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Abstract: It is hard to imagine that all the cells of the human organism (about 10
14

) share identical genome. Moreover, 

the number of mitoses (about 10
16

) required for the organism’s development and maturation during ontogeny suggests that 

at least a proportion of them could be abnormal leading, thereby, to large-scale genomic alterations in somatic cells. Ex-

perimental data do demonstrate such genomic variations to exist and to be involved in human development and interindi-

vidual genetic variability in health and disease. However, since current genomic technologies are mainly based on meth-

ods, which analyze genomes from a large pool of cells, intercellular or somatic genome variations are significantly less 

appreciated in modern bioscience. Here, a review of somatic genome variations occurring at all levels of genome organi-

zation (i.e. DNA sequence, subchromosomal and chromosomal) in health and disease is presented. Looking through the 

available literature, it was possible to show that the somatic cell genome is extremely variable. Additionally, being mainly 

associated with chromosome or genome instability (most commonly manifesting as aneuploidy), somatic genome varia-

tions are involved in pathogenesis of numerous human diseases. The latter mainly concerns diseases of the brain (i.e. 

autism, schizophrenia, Alzheimer’s disease) and immune system (autoimmune diseases), chromosomal and some mono-

genic syndromes, cancers, infertility and prenatal mortality. Taking into account data on somatic genome variations and 

chromosome instability, it becomes possible to show that related processes can underlie non-malignant pathology such as 

(neuro)degeneration or other local tissue dysfunctions. Together, we suggest that detection and characterization of somatic 

genome behavior and variations can provide new opportunities for human genome research and genetics. 
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INTRODUCTION 

 The human organism consists of about 10
14

 cells of 210 
different types that originate from one zygote and are the 
result of about 10

16
 mitoses (approximately 45 cellular gen-

erations). Moreover, the large number of cellular divisions is 
required to maintain relatively stable amount of cells in a 
human body to cover each day’s loss of more than several 
tens of millions of cells. These numbers make clear that such 
an “amount of processes” cannot be identically reproduced 
and, therefore, all the cells of an organism are unlikely to 
possess identical genomes.  

 It appears that the most critical period for somatic muta-
tions to occur is early embryonic development [1, 2]. Char-
acterized by the logarithmic increase in cells (the most dra-
matic increase of cell numbers in human ontogeny) [2], hu-
man embryos are thought to exhibit increased levels of mi-
totic mutations [3-5]. This is experimentally confirmed by 
molecular cytogenetic studies of embryonic and fetal cells, 
which demonstrate high rates of aneuploidy due to mitotic 
errors correlated with high cell division rate [5, 6]. There-
fore, genetically altered cells produced during this ontoge-
netic period form a basis for organism dysfunction at the 
following developmental stages [3, 4, 7]. Nonetheless, there  
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is still a possibility that somatic genome variations (SGV) 
lack adverse effect due to natural selection and clearance of 
abnormal cells [5, 4, 7, 8]. 

 The genome of a cell is supposed to experience 10
4
-10

5 

of DNA lesions per day. This is another source (exogenous 
source) for cellular genome to change and, if remains unre-
paired (uncleared), such genomic variations give rise to 
pathogenic processes (i.e. cancerization) [9]. Although this is 
a likely process for diseases caused by SGV produced 
through either genomic instability (GIN) or chromosome 
instability (CIN) [7-12], it is supposed to be an underlying 
mechanism of human aging [8, 11]. 

 Despite of numerous attempts to highlight the role of 
SGV [2-8, 10, 12-22], related phenomena remain largely 
underappreciated in current biomedical literature. This sug-
gests that an additional attention to SGV is required. Hence, 
a review of SGV might help to define the contribution to 
human interindividual diversity in health and disease. 

