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3 Novelic, Veljka Dugoševića 54/A3, 11000 Belgrade, Serbia; minja.belic@novelic.com (M.B.);

veljko.mihajlovic@novelic.com (V.M.)
* Correspondence: nebojsa.malesevic@bme.lth.se (N.M.); petrovicv@etf.bg.ac.rs (V.P.);

piperski@etf.bg.ac.rs (M.J.)

Received: 6 March 2020; Accepted: 19 April 2020; Published: 21 April 2020
����������
�������

Abstract: The measurement of human vital signs is a highly important task in a variety of
environments and applications. Most notably, the electrocardiogram (ECG) is a versatile signal
that could indicate various physical and psychological conditions, from signs of life to complex mental
states. The measurement of the ECG relies on electrodes attached to the skin to acquire the electrical
activity of the heart, which imposes certain limitations. Recently, due to the advancement of wireless
technology, it has become possible to pick up heart activity in a contactless manner. Among the
possible ways to wirelessly obtain information related to heart activity, methods based on mm-wave
radars proved to be the most accurate in detecting the small mechanical oscillations of the human
chest resulting from heartbeats. In this paper, we presented a method based on a continuous-wave
Doppler radar coupled with an artificial neural network (ANN) to detect heartbeats as individual
events. To keep the method computationally simple, the ANN took the raw radar signal as input,
while the output was minimally processed, ensuring low latency operation (<1 s). The performance
of the proposed method was evaluated with respect to an ECG reference (“ground truth”) in an
experiment involving 21 healthy volunteers, who were sitting on a cushioned seat and were refrained
from making excessive body movements. The results indicated that the presented approach is viable
for the fast detection of individual heartbeats without heavy signal preprocessing.

Keywords: artificial neural network; Doppler radar; heart rate; real-time processing

1. Introduction

The contactless monitoring of heart rate has numerous advantages over conservative methods that
use contact sensors, such as electrocardiogram (ECG) monitors, conventional photoplethysmography
(PPG) sensors or piezoresistive sensors [1]. Contactless sensors offer improved mobility and obviate
the need for attaching or cleaning electrodes, but also have the unique ability to be used on patients
who suffer from skin irritations, painful skin damage like lacerations or burns, as well as patients who
exhibit anxiety or allergic reactions to contact sensors. Furthermore, some contactless instruments, such
as radar-based sensors [2], can be used for heart rate monitoring through clothes or other obstacles.

The real-time operation of heart rate monitors is required for the timely detection of potentially
dangerous conditions in hospitals or in-home health care applications. The heart rate and its variability
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can be used for emotion, stress [3,4] or drowsiness detection [5] and real-time operation is often
necessary for these applications.

In recent years, significant progress has been made in the development of radar-based heart rate
monitors [6–32]. The potential for the production of compact low-power sensors, which are completely
non-obstructive and harmless to human health, placed radar technology as one of the most promising
options for contactless vital signs monitoring. Radar sensors are used for the detection of sub-millimeter
movements of chest wall skin surface that occur due to heartbeats, whereas various signal processing
methods are employed for heart rate extraction from discretized radar signals. Radar technology has
shown not only great potential for heart rate estimation but also the potential for extracting ventricular
ejection timing using nonlinear filtering methods [33].

The most frequent radar architectures used in heart rate estimation sensors are continuous-wave
(CW) Doppler radars [6–24], frequency-modulated continuous-wave (FMCW) radars [3,25], and impulse
radio ultra-wideband (IR UWB) radars [26–30]. CW Doppler and FMCW radars mostly outperform IR
UWB radars in terms of power consumption and sensitivity [2]. The tracking of fine chest wall motion
can be obtained by measuring the phase shift of the reflected signals of continuous-wave radars. The
higher the frequency of the transmitted radar signal, the higher sensitivity can be obtained. While
FMCW radars can detect both the absolute and relative displacement of the chest wall surface, CW
Doppler radars are only capable of tracking relative displacement. This means that FMCW radars
could be applied in multiple person heart rate estimation [25]. However, CW Doppler radars have a
simpler hardware architecture and lower power consumption, and in single person applications, the
relative displacement information obtained by the CW Doppler radar can be enough for a good heart
rate estimation.

Many research groups have extensively investigated the monitoring of heart rate using CW
Doppler radars. Most of the previous research was based on the experimental data monitored in studies
with healthy participants lying or sitting in a controlled environment. The early published methods
were based on (1) the simple filtering of heartbeat-related signals and applying a threshold to the filtered
signals for extraction of heartbeat locations [6–8,10,12], or (2) heart rate frequency estimation using
spectral analysis [9,13,15–17]. These approaches were hardly capable of fast and real-time performance
and high-accuracy estimation at the same time. Simple band pass filtering would provide small latency,
but the filtered output signals need further processing in order to automatically extract heartbeats. The
robustness of these methods is hence very limited. The research in [12] showed that the error of the
heart rate extraction can be drastically increased just when the subject changes their position from
supine to still sitting. On the other hand, the frequency domain approaches would need a long window
(5–30 s) of data for achieving sufficient frequency resolution for the detection of the heart rate harmonic.
Additionally, they usually focus on high accuracy harmonic extraction and do not necessarily offer
methods for distinguishing the heart rate harmonic from breathing and intermodulation harmonics.
When the heart rate harmonic extraction is applied, the achieved accuracy is moderate (mean relative
error of heat rate estimation around 10% [15]). Additionally, the testing set was limited to data recorded
on a small number of human subjects (1 or 2, except in [12] where 10 subjects participated in the study).

