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Abstract: Osteoporosis and osteoporotic fractures are strongly associated with mortality and
morbidity, both in developing and developed countries. Menopause accelerates bone loss due
to estrogen deficiency and age-related linear bone loss. We investigated plasminogen activator
inhibitor-1 (PAI-1) gene polymorphisms in postmenopausal women with osteoporotic vertebral
compression fractures (OVCFs). In this case-control study, 355 postmenopausal women were
genotyped for the presence of PAI-1 gene polymorphisms −844A > G, −675 4G > 5G, 43G > A,
9785A > G, and 11053T > G. Genetic polymorphisms of PAI-1 were analyzed by the polymerization
chain reaction restriction fragment length polymorphism assay, and their association with disease
status and folate and homocysteine levels was determined in 158 OVCF patients and 197 control
subjects. The PAI-1 −675 5G5G (adjusted odds ratio (AOR), 3.302; p = 0.017) and 43GA + AA
(AOR, 2.087; p = 0.042) genotype frequencies showed significant association with the increased
prevalence of OVCFs in postmenopausal women. In addition, we performed gene–environment
interaction studies and demonstrated an association between PAI-1 gene polymorphisms and OVCF
prevalence. Our novel finding is the identification of several PAI-1 genetic variants that increase
susceptibility to OVCF. Our findings suggest that polymorphisms in PAI-1 may contribute to OVCF,
and that they can be developed as biomarkers for evaluating OVCF risk.

Keywords: polymorphism; osteoporotic vertebral compression fractures; PAI-1; plasminogen
activator inhibitor-1; osteoporosis

1. Introduction

Osteoporosis is a common metabolic bone disorder characterized by reduced bone mass, increased
skeletal fragility, microarchitectural deterioration, and an increase in bone fractures [1]. Osteoporosis
leads to decreased skeletal strength and increased fracture susceptibility. Osteoporotic fractures are a
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leading cause of disability and, subsequently, death in postmenopausal women [1,2]. The occurrence
of osteoporotic fractures is closely associated with mortality worldwide [3,4]. Approximately 30%
of women and 12% of men will be affected by osteoporosis in their lifetime; therefore, osteoporosis
imposes a major economic burden on society. In particular, osteoporosis and osteoporotic fractures
occur frequently in postmenopausal women due to decreased estrogen levels [5,6]. Estrogen deficiency
associated with menopause, combined with age-related linear bone loss, leads to accelerated bone
loss [7]. Bone mineral density (BMD) is a quantitative trait (g/cm2), with a normal distribution based
on age and sex [8], and is thought to be controlled genetically in 50%–90% of cases [9–12]. A previous
study has shown that several gene polymorphisms can affect BMD levels [6,12–16].

The plasminogen activator inhibitor-1 (PAI-1) gene has several alternative names; the Human
Gene Nomenclature Committee (HGNC) provides SERPINE1 as the name that is used officially.
The PAI-1 gene encodes a member of the serine protease inhibitor superfamily (located on chr.7q21.3).
The PAI-1 protein inhibits plasminogen activators , including tissue plasminogen activator (tPA) and
urokinase-type plasminogen activator (uPA), that touch off a fibrinolysis pathway by conversion
from plasminogen to plasmin [17]. Following the formation of a fibrin clot, the fibrinolytic system is
activated through regulation by PAI-1. The fibrinolytic system provides vessel elasticity by eliminating
thrombosis, dismantling the extracellular matrix, and causing tissue remodeling, cell adhesion, and cell
migration [18,19]. Daci et al. [20] previously reported that PAI-1 deficiency partially protects against
bone loss in estrogen-deficient mice. Another study reported prevention of bone loss in diabetes in
PAI-1-deficient mice [21,22]. A recent study has shown that plasminogen is involved in bone recovery
in mice [22], suggesting that fibrinolysis in tissue might be a crucial factor in bone fracture recovery [23].

Many previous studies have investigated functional PAI-1 in osteoporosis patients [20,21,23].
However, none have reported on the association between PAI-1 polymorphisms and osteoporotic
vertebral compression fractures (OVCFs) in postmenopausal women. Therefore, the purpose of this
study was to investigate whether these polymorphisms of PAI-1 (−844A > G, −675 4G > 5G, 43G > A,
9785A > G, and 11053T > G) correlate with OVCF susceptibility in postmenopausal women.

