (A), epitope (E) 
and complex (A + E) from MD simulations of MHC-I allele-epitope complexes.
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novelty results confirm that thirty epitopes have not been previously tested experimentally as LASV epitopes, 
suggesting that their therapeutic potentials in designing vaccines against LASV can be further explored.

Conclusion
LASV hemorrhagic fever is endemic in West Africa, and no approved effective therapeutics are currently avail-
able. Therefore, there is an urgent need for the discovery and development of potential antiviral therapeutics. 
The LASV GP spike has emerged as a promising selective target for the development of novel vaccines as it 
plays an essential role in the virus-host interaction. Several in-silico studies62–67 were performed to predict 
LASV GP epitopes with the use of a single prediction tool for each type of epitope. We have identified new T 
and B-cell epitopes using a variety of computational approaches, including twelve epitope prediction methods, 
protein-peptide docking, and MD simulations. The MHC I and II T-cell epitopes were separately predicted with 
the LASV GP sequence using well-known prediction methods. The predicted MHC I T-cell epitopes then were 
prioritized based on the consensus score, binding affinity, and antigenicity, while MHC II T and B-cell epitopes 
were prioritized based on the consensus score. Novelty analysis of the consensus-selected 33 epitopes showed that 
thirty of these predicted epitopes have either no overlap or only a partial overlap to previously reported sequences. 
Within this list of new epitopes, six sequences have no overlap with any known experimentally tested epitopes 
in the IEDB. In addition, docking and MD simulations were performed to further validate the MHC I T-cell 
epitopes. The simulation results show that the allele-MHC-I epitopes are stable, with favorable hydrogen-bond 
and interaction energy. Of these, Epitope E3 (233FSRPSPIGY241) segment was found to be especially stable. This 
study demonstrates that the adopted consensus epitope prediction strategy is valuable for in-silico investigations 
of known epitopes and the identification of new epitopes. Experimental validation of these epitopes may lead to 
the design and development of effective LASV vaccines.

Figure 6. (a) The number of allele-epitope intermolecular hydrogen bonds as a function of MD simulation 
time. (b) Interaction energy calculated between allele and epitopes as a function of simulation time.

Complex
Interaction Energy (kcal/
mol) No. of H-bonds

A1::E1 −53.53 ± 7.40 0.64 ± 0.54

A2::E2 −64.54 ± 10.88 1.49 ± 0.63

A3::E3 −74.85 ± 14.94 2.48 ± 0.50

A4::E4 −73.23 ± 27.07 1.51 ± 0.67

Table 4. Allele–epitope interaction parameters calculated by averaging over the last 50 ns of the MD simulation 
trajectory.
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