However, more recent studies used data from more subjects (up to 10 participants in sitting
position) and presented promising results in terms of detection accuracy. In [18], the ensemble empirical
mode decomposition (EEMD) was used for the extraction of heartbeat information and in [22] the
autocorrelation and frequency-time phase regression (FTPR) provided an algorithm robust to noisy
conditions, but both of them used relatively long data windows for the heart rate assessment (10–15 s),
which produced a large delay.

High-accuracy approaches capable of real-time operation with CW Doppler radar architectures,
which achieve a relatively small delay, have recently been presented [19–21,23,24]. Authors in [19]
and [20] used a dynamic variation of the time window for processing via the fast Fourier transform
(FFT) [19] or the Wavelet transform (WT) [20]. In [21], the polyphase-basis discrete cosine transform
has been used for heart rate estimation. All these methods improved heart rate detection accuracy
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in the frequency domain when shorter data windows were used (2–5 s). Specific heartbeat signal
has been obtained using the short-time Fourier transform (STFT) analysis in [23], which was further
filtered through an adaptive band pass filter for improved quality. The control of the adaptive band
pass filter was done using the information extracted from the time domain analysis of the heartbeat
signal on windows of 2–3 s. In [24] it has been shown that the analysis of the frequency domain only
did not give satisfactory results. Therefore, the heart rate information was extracted using frequency
domain analysis (window length: 3.5 s) for the coarse estimation and time domain processing using a
band pass filter bank for the refinement of the results. This approach resulted in small algorithm delay
(~2.5 s) and high accuracy.

Recently, new approaches based on supervised or unsupervised machine-learning algorithms [31,32]
were introduced in the CW Doppler radar systems, and the first results have shown promising
advantages in terms of heartbeat detection delay and source separation capabilities (robustness of
heartbeat detection to respiration motion or random body motion) compared to traditional approaches.
Convolutional neural networks (CNN) were applied in [29] to estimate heart rate from UWB radar
signals. However, due to the lack of training data, this approach was person-specific since the
CNN needed to be trained for each subject separately. To the best of our knowledge, there is no
published paper that used artificial neural networks for heartbeat detection using the CW Doppler
radar technology. This paper focused on the development of a system for instantaneous heart rate
estimation (delay of less than 1 s from heartbeat occurrence) using a shallow artificial neural network
(ANN) as a main signal processing element. Additionally, the goal was to develop a detection algorithm
that was person-independent. The contribution of this work is in the development of the system
for detecting individual heartbeats considering the following requirements: (1) a low-complexity
time domain-based algorithm (without relying on periodic occurrences of heartbeat-related chest
displacements as in the case of traditional spectral approaches), (2) suitable for real-time human
presence detection, (3) calibration-free (no need for I/Q imbalance, offset compensation or the usage of
any demodulation techniques) and 4) testing on a separate group of subjects from those whose heart
rate signals were used in the ANN model selection and training process.

2. Materials and Methods

2.1. Basics of CW Doppler Radar Operation

A typical architecture of quadrature continuous-wave Doppler radar is shown in Figure 1a.
The radar transmitted sinusoidal electromagnetic waves generated in the local oscillator (LO) and
amplified in the power amplifier (PA). The transmitted signal reflects from the target, where the
reflected signal is modulated in phase. The transmitted signal can be expressed as

T(t) = AT cos(2π f t + θ(t)), (1)

where AT and f are the amplitude and the frequency of the transmitted signal, respectively, and θ(t) is
the phase noise of the local oscillator. The received signal can be expressed as

R(t) = AR cos
(
2π f t−

4πd0

λ
−

4πx(t)
λ

+ θ

(
t−

2d0

c

))
, (2)

where AR, f and λ are the amplitude, the frequency and the wavelength of the carrier signal,
respectively, c is the speed of light, d0 is the nominal radar–target distance and x(t) is the target’s
relative displacement [7]. The received signal is demodulated using a quadrature demodulator as
shown in Figure 1a. The resulting signals are two baseband signals: the in-phase signal (I), which is in
phase with the carrier and the quadrature signal (Q), which is phase-shifted from the carrier by 90◦.
These signals are expressed as [10]
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I(t) = AI cos
(
θ0 +

4πx(t)
λ

+ ∆θ(t)
)
+ DCI, (3)