2. Results

Demographic characteristics and clinical profiles of osteoporosis patients (with/without
osteoporotic vertebral compression fracture, OVCF) and controls are summarized in Table 1 and
Table S1.

2.1. Genotype Frequencies of the PAI-1 Polymorphisms

Genotype and allele frequencies of the PAI-1 polymorphisms −844A > G, −675 4G > 5G, 43G > A,
9785A > G, and 11053T > G are listed for osteoporosis patients (with/without OVCF) and control
in Table 2. Table 2 shows association between osteoporosis and PAI-1 polymorphisms including
−675 4G > 5G (4G4G vs. 5G5G: adjusted odds ratio (AOR) 3.302, 95% confidence interval (CI)
1.224–7.512, p = 0.017; 4G4G vs. 4G5G + 5G5G: AOR 1.727, 95% CI 1.102–2.706, p = 0.017; and 4G4G +
4G5G vs. 5G5G: AOR 2.510, 95% CI 1.056–5.968, p = 0.037), and +43G > A (GG vs. GA + AA: AOR
2.087, 95% CI 1.027–4.241, p = 0.042). In addition, it shows a significant correlation between OVCF
risk and PAI-1 polymorphisms, −844G > A (GG vs. GA: AOR 2.244, 95% CI 1.164–4.326, p = 0.015;
GG vs. GA + AA: AOR 1.918, 95% CI 1.016–3.621, p = 0.044), −675 4G > 5G (4G4G vs. 5G5G: AOR
4.646, 95% CI 1.625–13.286, p = 0.004; 4G4G vs. 4G5G + 5G5G: AOR 1.969, 95% CI 1.130–3.430, p = 0.017;
4G4G + 4G5G vs. 5G5G: AOR 3.378, 95% CI 1.301–8.769, p = 0.012), and +43 G > A (GG vs. GA:
AOR 2.421, 95% CI 1.057–5.546, p = 0.017; GG vs. GA + AA: AOR 2.292, 95% CI 1.009–5.206, p = 0.048).
Furthermore, we analyzed the association between OVCF patients and non-OVCF patients (Table S2).
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Table 1. Baseline characteristics between controls and osteoporosis patients.

Characteristic Controls (n = 197) Osteoporosis (n = 158) p OVCF (n = 87) p Non-OVCF (n = 71) p

Age (years, mean ± SD) 66.11 ± 8.93 70.50 ± 8.24 <0.0001 70.23 ± 9.44 0.001 70.83 ± 6.53 <0.0001
Hypertension (%) 92 (46.7) 57 (36.1) 0.196 37 (42.5) 0.760 20 (28.2) 0.087

SBP (mmHg, mean ± SD) 134.98 ± 18.13 128.42 ± 15.27 0.0005 129.99 ± 16.51 0.041 126.66 ± 13.65 0.001
DBP (mmHg, mean ± SD) 80.69 ± 12.22 76.13 ± 10.44 0.0003 77.63 ± 10.57 0.049 74.45 ± 10.10 0.0001

Diabetes mellitus (%) 25 (12.7) 28 (17.7) 0.324 11 (12.6) 0.992 17 (23.9) 0.062
FBS (mg/dL, mean ± SD) 110.46 ± 33.98 125.80 ± 44.48 <0.0001 135.89 ± 53.96 <0.0001 114.30 ± 26.15 0.025
Hcy (µmol/L, mean ± SD) 9.38 ± 2.89 9.81 ± 4.06 0.056 10.01 ± 3.85 0.022 9.57 ± 4.31 0.316

Folate (ng/mL, mean ± SD) 9.67 ± 9.25 8.12 ± 4.78 0.054 6.54 ± 4.03 0.003 10.19 ± 4.91 0.027
BMI (kg/m2, mean ± SD) 24.51 ± 3.30 23.88 ± 4.04 0.169 23.87 ± 5.02 0.286 23.89 ± 2.75 0.180

HDL-cholesterol (mg/dL, mean ± SD) 47.83 ± 12.05 44.60 ± 14.24 0.201 44.39 ± 15.95 0.249 44.83 ± 12.24 0.250
LDL-cholesterol (mg/dL, mean ± SD) 131.09 ± 44.47 106.74 ± 39.49 0.001 117.87 ± 42.82 0.161 95.02 ± 32.02 <0.0001