NATURAL SGV 

 Since benign genomic variations of somatic genome re-
main to be poorly described, it is hard to assess the effect of 
SGV on the non-pathogenic diversity. Thus, no less than 
12% of the human genome encompassing disease-associated 
loci is diversified between two individuals [23]. Although it 
is difficult to extrapolate these data to cell populations, it can 
be considered as an indirect evidence for cellular genome to 
change in a related manner. Fortunately, there are molecular 
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Table 1. SGV in Normal Human Tissues 

Tissue/Cell type Type of SGV Description Key Refs 

Aneuploidy 15-91% of samples (mean is about 50%) [6, 25, 26] 

Preimplantation embryos 
Structural rearrangements, aneuploidy, CNV*, segmen-

tal duplications, uniparental disomy 
>90% of samples (83% — aneuploidy) [6] 

Embryos/Fetuses (7-12 weeks) 

Cytotrophoblasts Aneuploidy 20-60% of cells [27] 

Brain Aneuploidy 1.45% of cells^ [5, 28] 

Chorionic villi Aneuploidy 0.98% of cells^ [5] 

Skin Aneuploidy 0.82% of cells^ [5] 

Ovarian tissue Trisomy of chromosome 21 (aneuploidy) 
Statistically significant increase of ane-

uploid cells 
[29] 

Prenatal diagnosis: CVS** or Amniocentesis 

Amniocytes Aneuploidy 0.25% of samples [30] 

Chorionic villi/Placenta Aneuploidy 1-2% of samples [31, 32] 

Newborns/Children 

Blood lymphocytes Aneuploidy >0.1% (clinical population?) [4, 33, 34] 

Blood lymphocytes Aneuploidy 
0.73% (autosomes) and 1.11% (chromo-

some X) of cells — unaffected population^ 
[35] 

Blood lymphocytes Structural rearrangements 0.01% (clinical population?) [36] 

Adults (middle age) 

Blood lymphocytes Aneuploidy 1-3% of cells^ [37-39] 

Blood lymphocytes Structural rearrangements 0.6% of cells [40] 

Skin fibroblasts Aneuploidy 2.2% of cells^ [41] 

Liver Aneuploidy 3% of cells^ [42] 

Brain Aneuploidy 0.3-0.9% of cells^ [10, 28, 43-45] 

Brain 

Skin 

Heart 

Kidney 

Liver 

CNV* 
Tissue-specific CNV; amount of cells and 

percentage of samples was not available 
[46] 

T-lymphocytes 

Imortalized B lymphoblas-

toid cells 

Skin fibroblasts 

Subtle structural rearrangements or CNV 

Tissue-specific mosaicism probably origi-

nating from developmental chromosome 

instability 

[47] 

Adults (aged individuals) 

Blood lymphocytes Aneuploidy 
1-2% (autosomes) and 4-7% (chromosome 

X) of cells^ 
[37-39] 

Skin fibroblasts Aneuploidy 4.4% of cells^ [41] 

Brain Aneuploidy 0.3-0.9% of cells^ [10, 28, 43-45] 

* — copy number variations; ** — chorionic villus sampling; ^ — per chromosome. 
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cytogenetic data on SGV manifested at chromosomal level 
(structural rearrangements, aneuploidy and polyploidy) in 
early prenatal development. As to other types of genomic 
variations, including single-base DNA changes, DNA se-
quence deletion/duplications/inversions, repeat expansions, 
transposition of mobile DNA elements, copy number varia-
tions (CNV), chromosomal miscrodeletions/microduplica-
tions (for more details see reviews [15, 24]), their incidence 
among human fetuses remain largely unknown. SGV de-
tected after birth (non-affected individuals) are mainly re-
ferred to low-level mosaic aneuploidy [3, 4, 7]. Mosaic 
structural genomic rearrangements at chromosomal level are 
also reported, being, however occasionally detected. Addi-
tionally, the best documented SGV are tissue-specific varia-
tions of chromosome numbers (aneuploidy) and CNV. Table 
1 gathers the data on SGV in normal human tissues (cell 
types). 