Q(t) = AQ sin
(
θ0 +

4πx(t)
λ

+ ∆θ(t) + ∆ϕ
)
+ DCQ, (4)

where AI and AQ are amplitudes (AI , AQ due to the I/Q amplitude imbalance), DCI and DCQ are
DC offsets, θ0 is the constant phase shift due to the constant nominal distance d0 from (2), ∆ϕ is the
phase shift due to the I/Q phase imbalance and ∆θ(t) is the total residual phase noise which can be
neglected in vital signs detection applications since the distance between the target and the radar
system is small [7]. Baseband signals are further digitized using analog-to-digital converters (ADCs)
and processed in a digital signal processing unit.
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Figure 1. (a) Architecture of the quadrature Doppler radar used for the measurements; (b) 

Photographs of the Smartex Wearable Wellness System (WWS) used for the electrocardiogram (ECG) 

measurement; (c) Experiment setup. 
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Figure 1. (a) Architecture of the quadrature Doppler radar used for the measurements; (b) Photographs
of the Smartex Wearable Wellness System (WWS) used for the electrocardiogram (ECG) measurement;
(c) Experiment setup.

2.2. Instrumentation

In this study, a CW Doppler radar with a carrier frequency of 24 GHz was used for heart rate
estimation. The recording of the reference (“ground truth”) signal for the ANN training and the
validation of the estimation accuracy was done using a wearable cardiorespiratory monitoring system
(Smartex Wearable Wellness System (WWS), Pisa, Italy) including a single lead ECG and a piezo
band as shown in Figure 1b. The ECG sensor was chosen since its accuracy was higher than other
heart rate monitors such as pulse oximeters or photoplethysmographs. The system contained a
microcontroller for data acquisition and Bluetooth connection for wireless data transmission to the
personal computer (PC). It was a CE (Conformité Européenne) certified system. Additionally, the
electrodes were connected to the skin using the wet textile fabric, which eliminated any potential
irritation that could come from the sticky adhesive electrodes, particularly if applied on non-glabrous
skin [34]. The sample rate for the ECG recording was 250 Hz.

The radar system used in the experiment was a Novelic Radar Module, NRM24 [24]. Figure 1c
shows the radar module placed in the experimental setup. It was a DC-coupled Doppler radar sensor.
The module was compact (8 × 5 × 1 cm) and portable and consisted of two stacked printed circuit
boards (PCBs). The radar sensor PCB included the main part of the analog frontend: antennas, an
integrated radar transceiver and a phase-locked loop integrated circuit. Antenna beamwidths (BW)
were BWθ, 3-dB = 25◦, BWθ, 6-dB = 33◦, BWθ, 10-dB = 43◦ (elevation) and BWϕ, 3-dB = 44◦, BWϕ, 6-dB = 65◦,
BWϕ, 10-dB = 90◦ (azimuth), whereas the antenna gain was 12 dBi. The maximum power at the transmit
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antenna input was 10 dBm. The second PCB was the acquisition board, which included baseband
amplifiers and filters, a power supply circuitry, an ARM Cortex-M4 based microcontroller (MCU) that
integrated a multichannel 12-bit ADC and serial-to-USB converters for data transfer. The baseband
filter had a cut-off frequency of 100 Hz, which was considered high enough for the vital sign detection
application. The sampling rate was set to fS = 1 kHz, while the data logging on the PC was performed
using a custom-made application that communicated via serial connection with the MCU.

The alignment of the datapoints from the Smartex WWS system and the radar system was done
by matching timestamps in the logged data.

2.3. Database Recordings

The radar recordings, as well as the ECG data used as reference, were obtained from 21 healthy
human volunteers who took part in the experiments (14 males and 7 females, aged 26.1 ± 5.1, with
a height of 179.5 ± 11.6 cm and a weight of 74.2 ± 16.4 kg). Subjects were free of any diagnosed
acute/chronic cardiac or respiratory problems, based on their self-report. Participants were acquainted
with the protocol in advance and gave informed consent. The study was approved by the ethical
committee of the University of Belgrade—School of Electrical Engineering, Serbia. The subjects had
the wearable ECG strapped around their thorax and were instructed to sit comfortably on a cushioned
seat in front of the radar sensor. The sensor was mounted on a custom stand, facing the participants at
a distance of 75 cm. At this distance, the radar beam focused on the torso area, considering −3 dB
beamwidths of the antenna (25◦ and 44◦). The participants were told to breathe as they normally
would in a relaxed state, without extremely deep and excessive breaths. Additionally, they were asked
to refrain from excessive body and hand movements, since the rapid movements could mask the small
chest wall movements that come from heartbeats and hence affect the detection. The radar signals
obtained for one participant are shown in Figure 2. Three-hundred seconds of data were acquired for
each subject.
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Figure 2. In-phase and quadrature Doppler radar signals during the measurements. The participant
was breathing normally in front of the radar sensor.