TG (mg/dL, mean ± SD) 150.29 ± 88.98 140.66 ± 80.11 0.324 147.62 ± 74.17 0.824 132.23 ± 86.68 0.176
Vitamin B12 (pg/mL, mean ± SD) 788.25 ± 821.74 710.69 ± 591.37 0.015 973.11 ± 1024.37 0.361 639.46 ± 384.93 0.006

25-(OH) Vitamin D (ng/mL, mean ± SD) - 24.02 ± 21.50 - 41.97 ± 34.20 - 18.57 ± 11.62 -
Osteocalcin (ng/mL, mean ± SD) - 7.83 ± 6.39 - 7.83 ± 6.39 - - -
DPD (nMDP/mMcre, mean ± SD) - 8.41 ± 5.55 - 8.41 ± 5.55 - - -

BMD (g/cm2, mean ± SD) - −3.06 ± 0.97 - −2.98 ± 1.26 - −3.06 ± 0.97 -

Abbreviations: OVCF, osteoporotic vertebral compression fracture; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBS, fasting blood sugar; Hcy, homocysteine; BMI,
body mass index; HDL, high density lipoprotein; LDL, low density lipoprotein; TG, triglyceride; DPD, deoxypyridinoline; BMD, bone mineral density.

Table 2. Comparison of genotype frequencies and adjusted odds ratio (AOR) values of plasminogen activator inhibitor-1 (PAI-1) gene polymorphisms between the
osteoporosis and control subjects.

Genotypes Controls
(n = 197)

Osteoporosis
(n = 158) AOR (95% CI) * p Non-OVCF

(n = 71) AOR (95% CI) * p OVCF
(n = 87) AOR (95% CI) * p

PAI-1 −844 - - - - - - - - - -

GG 70 (35.5) 40 (25.3) 1.000 (reference) - 22 (31.0) 1.000 (reference) - 18 (20.7) 1.000 (reference) -
GA 91 (46.2) 89 (56.3) 1.584 (0.951–2.640) 0.077 33 (46.5) 1.168 (0.604–2.256) 0.645 56 (64.4) 2.244 (1.164–4.326) 0.016
AA 36 (18.3) 29 (18.4) 1.263 (0.647–2.467) 0.494 16 (22.5) 1.460 (0.641–3.327) 0.368 13 (14.9) 1.052 (0.415–2.664) 0.915

Dominant (GG vs. GA + AA) - - 1.496 (0.919–2.435) 0.105 - 1.252 (0.677–2.318) 0.474 - 1.918 (1.016–3.621) 0.044
Recessive (GG + GA vs. AA) - - 0.949 (0.528–1.705) 0.860 - 1.342 (0.657–2.740) 0.420 - 0.620 (0.278–1.385) 0.244

HWE-P 0.502 0.097 - - - - - - - -
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Table 2. Cont.

Genotypes Controls
(n = 197)

Osteoporosis
(n = 158) AOR (95% CI) * p Non-OVCF

(n = 71) AOR (95% CI) * p OVCF
(n = 87) AOR (95% CI) * p

PAI-1 −675 4G5G - - - - - - - - - -

4G4G 113 (57.4) 69 (43.7) 1.000 (reference) 33 (46.5) 1.000 (reference) - 36 (41.4) 1.000 (reference) -
4G5G 75 (38.1) 70 (44.3) 1.550 (0.967–2.485) 0.069 32 (45.1) 1.316 (0.716–2.419) 0.376 38 (43.7) 1.653 (0.921–2.968) 0.092
5G5G 9 (4.6) 19 (12.0) 3.032 (1.224–7.512) 0.017 6 (8.5) 1.769 (0.552–5.665) 0.337 13 (14.9) 4.646 (1.625–13.29) 0.004

Dominant (4G4G vs. 4G5G + 5G5G) - - 1.727 (1.102–2.706) 0.017 - 1.366 (0.764–2.441) 0.293 - 1.969 (1.130–3.430) 0.017
Recessive (4G4G + 4G5G vs. 5G5G) - - 2.510 (1.056–5.968) 0.037 - 1.584 (0.516–4.864) 0.422 - 3.378 (1.301–8.769) 0.012

HWE-P 0.435 0.847 - - - - - - - -

PAI-1 +43 - - - - - - - - - -

GG 180 (91.4) 132 (83.5) 1.000 (reference) - 61 (85.9) 1.000 (reference) - 71 (81.6) 1.000 (reference) -
GA 16 (8.1) 24 (15.2) 2.006 (0.963–4.175) 0.063 8 (11.3) 1.598 (0.596–4.284) 0.352 16 (18.4) 2.421 (1.057–5.546) 0.037
AA 1 (0.5) 2 (1.3) 3.188 (0.270–37.664) 0.358 2 (2.8) 7.504 (0.561–100.480) 0.128 0 (0.0) N/A 0.998