 The essential problem surrounding the evaluation of SGV 
is a technological one (for more details see [3, 4, 7, 15, 18, 
22, 24]). In other words, some tissues or developmental 
stages were evaluated using single-cell high-resolution mo-
lecular cytogenetic techniques, whereas others were not [22]. 
Therefore, it is hard to compare different data on SGV. Nev-
ertheless, preimplantation embryos exhibit high rates of SGV 
manifested at chromosomal (microscopic and submicro-
scopic) level including aneuploidy, gross structural genomic 
rearrangements, CNV, segmental duplications. In total, it is 
estimated that almost 90% of samples have cells with differ-
ent genomes [6, 25, 26]. The intercellular rate of variations 
(percentage of abnormal cells) is uninformative because of 
small amount of cells at this developmental stage [3, 4]. At 
the next stages of prenatal development, a lesser frequency 
of SGV is observed, being, still, appreciable and affecting up 
to 30% of fetuses (aneuploidy) [4, 5, 8]. This is observed in 
extraembrionic tissues [5, 27] and is suggested to play a key 
role in normal human placentation [27]. Additionally, no less 
than 30-35% of cells of the developing human brain and 
20% of fetal skin are aneuploid [5, 28]. Finally, fetal ovarian 
tissues demonstrate a significant increase of mosaic trisomy 
of chromosome 21 [29]. Further periods of human intrauter-
ine development ascertained through prenatal diagnosis 
(chorionic villus sampling (CVS) and amniocentesis) show a 
small rate of SGV [30]. However, it is to note that these pe-
riods are rarely evaluated by molecular cytogenetic tech-
niques (singular case-reports only), which are essential for 
accurate SGV detection [3, 22]. An additional issue of such 
studies is description of another example of apparently be-
nign tissue-specific SGV in human fetuses referred to as 
placental mosaicism [31, 32]. Together, SGV appear to be 
mainly formed during prenatal development and have the 
potential to give rise to intercellular diversity after birth in 
health and disease. 

 Newborns were not thoroughly evaluated in terms of 
SGV. Furthermore, the only available data on large genomic 
variations (chromosomal abnormalities and heteromorphism) 
can be only acquired from papers describing banding studies 
performed in the end of 70s or beginning of 80s [4, 33, 34]. 
Chromosomal mosaicism detected by banding cytogenetics 
in newborns is less frequent than 0.1% [33, 34]. Molecular 
cytogenetic evaluations of control group in a survey of SGV 
in autism showed rates of mosaic aneuploidy in blood lym-

phocytes as 0.73% (autosomes) and 1.11% (chromosome X) 
[35]. Mosaic structural chromosome rearrangements are ex-
tremely rare and are supposed to be detected in a clinical 
population only [36]. Middle age adults exhibit 1-3% of ane-
uploid cells in tissues composed of mitotically active cells 
and less than 1% in the adult human brain, which is mainly 
composed of post-mitotic cells [10, 28, 37-45]. Natural SGV 
manifesting as structural rearrangements detectable by band-
ing cytogenetics in blood lymphocytes achieve the rate of 
0.6% [40]. Mosaic subtle structural genomic rearrangements 
and CNV can be tissue-specific in presumably unaffected 
individuals [46, 47]. Aged human tissues are known to be 
featured by increased rates of SGV essentially manifesting as 
low-level mosaic aneuploidy [8, 10, 28, 37-39, 41, 43-45]. In 
conclusion, three main features of natural human SGV may 
be highlighted: (i) SGV do contribute to human natural (in-
tercellular) genomic variation; (ii) further studies are 
strongly required to identify incidence and possible effect of 
SGV on unaffected human tissues; (iii) SGV have different 
rates at different ontogenetic stages. The latter suggests a 
role for SGV in human development and aging. 

SGV AND DEVELOPMENTAL/AGING PROCESSES 

 Although involvements of SGV in developmental and 
aging processes are presented in another review published in 
this Hot Topic Issue (YB Yurov et al. Ontogenetic variation 
of the human genome), we found needful to mention briefly 
related phenomena. This appears to be important for further 
delineation of the role of SGV in human diseases and 
mechanisms of SGV formation. Two kinds of fates of ab-
normal cells formed during early prenatal development are 
hypothesized: persistence (increase or stability of rates) and 
clearance (decrease of rates). The former is supposed to rep-
resent a mechanism for SGV-associated diseases (i.e. brain 
diseases, cancers, mosaic chromosome abnormalities), where 
as the latter is likely to be a normal process aimed at regula-
tion of cellular population size and to protect against 
aneuploidization or other unfavorable SGV [4, 5, 7, 8, 47, 
48]. Similar processes appear to underlie human aging, 
including diseases of pathological/accelerated aging [8, 10, 
18, 45]. In sum, this suggests that SGV formed during 
prenatal development are probably responsible for human 
prenatal mortality and postnatal morbidity. However, SGV 
originating from somatic mutations after birth are likely to 
be diseases-causing, as well (as exemplified by studying 
GIN and CIN in cancers). 