Figure 3a shows a fragment of recorded time-aligned ECG and radar signals. There was a
distinctive signal shape in the radar signals with a time delay in relation to the R wave of the ECG.
The heartbeat-related disturbance in the radar signals originated from the mechanical movement of
the chest wall during the heartbeat. This disturbance corresponded to the ballistocardiogram J-wave
peak [35]. It can be seen that this characteristic signal shape became distorted and was reduced in the
presence of breathing and movement.

Many previous works considered that the heartbeat-related displacements could be modeled
as a sine wave [16], half-sine pulses [21], Gaussian pulses [22], or as an array of two consecutive
pulses [24]. However, the mechanical response of the chest wall has a complex waveform that is
difficult to model [33]. Figure 3b shows the heartbeat-related displacement obtained from the radar
data shown in Figure 3a, using the extended differentiate and cross-multiply (DACM) demodulation
algorithm described in [16]. Before the demodulation, the I/Q imbalance of the radar was measured
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and compensated offline like in [24]. It can be observed that the heartbeat-related displacement had a
complex waveform, which further induced the complex signal shapes of the radar signals. The detector
in this paper was trained with the aim to recognize these small distortions in the radar signals, without
previous modeling. In order to get a reliable data set for training the detector, the signals were cropped
to the period of 200 s of normal breathing (Figure 2, time interval 50–250 s).
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Figure 3. (a) A fragment of the recorded ECG and radar signals. It could be noted that the heartbeats
acquired by the ECG amplifier are followed with slight movement patterns picked up by the radar.
During the inhale−exhale (see 2–5 s) this movement pattern is distorted. (b) A heartbeat-related chest
wall displacement obtained using the extended differentiate and cross-multiply (DACM) demodulation
of the first 2 s of the radar signals.

2.4. Data Preprocessing

The detector was envisioned as a binary classifier detecting the occurrence of each heartbeat,
but such implementation required the reshaping of the recorded data into an appropriate format.
The continuous nature of the reference ECG signal was not suitable for this approach, so it was instead
transformed into a binary on/off signal. R peaks were detected using the Pan-Tompkins algorithm [36].
The surrogate reference binary signal (“binarized target signal”) was synthesized in the form of a
400 ms pulse with 200 ms delay after each R wave in order to highlight the temporal relationship
between the heart’s electrical activity (ECG) and the resulting mechanical displacement (radar signal),
as shown in Figure 4. The window of 400 ms width with a latency of 200 ms after the R wave was able
to cover most of the mechanical rippling observed within the radar signals. This choice is in line with
a study performed on 92 healthy subjects which showed that the duration range of the R−J interval
was 203–290 ms [37]. Additionally, the selection of the value of the latency parameter (200 ms) for the
binarized target signal was confirmed on a recorded dataset of seven randomly selected subjects from
our study. Using the simplest model that was tested in the scope of this paper (a feed-forward artificial
neural network with a single hidden layer containing 10 units), a series of training and testing with
a range of delays and target widths was performed. The tested delay values ranged between 0 ms
to 300 ms, and the target widths were tested in the range between 300 ms and 500 ms. These values
were selected based on the visual inspection of the signals, and the values that were chosen as optimal
(window of 400 ms width with a latency of 200 ms after the R wave) were those that yielded the best
model accuracy in terms of the percentage of detected peaks.

The following stage in the signal preprocessing was the decimation of both the binary reference
signal and the radar signal to the same sampling rate, which was a prerequisite related to the ANN
employment, as each input state required a corresponding target output. To ensure the fast computation
without a loss of information in the physiological range, 100 Hz was selected as the sampling rate
during this computation.
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Figure 4. Reference ECG signal (ECG) and the binarized target signal (derived heartbeat events) where
the values of “1” represent the presence of the mechanical heart displacement after the R wave, and the
values of “0” represent its absence.

The input to the ANN consisted of a 200-sample long vector, corresponding to 1 s of recording,
where in-phase and quadrature branches were concatenated so that the first 100 samples in the input
corresponded to the in-phase signal and the second 100 samples corresponded to the quadrature signal.
Such an input was matched to the value of the reference binary signal as the target output. The choice
of 1 s signal memory was based on a small-scale test conducted on a subset of recorded signals in
which the memory depth varied between 200 ms and 1 s. The lower bound was sufficient to partially
incorporate the mechanical wave observed due to the heartbeats and the upper bound corresponded
to the interval between the subsequent heartbeats at a normal heart rate of 60 bpm. These initial test
results showed that the increases of memory depth from 200 ms to 500 ms significantly increased ANN
performance, while further increases resulted in only incremental gains. Nevertheless, we decided
to use the deepest memory as we were not concerned about computational complexity, while using
longer intervals was expected to contain more physiologically relevant data that the ANN could learn
from, and not overfit to potentially insignificant signal details.