Dominant (GG vs. GA + AA) - - 2.087 (1.027–4.241) 0.042 - 1.941 (0.775–4.860) 0.157 - 2.292 (1.009–5.206) 0.048
Recessive (GG + GA vs. AA) - - 2.972 (0.251–35.212) 0.388 - 7.202 (0.531–97.693) 0.138 - N/A 0.998

HWE-P 0.336 0.454 - - - - - - - -

PAI-1 +9785 - - - - - - - - - -

GG 182 (92.4) 148 (93.7) 1.000 (reference) - 68 (95.8) 1.000 (reference) - 80 (92.0) 1.000 (reference) -
GA 14 (7.1) 10 (6.3) 1.072 (0.437–2.633) 0.879 3 (4.2) 0.946 (0.252–3.549) 0.934 7 (8.0) 1.324 (0.477–3.669) 0.590
AA 1 (0.5) 0 (0.0) N/A 0.995 0 (0.0) N/A 0.998 0 (0.0) N/A 0.998

Dominant (GG vs. GA + AA) - - 1.005 (0.414–2.440) 0.991 - 0.898 (0.241–3.344) 0.872 - 1.227 (0.447–3.365) 0.691
Recessive (GG + GA vs. AA) - - N/A 0.995 - N/A 0.998 - N/A 0.998

HWE-P 0.217 0.681 - - - - - - - -

PAI-1 +11053 - - - - - - - - - -

TT 54 (27.4) 33 (20.9) 1.000 (reference) 15 (21.1) 1.000 (reference) - 18 (20.7) 1.000 (reference) -
TG 101 (51.3) 85 (53.8) 1.347 (0.768–2.362) 0.298 36 (50.7) 1.036 (0.493–2.176) 0.926 49 (56.3) 1.647 (0.814–3.334) 0.166
GG 42 (21.3) 40 (25.3) 1.655 (0.858–3.190) 0.133 20 (28.2) 1.920 (0.825–4.470) 0.130 20 (23.0) 1.521 (0.664–3.483) 0.322

Dominant (TT vs. TG + GG) - - 1.429 (0.842–2.428) 0.186 - 1.253 (0.632–2.483) 0.518 - 1.593 (0.814–3.116) 0.174
Recessive (TT + TG vs. GG) - - 1.285 (0.762–2.165) 0.347 - 1.499 (0.773–2.907) 0.231 - 1.108 (0.581–2.114) 0.755

HWE-P 0.682 0.326 - - - - - - - -

* The adjusted odds ratio on the basis of risk factors, such as age, hypertension, diabetes mellitus. HWE-P: Hardy–Weinberg equilibrium p-value. N/A, not applicable.
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2.2. Haplotype Analysis

The linkage disequilibrium of the PAI-1 polymorphisms at loci −844/−675/43/9785/11053
in patients with OVCF and those in the control group is shown in Figure S1. There was strong
linkage disequilibrium between loci −844 and −675 (D’ = 0.838, LOD = 8.42, r2 = 0.153), −844 and
+43 (D’ = 0.764, LOD = 1.2, r2 = 0.02) in the control group, whereas OVCF patients showed strong
linkage disequilibrium between loci +43 and +11053 (D’ = 1.000, LOD = 4.51, r2 = 0.106), +43 and
+9785 (D’ = 0.831, LOD = 0.06, r2 = 0.002). Haplotype analysis of five, four, three, and two loci is
presented in Table 3 and Tables S3–S5. Five-polymorphism allelic combination analysis resulted in
meaningful combination models: G-4G-G-G-G (odds ratio (OR), 2.231; 95% CI, 1.189–4.187; p = 0.015),
G-4G-A-G-T (OR, 62.33; 95% CI, 3.547–1095; p < 0.0001), G-4G-A-G-G (OR, 8.000; 95% CI, 1.996–32.06;
p = 0.002), G-5G-G-G-T (OR, 2.565; 95% CI, 1.483–4.434; p = 0.001), G-5G-G-G-G (OR, 5.571; 95%
CI, 2.039–15.22; p = 0.001), G-5G-A-G-T (OR, 5.455; 95% CI, 2.353–12.64; p < 0.0001), A-4G-G-G-G
(OR, 2.195; 95% CI, 1.346–3.580; p = 0.002), A-4G-G-A-G (OR, 32.65; 95% CI, 1.754–607.7; p = 0.001),
A-4G-A-G-G (OR, 45.00; 95% CI, 5.706–354.9; p < 0.0001), A-5G-G-G-T (OR, 38.590; 95% CI, 2.112–705.1;
p = 0.0004), and A-5G-A-G-T (OR, 56.40; 95% CI, 3.188–997.7; p < 0.0001) (Table 3). In Table 3, we found
difference between non-OVCF and OVCF risk in haplotype analysis. Haplotype analyses of four-,
three-, and two-polymorphism allelic combinations demonstrated many statistically significant results,
which are listed in Tables S3–S5.

