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The ocular surface, consisting of both the 
cornea and conjunctiva, is the only wetted 

body surface that is directly exposed to the 
outside environment. This mother‑nature 
design was developed through evolution 
and is essential to maintain ocular surface 
health so that one may enjoy clear vision 
without suffering from discomfort due 
to dryness in the open‑eye state. In this 
Issue, Mead et  al.,[1] points out that the 
neuroanatomic integration of the ocular 
surface epithelia with the external adnexae, 
i.e., eyelids, lacrimal glands, and meibomian 
glands, is the operating mechanism to 
ensure ocular surface health. These diverse 
components are integrated into one unit 
by the first branch of the trigeminal nerve, 
which triggers tearing  (compositional) 
and blinking  (hydrodynamic) reflexes to 
maintain a stable preocular tear film. The 
concept of neuroanatomic integration 
explains why corneal pathologies are 
overlapped in two seemingly different 
diseases, i.e., neurotrophic keratitis and dry 
eye disease, once we realize that there is a 
progressive loss of subbasal corneal nerve 
density with increasing severity of the latter. 
For the rest of the body, taking diabetic 
foot ulcers as an example,[2] ischemia is the 
primary cause of nonhealing ulcers. As 
the cornea is avascular and already setup 
for ischemia, its source of oxygen depends 
on a stable precorneal tear film when 
the eye is open. To further compensate 
for this avascular “ischemic” state, the 
cornea is endowed with the most highly 
innervated tissue in the body to drive the 
aforementioned neuroanatomic integration. 
Therefore, the neuroanatomic integration 
also explains why neurotrophic keratitis 

causes the worst form of dry eye and is the 
prime cause of persistent epithelial defect 
and nonhealing ulcers for the cornea.

Also summarized by Mead et   al. , [1] 
transplantation of cryopreserved human 
amniotic membrane has become one 
novel strategy to promote wound healing 
for patients suffering from neurotrophic 
keratitis. Insertion of PROKERA® is now 
a convenient way of performing amniotic 
membrane transplantation in the clinic not 
only to promote healing in patients with 
neurotrophic keratitis and ulcers but also to 
restore corneal surface integrity in patients 
with moderate to severe dry eye disease. 
Chronic inflammation is a well‑known, 
common pathological denominator for 
both neurotrophic keratitis and dry eye 
diseases; not only has cryopreserved 
amniotic membrane been shown to reduce 
inflammation, but it most excitingly has 
been shown to promote corneal nerve 
regeneration.[3]

Since our first reintroduction of amniotic 
membrane transplantation in ophthalmology 
in 1995,[4] a myriad of plausible mechanisms 
had been proposed to explain how 
amniotic membrane transplantation works 
by 2004.[5] Nearly one decade from that 
time, our laboratory has been devoted 
to searching for the molecular candidate 
responsible for the amniotic membrane’s 
therapeutic actions. From water‑soluble 
amniotic membrane extract, we have 
purified heavy chain  (HC)‑hyaluronic 
acid  (HA)/pentraxin  3 (PTX3) consisting 
of high molecular weight HA covalently 
linked with HC1 from inter‑α‑trypsin 
inhibitor (“‑” denotes covalent linkage) and 
further complexed with PTX3 (“/” denotes 
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noncovalent linkage).[6,7] As summarized by Tighe et al.,[8] 
HC‑HA/PTX3 is a unique matrix abundantly present in 
the birth tissue, i.e., amniotic membrane and umbilical 
cord. As a single agent, HC‑HA/PTX3 orchestrates a 
number of biological actions in several cell types. Its actions 
toward neutrophils, macrophages, and lymphocytes 
translate into a broad‑spectrum anti‑inflammatory 
action that extends from innate to adaptive immune 
responses. HC‑HA/PTX3 also exerts anti‑scarring action 
to prevent myofibroblast differentiation. Furthermore, 
HC‑HA/PTX3 supports limbal niche cells to maintain 
quiescence of limbal epithelial stem cells. These actions 
collectively support why transplantation of amniotic 
membrane augments the success of in  vivo[9‑11] and 
ex vivo[12‑14] expansion of limbal epithelial stem cells 
to treat corneal blindness caused by limbal stem cell 
deficiency. Further research is underway to explore 
how HC‑HA/PTX3 might aid in nerve regeneration. 
Collectively, these actions render HC‑HA/PTX3 as the 
prime candidate in the birth tissue to deliver regenerative 
healing.[15] These regenerative properties of HC‑HA/
PTX3 in the birth tissue have been demonstrated not 
only in ophthalmology as summarized by Mead et al.,[1] 
but also beyond ophthalmology in diabetic foot ulcers,[16] 
spina bifida,[17] surgical reconstruction of extremities,[18] 
and radical prostatectomy.[19] Thus, one may imagine 
that regenerative treatment through the use of the birth 
tissue may one day become a new biologic strategy not 
only to restore ocular surface health but also to fulfill 
unmet clinical needs in many degenerative diseases that 
prevail beyond the ocular surface.
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