SGV AND HEREDITARY DISEASES 

 Genomic variations are determined according to DNA 
sequence size that is involved in a rearrangement [24]. Nu-
merous studies performed during the last decade were fo-
cused on genomic variations at DNA sequence level (gene 
mutations) [2, 3, 13, 19, 24] and copy number variations 
(CNV) [2, 3, 6, 15, 16, 23, 24, 46]. In this extent, SGV was 
continuously studied in monogenic syndromes and diseases 
associated with CNV [2, 19]. Table 2 summarizes current 
data on SGV contribution to pathogenesis of hereditary dis-
eases caused by gene mutations and CNV. 

 It is probable that some somatic CNV encompassing 
these genes are, as yet, undescribed due to extreme rarity of 
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Table 2. SGV and Hereditary Diseases Demonstrating Somatic Gene Mutations or CNV (in Parts Adopted from [2] and [16]) 

Locus Disease Gene CNV Gene Mutations 

1q21.2 Progeria LMNA - + 

1q44 Chronic infantile neurologic cutaneous articular CIAS1 - + 

2p22p21 Hereditary spastic paraplegia SPG4 - + 

2q24 Myoclonic epilepsy SCN1A - + 

2q31 Ehlers Danlos Syndrome IV COL3A1 + - 

3p25 von-Hippel-Lindau Disease VHL + + 

3q13.3q21 Hypocalcemia CASR - + 

3q27 EEC p63 - + 

4p16.3 Skeletal disorders (syndromes) FGFR3 - + 

4p12 Congenital central hypoventilation PHOX2B - + 

4q35 Facioscapulohumeral muscular dystrophy D4Z4* + ? 

5q13 Infantile spinal muscular atrophy SMN1 - + 

6p21 Cleidocranial dysplasia RUNX2 - + 

7q22.1 Osteogenesis imperfecta COL1A2 - + 

8q12.1 CHARGE syndrome CHD7 ? + 

9q22 Loeys-Dietz TGFBR2 - + 

11p15.5 Costello syndrome HRAS - + 

11p15.1 Neonatal diabetes KCNJ11 - + 

12q13 Epidermolysis bullosa simplex KRT5 - + 

12q24.1 Phenylketonuria PAH - + 

13q14 Retinoblastoma RB + + 

14q24.3 Alzheimer disease, early-onset PS1 - + 

15q21.1 Marfan FBN1 - + 

16p13 Tuberous Sclerosis TSC2 + + 

16p13 Rubinstein-Taybi Syndrome CREBBP + ? 

17q11 Neurofibromatosis 1 NF1 + + 

17q21.31 Osteogenesis imperfecta COL1A1 - + 

17q24 Campomelic dysplasia SOX9 + + 

22q11.2 Several hereditary syndromes MYH9 + + 

Xp22.2p22.1 X-linked hypophosphatemia PHEX - + 

Xp22.13 X-linked mental retardation (syndromic/nonsyndromic) ARX - + 

Xp21 Duchenne muscular dystrophy DMD + + 

Xp21 Chronic granulomatous disease CYBB + + 

Xp21.1 Ornithine transcarbamylase deficiency OTC - + 

Xp21.1 Retinitis pigmentosa RPGR - + 

Xp11.3 Retinitis pigmentosa RP2 - + 

Xq11q12 Androgen insensitivity AR - + 
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(Table 2). Contd….. 