2.3. Combined Effects between PAI-1 Polymorphisms and Environmental Factors

To determine additional clinical significance, we performed stratified (Table S6) and
gene–environment interaction (Table S7) analyses according to hypertension, diabetes mellitus,
25-hydroxyl vitamin D (25-OH vit. D), vitamin B12, folate, and plasma total homocysteine (tHcy).
We divided subjects into two groups representing the upper and lower 15% cutoff values for plasma
tHcy and folate levels (folate: 4.40 ng/mL, tHcy: 12.41 µmol/L). We performed stratified analyses
comparing clinical factors and polymorphisms (Table S6). Clinical risk factors strongly correlated
with PAI-1 −844 G > A, and −675 4G > 5G polymorphisms. In gene–environment interaction studies
(Table S7), the PAI-1 −675 polymorphism, coupled with low plasma folate levels or high homocysteine
levels, was associated with an increased odds ratio when comparing osteoporosis patients with control
subjects. In addition, when comparing the association of PAI-1 +43 and plasma folate levels with
osteoporosis (Figure 1), the PAI-1 +43 GA + AA genotype combined with low plasma folate levels
produced a significant result (GG vs. GA + AA: AOR, 9.247; 95% CI, 1.049–81.51). In addition,
we evaluated the effects of PAI-1 genotypes on bone mineral density (BMD), plasma vitamin B12,
25-OH vit. D concentrations, and bone metabolism markers (osteocalcin and deoxypyridinoline)
in Table S8. PAI-1 −844G > A was significantly associated with BMD. Reduced osteocalcin and
deoxypyridinoline were influenced by PAI-1 −844GA + AA and 11053TG + GG genotypes, respectively
(Figure S2).
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Table 3. Comparison of genotype frequencies of PAI-1 gene haplotype between the osteoporosis, non-OVCF, OVCF patients and control subjects.

Haplotype Overall
(n = 355)

Control
(n = 197)