2.5. The Detection Algorithm

Two main approaches were taken in the design of the heartbeat detector: the classical shallow
feed-forward neural networks (FF ANN) and the nonlinear autoregressive exogenous model network
(NARX) as representative of the feedback-based topologies. The NARX model took as an input the
current sample in the radar data stream and the previous 100 samples, together with their calculated
output. The NARX topology was tested for a single hidden layer with 10 and 20 neurons, NARX 10 1
and NARX 20 1 respectively. For the classic shallow FF ANN, 4 configurations were tested: (1) a single
hidden layer with 10 neurons, FF 10 1, (2) a single hidden layer with 20 neurons, FF 20 1, (3) two hidden
layers with 20 and 2 neurons respectively, FF 20 2, and (4) two hidden layers with 40 and 4 neurons
respectively, FF 40 4. The output layer in all the cases consisted of a single neuron with a sigmoid
activation function. Activation functions for the hidden layers also varied during this topology search,
including a hyperbolic tangent and log-sigmoid and linear transfer functions. Furthermore, for the
FF ANNs different loss functions were tested: the mean squared normalized error (MSE), the mean
squared error with regularization (MSEREG) and the sum squared error (SSE).

As the FF ANN, containing a single hidden layer with 20 neurons, a hyperbolic tangent activation
function, trained using Levenberg–Marquardt optimization and MSE loss function, outperformed all
the other ANN topologies, the results presented in this paper were focused mainly on this FF 20 1
ANN topology. The whole flowchart, including the preprocessing and the detection algorithm based
on the FF 20 1 ANN, is presented in Figure 5. The ANN input consisted of unprocessed in-phase and
quadrature components of a Doppler radar signal (discretized and resampled I(t) and Q(t) signals from
Equation (3) and Equation (4), respectively). In the FF ANN topology, each neuron in the hidden and
output layers calculated a linear combination of its inputs in Equation (5):
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a j
i =

∑N

i=1
w j

i a
j−1
i + b j

i , (5)

where j refers to the current layer, N is the number of inputs to the current layer, w is the weights and b
is the corresponding biases. The output of each neuron was passed through the hyperbolic tangent
function, with the exception of the output neuron which used a sigmoid function. The weights were
calculated through a numerical optimization of the mean squared error loss function in Equation (6):

MSE =
1
M

∑M

i=1
(bi − ai)

2, (6)

where M is the number of data points, bi is the binarized target signal and ai is the network output.
This was an iterative procedure that was set to run for a maximum of 1000 epochs or to stop early if the
solution became sufficiently close to the minimum, that is, if the gradient became smaller than 10−7.
The training would also stop if the error on the portion of the data set aside for validation (30%) failed
to decrease for 6 consecutive epochs.

To remove fast noisy changes, the sequence of outputs of the ANN calculated for each sample
was smoothed. This stage of the detection algorithm was implemented as a moving average filter with
a width of 10 consecutive ANN outputs.

The next stage of the algorithm was the peak detection subroutine which marked local maximums
of the continuous probabilities output, imposing established constraints on the minimal distance
between the consecutive peaks based on the known physiological range in rest 40–120 beats/min [38,39]
and their prominence (detection amplitude). When the duration of the detected inter-pulse interval
(IPI) was twice as large as the previously detected IPIs (within the established constraints), a beat
was interpolated as having occurred at the point in time that was the arithmetic mean between the
occurrences of the current and previously detected heartbeats. The detection amplitude was defined
empirically for each ANN topology on a small test sample using the error of the number of detected
heartbeats as a metric. The same detection amplitude was then used for all the subjects.
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Figure 5. Flowchart for the proposed method for heartbeat detection based on the classical shallow 

feed-forward neural network with a single hidden layer with 20 neurons (FF 20 1 ANN). The 
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in-phase and 100 quadrature component samples. For the FF 20 1 ANN there are 20 neurons in the 

single hidden layer and 1 neuron in the output layer. MA Filter—moving average filter. 

Figure 5. Flowchart for the proposed method for heartbeat detection based on the classical shallow
feed-forward neural network with a single hidden layer with 20 neurons (FF 20 1 ANN). The artificial
neural network (ANN) input is the 200-sample long vector containing resampled 100 in-phase and 100
quadrature component samples. For the FF 20 1 ANN there are 20 neurons in the single hidden layer
and 1 neuron in the output layer. MA Filter—moving average filter.



Sensors 2020, 20, 2351 9 of 16

2.6. Error Estimation and Statistical Analysis

The inter-pulse interval was calculated as the time elapsed between every two adjacent heartbeats.
The classification error was determined through the percentage error in the total number of detected
heartbeats and the error in the estimation of median IPIs. The similarities were also assessed between
the distributions of the ANN-detected IPIs and those extracted from the reference ECG method.

The performance was evaluated using a three-fold cross-validation: the data were split into three
equal subject groups (folds), each containing recordings acquired from 7 subjects, out of which two
folds were used for training and one for testing. The training and testing were repeated three times for
a different fold held out for evaluation (as shown in Figure 6).