Case
(n = 158) OR (95% CI) p a Non-OVCF

(n = 71) OR (95% CI) p a OVCF
(n = 87) OR (95% CI) p a

PAI-1 −844/−675/+43/+9785/+11053 - - - - - - - - -

G-4G-G-G-T 0.179 0.237 0.098 1.000 (reference) - 0.107 1.000 (reference) - 0.133 1.000 (reference) -
G-4G-G-G-G 0.092 0.099 0.092 2.231 (1.189–4.187) 0.015 0.127 2.862 (1.311–6.247) 0.013 0.099 1.763 (0.849–3.658) 0.177
G-4G-G-A-T 0.008 0.019 0.000 0.198 (0.011–3.567) 0.197 0.000 0.402 (0.022–7.408) 0.592 0.002 0.265 (0.015–4.816) 0.346
G-4G-G-A-G 0.006 0.007 0.000 0.424 (0.023–8.443) 1.000 0.000 0.862 (0.042–17.52) 1.000 0.015 4.043 (0.765–21.36) 0.110
G-4G-A-G-T 0.007 0.000 0.032 62.33 (3.547–109.5) <0.0001 0.008 18.10 (0.704–465.0) 0.147 0.012 19.89 (0.923–428.8) 0.044
G-4G-A-G-G 0.021 0.007 0.025 8.000 (1.996–32.06) 0.002 0.000 0.862 (0.042–17.52) 1.000 0.000 0.568 (0.028–11.40) 1.000
G-4G-A-A-T 0.004 0.000 0.004 8.905 (0.353–224.4) 0.256 0.000 N/A - 0.006 11.94 (0.471–302.7) 0.205
G-5G-G-G-T 0.157 0.158 0.168 2.565 (1.483–4.434) 0.001 0.173 2.500 (1.221–5.118) 0.013 0.140 1.565 (0.812–3.017) 0.184
G-5G-G-G-G 0.029 0.018 0.043 5.571 (2.039–15.22) 0.001 0.047 6.200 (1.903–20.20) 0.004 0.058 5.776 (1.984–16.82) 0.001
G-5G-G-A-T 0.009 0.006 0.000 0.594 (0.028–12.71) 1.000 0.013 6.200 (0.810–47.44) 0.109 0.004 2.022 (0.176–23.29) 0.495
G-5G-G-A-G 0.002 0.003 0.000 0.989 (0.039–24.93) 1.000 0.001 2.011 (0.078–51.66) 1.000 0.001 1.326 (0.052–33.63) 1.000
G-5G-A-G-T 0.042 0.027 0.062 5.455 (2.353–12.64) <0.0001 0.067 5.636 (2.042–15.56) 0.001 0.061 4.043 (1.560–10.48) 0.006
G-5G-A-G-G 0.007 0.003 0.007 6.000 (0.526–68.51) 0.165 0.001 2.011 (0.078–51.66) 1.000 0.001 1.326 (0.052–33.63) 1.000
G-5G-A-A-T 0.000 0.003 0.000 0.989 (0.039–24.93) 1.000 0.001 2.011 (0.078–51.66) 1.000 0.001 1.326 (0.052–33.63) 1.000
A-4G-G-G-T 0.062 0.076 0.056 1.800 (0.883–3.668) 0.132 0.079 2.273 (0.943–5.483) 0.089 0.028 0.674 (0.236–1.928) 0.621
A-4G-G-G-G 0.310 0.311 0.283 2.195 (1.346–3.580) 0.002 0.361 2.571 (1.361–4.855) 0.004 0.329 1.874 (1.077–3.261) 0.032
A-4G-G-A-T 0.006 0.003 0.005 6.000 (0.526–68.51) 0.165 0.008 6.200 (0.368–104.6) 0.271 0.010 8.087 (0.702–93.16) 0.111
A-4G-A-G-T 0.009 0.003 0.000 0.989 (0.039–24.93) 1.000 0.001 2.011 (0.078–51.66) 1.000 0.001 1.326 (0.052–33.63) 1.000
A-4G-A-G-G 0.014 0.003 0.046 45.00 (5.706–354.9) <0.0001 0.001 2.011 (0.078–51.66) 1.000 0.001 1.326 (0.052–33.63) 1.000
A-5G-G-G-T 0.011 0.000 0.020 38.59 (2.112–705.1) 0.0004 0.000 N/A - 0.076 107.4 (6.156–1875) <0.0001
A-5G-G-G-G 0.011 0.018 0.006 0.857 (0.169–4.347) 1.000 0.000 0.402 (0.022–7.408) 0.592 0.011 1.155 (0.225–5.937) 1.000
A-5G-A-G-T 0.013 0.000 0.029 56.40 (3.188–997.7) <0.0001 0.010 18.100 (0.704–465.0) 0.147 0.013 19.89 (0.923–428.8) 0.044

a Fisher’s exact test. N/A, not applicable.
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Figure 1. Osteoporosis risk stratified by interaction between PAI-1 +43G > A and plasma folate 
levels. Combinations of the PAI-1 +43 genotype and plasma folate level subgroups. We divided 
subjects into two groups representing the lower 15% cutoff values for plasma folate levels:  
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and ≤4.40 ng/mL.

3. Discussion

Osteoporosis and low BMD commonly occur in postmenopausal women and lead to increased
susceptibility to fractures. BMD, along with other factors, is known to contribute to skeletal health [24].
In particular, the role of genetic factors, including gene polymorphisms, takes center stage in pathogenic
studies [8,25,26]. Recent studies investigated synergic effects between gene polymorphisms and OVCF
risk factors [27–29].

PAI-1 is a downregulator of the fibrinolysis gene and the key factor for plasminogen ratios [23,30].
Rundle et al. [31] showed that PAI-1 deficiency results in an increase in not only callus size but also
callus cartilage regeneration in PAI-1 knockout (KO) mice recovering from fractures. In addition,
fracture callus development was promoted in PAI-1 KO mice in comparison to control mice.
These results showed strengthened tissue fibrinolysis in PAI-1 deficiency, which may enhance
fracture recovery by facilitating extracellular matrix regeneration [23,31]. This is consistent with our
current finding that an abnormal plasminogen level adversely affects bone recovery and regeneration.
Furthermore, fibrinolysis in tissue can be a crucial factor in both acute inflammation and fracture
restoration [23,32].

A previous study [33] described the 10 most well-known polymorphisms of PAI-1, as follows:
rs2227631 G > A, rs6092 G > A, rs2227708 C > T, rs2227662 C > T, rs2227666 G > A, rs2227667 A > G,
rs2227672 G > T, rs2227683 A > G, rs2227694 G > A, and rs7242 T > G. The rs1799889 (PAI-1 −675
4G > 5G) polymorphism is widely genotyped in PAI-1 genetic studies. The five polymorphisms selected
for our study affect transcription and are expected to regulate PAI-1 levels. Therefore, we hypothesized
that regulation of PAI-1 activity by PAI-1 polymorphisms results in an abnormality in the bone
repair system or bone loss mechanism. Furthermore, postmenopausal women have an increased
risk for OVCF because of sex hormone dysregulation. We have identified an association between
PAI-1 polymorphisms and OVCF prevalence. Based on statistical analyses, this result demonstrates
a significant correlation between PAI-1 −844A > G, −675 4G > 5G, and 43G > A, and OVCF risk.
However, another study reported the lack of any association between the rs1799889 (PAI-1 −675
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4G > 5G) polymorphism and osteoporosis in Turkish postmenopausal women [34]. Interestingly,
this finding conflicts with the results of our research; the discrepancy could be due to differences in the
ethnic group or sample size used. On the other hand, the Turkish postmenopausal women exhibited
only osteoporosis [35], whereas our study participants exhibited symptoms of greater severity, such as
compound fracture due to osteoporosis; this could also be the reason for the discrepancy between the
results of the two studies. There are several limitations to our study. First, serum PAI-1 concentrations
were not examined in our study population. Previous studies have evaluated the contribution of each
PAI-1 polymorphism to serum PAI-1 expression [35–37]. Second, functional studies for PAI-1 SNP
were not performed to elucidate OVCF-related pathogenesis. Although several studies have reported
an association between PAI-1 polymorphisms and bone repair, few have evaluated the pathogenesis
by which PAI-1 polymorphisms affect osteoporosis in postmenopausal women. This study cannot,
therefore, propose a detailed pathogenesis by which PAI-1 polymorphism affects vertebral artery
and tissue. Finally, PAI-1 expression depends on the PAI-1 single nucleotide polymorphism (SNP)
genotypes in the local tissue; therefore, PAI-1 expression in vertebral tissue is more important than
that in serum.

4. Materials and Methods

4.1. Study Population

This was a case-control study, in which the case group consisted of 158 osteoporotic
postmenopausal women (mean age ± SD, 69.50 ± 8.24 years; age range, 56–81 years), defined as
having a T-score of −2.5 or lower and/or at least one non-traumatic fracture of the spine. Women were
recruited from the Neurosurgery and Orthopedic Surgery Departments at CHA Bundang Medical
Center, CHA University of South Korea between March 2005 and December 2008. The control group
consisted of 197 postmenopausal women (mean age ± SD, 66.57 ± 8.05 years; age range, 50–85 years)
without disease and not taking any medications known to influence bone mass or bone turnover.
BMD at the lumbar spine was measured using a dual-energy X-ray (Hologic Discovery W, Waltham,
MA, USA). An OVCF was defined as a ≥15% reduction in the anterior, posterior, or central height
of the vertebra [38]. All examinations were performed by a trained neurosurgeon and orthopedic
surgeon according to previously described methods [39]. All subjects provided their informed consent
for inclusion before they participated in the study. The study was conducted in accordance with the
Declaration of Helsinki, and the protocol was approved by the Ethics Committee of the Institutional
Review Board of CHA Bundang Medical Center on 20 January 2014 (reference No. BD2015-043).
We provided each participant with a full explanation of participation in this study and obtained
confirmed written consent from all study participants. Bone mineral density (BMD) of the lumbar
spine (L2–L4), femur neck (FN), Ward’s triangle, and trochanter (Tro) were measured using dual-energy
X-ray absorptiometry (Norland Medical Systems, White Plains, NY, USA). Osteoporosis was defined
according to the 1994 classification of the World Health Organization (WHO) [40].