The evaluation metrics were calculated over the set of predictions obtained on the three folds
used in the test mode. A statistical analysis was performed on the results obtained via radar and those
extracted from the reference ECG signal. The number of detected heartbeats and median IPI for all
the recordings used as test were compared to those calculated from the reference signal. Apart from
group evaluations, a statistical comparison was also performed on the level of the individual heart
event detection within each of the 21-subject sets in the test mode. As in all of the statistical tests, one
or more samples were found to be significantly non-normal (Lilliefors test with a 0.05 significance
level),Wilcoxon signed rank test was used for statistical comparisons.

All processing was done using the Matlab2018b (The MathWorks, Inc., Natick, Massachusetts,
United States).
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Figure 6. Database organization for the purpose of the ANN training and the cross-validation.
The dataset was divided into three equal subsets and two subsets were used for training, while the
remaining subset was used for testing. This process was repeated for all the combinations of the subsets
in the training set. The three training datasets comprised 3473, 3429 and 3386 heartbeats, while the
three testing datasets comprised 1671, 1715 and 1758 heartbeats.

3. Results

The results obtained using six different tested ANN topologies are presented in Table 1.
The smallest error in the number of detected beats (count error—CNT error) was achieved by the

FF ANN with 20 neurons in the hidden layer (2%), which was notably better than any other tested
topology (12.3% < CNT Error < 34.3%). This topology also had the smallest error when the median
IPIs were compared. When comparing at the level of the individual IPIs, the number of subjects
whose median was significantly different from the reference was also higher than the rest, but was still
relatively low.
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Table 1. Error metrics for the six different ANN topologies with reference to the ECG-derived number
of heart beats and inter-pulse intervals.

Topology CNT Error 1 (%) IPI MRE 2 (%) No Diff. # 3

FF 4 10 1 −22.0 16.4 7
FF 20 1 −2.0 15.3 11

FF 20 2 1 −30.0 15.3 4
FF 40 4 1 −27.6 16.6 7

NARX 5 10 1 −34.3 16.1 5
NARX 20 1 −12.3 16.4 10

1 Percentage error of the number of the detected heartbeats out of a total 5144 heartbeats. The negative values
correspond to fewer detected heartbeats by ANN compared with the “ground truth”; 2 Inter-pulse interval (IPI)
mean relative error; 3 Number of subjects with no significant difference between the medians of the estimated IPI-s
and the IPI-s from the ECG reference, out of the total 21 subjects; 4 Feed forward ANN; 5 Nonlinear autoregressive
exogenous model; The numbers in the topology descriptions stand for the number of units in each layer.

Figure 7 shows an example of the output of the FF 20 1 ANN, the topology which showed the
best performance, smoothed with a moving average window, with the prominent peaks detected and
marked. This example shows the typical behavior and errors of the methodology.
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Figure 7. An example of the heartbeat’s method detection. Panel (a) shows the output of the FF 20 1
ANN smoothed with a moving average window, with the detected prominent peaks in a 50 s interval.
Panel (b) shows the output of the FF 20 1 ANN smoothed with a moving average window on a shorter
time scale plotted against the reference ECG (derived heartbeat events) for an easier visualization of
the detected heart events.

The error of the total number of detected heart events for the FF 20 1 ANN configuration was
−2% (104 undetected beats out of a total of 5144 heartbeats extracted from the ECG). The statistical
tests showed that there were no significant differences between these two methods in terms of the
number of detected events (p>0.05). The difference in the medians of the IPIs calculated using the
reference ECG and the FF 20 1 ANN was −2 samples (−20 ms) and was not statistically significant.
When it comes to individual heart event detection, for 11 out of the 21 subjects the medians of the ANN
detections were not significantly different from the reference.

For the specific ANN that showed the best performance with the recorded database, there
were 20 neurons in the first hidden layer, resulting in ~4000 multiply–accumulate operations. In the
implementation on an embedded platform (Teensy 4.0 programmed in Arduino IDE) this calculation
took 66 µs, which was more than enough for executing the proposed method in real time. As the
calculation was done with a 100 Hz rate, there were ~10 ms in between the consecutive heart
event estimations.
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4. Discussion

The work presented in this paper is intended for the detection of individual heartbeats using
a state-of-the-art mm-wave radar sensor. The radar sensor relied on the Doppler shift in the signal
reflected from the objects within its field of view to detect any movements, even small ones. The real
challenge of such a measurement was separating the influence from the different sources. Furthermore,
smaller displacements, such as chest movements due to heart activity could be completely hidden or
distorted by other physiological sources, such as breathing, talking or change of posture. Thus, the
focus of this research was on the specific radar signal footprint in the time domain resulting from the
heartbeats and the method by which to identify such small signal ripples. The computational tool
selected for this task was shallow artificial neural networks for their high capacity for generalization,
ability to be trained without prior knowledge of the signal properties and being computationally
inexpensive, enabling easy implementation in an embedded or a high-level system. For the shallow
ANNs that were tested, the dominant part of the computational complexity was related to the first
hidden layer which performed multiplications of all the input signal samples with the weights
(Figure 5).

With the aim of tracking vital signs and the presence of vehicle drivers in a contactless manner, a
database of radar signals, alongside ECG and respiration, was gathered from 21 participants sitting
comfortably in a cushioned chair. Up to this date, the number of participants in published papers that
presented traditional or machine learning approaches for heartbeat detection was less than 12 [6–32],
but considering our goal to obtain the realistic results of using a trained ANN on the unseen data,
we acquired a larger dataset than in the previous studies. This objective imposed the strict condition
of the testing of the performance on radar signals that were completely new to the ANN. Care was
taken to split the data in such a manner that the signals obtained from the same person could all be
found either in training or in testing (Figure 6). Although the subjects were instructed to sit quietly in
the chair, some of them did substantially move their upper body and head but these recordings were
nevertheless included in the database, bearing in mind the potential of neural networks to abstract
over a wide variety of inputs and their robustness to noise.

After analyzing the performance of various ANNs it was somewhat surprising to find that a
relatively basic ANN outperformed more complex networks. The more complex networks were able
to pick up minute details in the signals and use them to model the training set more closely at the cost
of loss of generalization, while the reduced single layer network did not have such capacity to overfit.
One of the conditions that favored the simpler network architectures could still be the limited database
used for the training. The acquisition of yet larger amounts of data in the future could make space for
more complex network architectures, such as sequential deep learning models, to further improve the
results. This would, however, come at the cost of higher processing requirements.

With respect to the main idea of the ANN-based method, which was the identification of individual
heartbeats, the most important metric of the ANN testing was the number of detections. Due to the lack
of similar metrics in other scientific publications, the result presented in this paper of 2% undetected
heartbeats could not be put into perspective with other approaches.

As another performance evaluation metric, we calculated the time between the consecutive
detections. This metric was directly compared with the IPIs from the reference ECG signal and it was
shown that the difference between their medians was also not statistically significant, confirming that
the method could be used to accurately track averaged heart rates in longer periods. These results were
also comparable with the findings presented in [22] where the relative error between the averaged radar
and ECG rates was between 0.55% and 1.97%. The method proposed by the authors [24] outperformed
all of the previously published methods based on the CW Doppler radar technology regarding the
mean relative error (2.07% on the dataset of ten subjects, algorithm latency ~2.5 s). The ANN-based
approach presented here brings multiple advantages over other methods presented in relevant papers.
The ANN method used raw radar signals without the need for any preprocessing or calibration, which
can require the implementation of complex algorithms, nor prior knowledge of the signal properties
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and process models. The implementation of the shallow ANN within a microprocessor system was
quite computationally inexpensive as it comprises only a small number of basic arithmetic operations
(multiplications and additions for neural layers, while activation functions can be obtained using
look-up tables). In comparison with the FFT-based approaches and the heavy use of digital filters, this
feature presented a significant improvement in the computational complexity. This method is also
beneficial in applications that require the fast detection of human presence, as the latency was below
the width of the processing window (1 s), while to our knowledge, the shortest latency reported in
relevant publications is 2.5 s [24]. This estimate of 1 s was made for the worst-case scenario of system
power-up which requires the initial filling of the ANN input buffer. Once the system is up and running,
with a human entering its field of view, this latency is expected to be significantly lower. Namely, due
to the training procedure, the heart detections could occur in the 400 ms window that contains the
latest signal samples. The smoothing by moving average filter was done on only 10 ANN outputs,
which brought negligible delay. The last step of the detection chain which was peak detection required
only a few extra samples to identify a local maximum.

To summarize the above contributions of our work, we listed all the relevant previously published
methods for heartbeat extraction in normal breathing conditions based on the CW Doppler radar
technology in Table 2. This work is the first approach that used artificial neural networks for the
heartbeat detection based on the CW Doppler radar technology. The method was not person-specific
(as opposed to the supervised machine learning approach applied in [32]) and we performed a more
realistic scenario on 21 subjects where all the results were presented on “unseen data”. This was a fast
and reliable calibration-free method, with low percentage of failed heartbeat detections and with the
latency that outperformed all relevant previously published non-person-specific approaches.

Table 2. Comparison of the methods for heartbeat extraction in normal breathing condition based on
the continuous-wave (CW) Doppler radar technology.

Ref.
Radar
Freq.

(GHz)
N 1 TC 2 T 3

(s) Method 4
Unseen

Data
Tested 5

W 6

(s) CF 7 FD 8

(%)

HR/IPIs
Avg.