4.2. Genotyping

We performed DNA extraction from peripheral blood with an anticoagulant tube using the
G-DEX™ II kit (Intron Biotechnology, Seongnam, Korea). The PAI-1 polymorphisms were amplified
by polymerase chain reaction and digested with a restriction enzyme to identify them via restriction
fragment length polymorphism (RFLP; Table S9) [41]. We selected 30% of the PCR product at random
and checked the RFLP results for concordance with DNA sequencing results. The concordance of the
quality control samples was 100%.

4.3. Bone Measurements

The diagnosis of osteoporosis was based on WHO criteria (dual energy X-ray absorptiometry
(DXA) hip or lumbar T-score <−2.5 standard deviations), and an OVCF was diagnosed when a



Int. J. Mol. Sci. 2016, 17, 2062 9 of 12

progressive or newly generated compression fracture was identified after low-energy trauma. The BMD
T-score was measured in g/cm2 using Hologic densitometers (Hologic Inc., Waltham, MA, USA) [39].
The control group had a BMD T-score greater than −1.0 and had no spine or hip fractures based on the
results of simple radiography. The BMD T-score analysis in this study was conducted with reference
to the WHO report [40].

4.4. Measurement of Vitamin B12, Plasma Total Homocysteine (tHcy), and Folate Levels

We collected plasma samples to measure vitamin B12, tHcy, and folate levels within 48 h of
osteoporosis detection. Twelve hours after the patient’s previous meal, we collected whole blood
in a tube containing anticoagulant. We centrifuged the tube for 15 min at 1000× g to separate the
plasma and stored it at −80 ◦C. Plasma vitamin B12 concentrations were measured using the BioRad
Quantaphase II radioassay (Hercules, CA, USA). We measured plasma tHcy concentration using a
fluorescent polarizing immunoassay with the IMx system (Abbott Laboratories, Chicago, IL, USA) and
the plasma folate concentration with a radio assay kit (ACS 180; Bayer, Tarrytown, NY, USA).

4.5. Statistical Analysis

The genotype and allele combination frequency differences between case and control subjects
were analyses by logistic regression and Fisher’s exact test. The adjusted odds ratio (AORs) and
confidence intervals (CIs) were used as a measure of the association between genotype frequencies and
osteoporosis. All of the alleles were in Hardy–Weinberg equilibrium (p > 0.05). The genotypes with
osteoporosis and OVCF occurrence was calculated with AORs and 95% CIs from logistic regression
adjusted for age, hypertension, and diabetes mellitus. The linkage disequilibrium (LD) with blocking
calculation with HaploView software and haplotype analysis for the models chosen by multifactor
dimensionality reduction (MDR) methods were checked with the HAPSTAT program version 3.0
(www.bios.unc.edu/~lin/hapstat). The correlations of genotypes with BMD, as well as plasma folate,
vitamin B12, 25-hydroxyl vitamin D, osteocalcin and deoxypyridinoline levels, were evaluated by
Kruskal–Wallis test and Mann–Whitney test. Statistical analyses were performed by GraphPad Prism
4.0 (GraphPad Software Inc., San Diego, CA, USA), MedCalc software version 16.8.4 (MedCalc Ltd.,
Ostend, Belgium), HaploView 4.1 (Broad Inc., Cambridge, MA, USA), and HAPSTAT 3.0 (Univ. of
North Carolina, Chapel Hill, NC, USA).

5. Conclusions

In summary, we found an association between PAI-1 polymorphisms and osteoporosis risk in
postmenopausal women. Furthermore, PAI-1 polymorphisms were shown to strongly association
with OVCF occurrence. Interestingly, our results suggest differences between non-OVCF and OVCF
patients in this association with PAI-1 polymorphisms. In particular, the PAI-1 −844G > A, −675
4G > 5G, +43G > A polymorphisms were associated with increased susceptibility for OVCF rather than
non-OVCF and osteoporosis. Therefore, we expect a potentially higher fracture risk in postmenopausal
women who are osteoporosis patients with these PAI-1 polymorphisms. Our findings present the first
report on the association between PAI-1 polymorphisms and OVCF. In conclusion, this study suggests
that PAI-1 polymorphisms (−844G > A, −675 4G > 5G, +43G > A) may contribute to OVCF and could
be used as genetic biomarkers for OVCF risk.

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/1422-0067/17/12/2062/s1.
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