Error 9

(%)

[15] 2.4 5 S 80 cm 30 Multiple Signal
Classification NO 8–28 NO - ~10

[18] 5.8 10 S 50 cm 240
Ensemble

Empirical Mode
Decomposition

NO 15 NO - 3.67

[19] 5.8 4 S – 30 Time-window
variation NO 2–5 YES - 3.3

[20] 5.8 2 S – 60 Wavelet T. NO 3.5 YES - 3

[21] 10.225 3 S 1.1 m 90 Discrete Cosine T. NO
1.5
2
3

NO -
10.4
7.6
5.1

[22] 2.4 8 S 1.5 m
S 75 cm 300 Frequency–Time

Phase Regression NO 10–15 NO - 2

[24] 24 10 S 75 cm 180 Filter bank and
Chirp Z T. NO 3.5 YES - 1.54

[31] 24 5
S 80 cm
S 30 cm
T 30 cm

120
Non-negative
factorization

matrix
NO 8 NO -

4.17
3.93
4.22

[32] 5.8 1 - – 600 Gamma filter YES 15 NO 8.3 3.8
This
work 24 21 S 75 cm 200 ANN YES < 1 YES 2 15.3

1 Number of subjects (N); 2 Test conditions (TC) during the measurement (S XX= Sitting at distance XX, T XX = Sitting
and typing at distance XX); 3 Total measurement time (T) of normal breathing for each session; 4 Data processing
approach; 5 Tested on data that were “unseen” in the training process; 6 Time window (W); 7 Calibration-free (CF)
for I/Q imbalance, the offset compensation or usage of any demodulation techniques; 8 Failed detection (FD) of
heartbeats; 9 Average Error of estimated heart rate or IPIs (HR/IPIs Avg. Error).
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As shown in Table 1, the ANN implemented in this paper showed weakness in the estimation
of the IPI with high accuracies. Consequently, the utilization of the methodology for the evaluation
of heart rate variability (HRV) parameters is limited. The goal of the present study was to develop
a method for the fast detection of individual heartbeats; thus, all of the ANN optimizations were
governed by the error of the detected heartbeats count. The HRV-related errors were not included in
any of the methodology steps; therefore, it would be unrealistic to expect high accuracies compared
with the methods specifically designed for the HRV estimation. In addition, the choice of the targets
has a significant influence on the HRV parameters estimation. As aforementioned, the main goal was
related to the robust detection of individual heartbeats, so the target window was made relatively
wide (400 ms) to enable the identification of any signal waveform that was related to the mechanical
displacements due to heartbeats. This wide window, except for providing more room for heartbeat
detection, means that if a heartbeat was detected in any part of the target window, it would be
considered as successful during the training phase. In an example, a heartbeat could be detected with
the highest probability at the beginning of the target window, while the following heartbeat could be
detected with the highest probability at the end, without any penalty related to the ANN performance
during training. On the other hand, this kind of detection would result in 400 ms error in estimating
the beat-to-beat interval.

In future work, the focus will be on increasing the HRV estimation accuracy. To achieve this goal,
the error of the R–R interval estimation will be introduced as an additional loss function during the
training procedure. This would inherently force the ANN to bind the maximal detection probability
with a specific part of the mechanical oscillation. However, this approach would require some
topological ANN changes, such as a feedback loop with the previously detected IPI and an extension
of the memory depth.

In this study, there were several limitations that should be noted. All the subjects that participated
in the study were young and physically fit adults. During the selected time period they were mostly
sitting calmly and were instructed to restrain from prominent body movements. In this study, the chair
was placed in a room with no moving objects. In a scenario which involves nonstationary objects, or
recording within confined environments, such as inside a car, the performance of the system could
deteriorate due to clutter and multipath effects. Given the continuous nature of the unmodulated signal,
Doppler radar has no exact information on the absolute position of the observed person. Tracking vital
signs of multiple people simultaneously would most likely have to be performed using modulated
signals that can resolve observed targets in a space.

The usage of a high-carrier frequency provided small dimensions of the radar system, since small
antennas were used, unlike for lower frequency radar systems whose antennas usually need to be
larger. An additional advantage of the high-frequency radar was its sensitivity to the small chest
displacements that come from heartbeats. Since the method in this paper was using in-phase and
quadrature radar signals directly, the radar sensitivity was of crucial importance for the heartbeat
detection. The usage of even higher carrier frequency could improve the results, since the sensitivity to
small displacements would be larger.

The radar used for this study had a relatively broad field of view, which made it susceptible to
picking up clutter from the surroundings. Additionally, in applications that would require a larger
distance between the radar and a patient, this broad field of view would pick up even more surrounding
movements. Using an antenna with a narrower beam could improve the performance of the system in
the future. It is expected that the signal-to-noise ratio (SNR) of the received signals would be smaller
if the radar was placed at larger distances. This means that further tests need to be done in order to
determine the influence of the SNR on the detection accuracy. Future work will also include tests of the
ANN performance in cases when subjects perform natural movements, to estimate the reliability of the
sensor and the method in an environment saturated with motion originating from different sources.
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5. Conclusions

In this paper, we presented a simple and efficient contactless method for detecting individual
heartbeats. The method is based on the CW Doppler radar directly coupled with an ANN stage to detect
small signal ripples resulting from sub-millimeter chest movements due to heartbeats. The method
has lower latency, lower computational complexity and an easier implementation on an embedded
platform when compared to the traditional methodologies described in the literature, while still
achieving a good heart rate estimation accuracy. With the promising results presented in this paper,
we could foresee the application of the system in uses that require real-time operation, such as human
detection in an industrial, automotive or clinical environment.
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