Locus Disease Gene CNV Gene Mutations 

Xq26q27.2 Lesch-Nyhan HPRT1 - + 

Xq27 Hemophilia B F9 - + 

Xq28 Hemophilia A F8 + + 

Xq28 Incontinentia pigmenti IKBKG + + 

Xq28 Mucopolysaccharidosis II IDS - + 

Xq28 Otopalatodigital syndrome FLNA - + 

Xq28 
Rett syndrome (males and females) and a set of other neurode-

velopmental diseases (syndromic/nonsyndromic) 
MECP2 + + 

Xq28 X-linked dyskeratosis congenita DKC1 + + 

Xq28 X-linked mental retardation SLC6A8 - + 

* — non-coding DNA sequences (repeats). 

the these conditions (at least some of these conditions) [2, 
19]. Additional important issue of somatic gene mutations 
and CNV is related to explanation of phenotypic difference 
between cases of the same syndrome due to different expres-
sivity in cases of SGV [19]. Finally, the list of somatic gene 
mutations and CNV is far from being complete. Further-
more, some of them appear to be benign in a proportion of 
cases [2]. 

SGV AND CHROMOSOME SYNDROMES 

 The best documented genomic variations are those de-
tected at submicroscopic and microscopic levels (subtle 
structural genomic rearrangements and chromosomal abnor-
malities) [3, 15, 24]. As mentioned above, mosaic structural 
chromosomal rearrangements are rare. There are few popula-
tion-based cytogenetic studies of these SGV suggesting them 
to be associated with milder manifestations of the corre-
sponding non-mosaic rearrangement [36]. Mosaic subtle 
structural chromosome abnormalities (undetectable by band-
ing cytogenetic techniques) are repeatedly reported but the 
incidence remain to be estimated [47, 49]. Consequently, this 
review part is primarily focused on numerical chromosome 
abnormalities (aneuploidy and poliploidy). According to 
previous review of chromosomal mosaicism [4], mosaic 
aneuploidy can be divided into three major groups: rare mo-
saic autosomal aneuploidy (chromosomes 1, 2, 3, 4, 5, 6, 7, 
10, 11, 12, 17, and 19); relatively rare mosaic autosomal 
aneuploidy (chromosomes 14, 15, 16, and 20); frequent mo-
saic autosomal aneuploidy (chromosomes 8, 9, 13, 18, 21, 
and 22). Aneuploidy of sex chromosomes is common due to 
reduced phenotypic effect as to autosomal aneuploidy [3, 4, 
15]. The majority of aneuploidy is trisomy or additional sex 
chromosomes, inasmuch as loss of an autosome leads to in-
trauterine death at the earliest stages of prenatal development 
in contrast to loss of chromosomes X and Y [4, 50, 51]. In-
terestingly, trisomies of chromosomes, rarely involved in 
aneuploidy in fetuses and liveborn infants (adults), occur at 
the same rate in preimplantation embryos as mosaic tri-
somies of other chromosomes [52]. This suggests that mo-
saic aneuploidy does not possess appreciable effect on the 
earliest stage of embryonic development. Therefore, the next 
stages of the development should exhibit high rates of chro-

mosomal mosaicism. This is supported by data on spontane-
ous abortions, 25% of which are chromosomal mosaics [50]. 
Additionally, the presence of uniparental disomy in liveborns 
is considered a confirmation of cleared prenatal mosaicism 
(confined placental mosaicism) [53]. Chromosomal mo-
saicism is also associated with asymmetry and skin pigmen-
tary anomalies [54]. For instance, some syndromes featured 
by congenital asymmetric deformations exhibit unshared 
distribution of aneuploid or polyploidy cell lines [3, 4, 54]. 

 After birth, mosaic chromosomal abnormalities are es-
sentially identified among individuals with phenotypic mani-
festation of recognizable aneuploidy (chromosomal) syn-
dromes [3, 4, 15, 55]. However, there are several reports 
about unaffected individuals with up to 30% of abnormal 
(aneuploid) cells (reviewed in [3] and [4]). The proportion of 
mosaics reflects unequal susceptibility of different chromo-
somes to mitotic non-disjunction [4, 55]. Table 3 shows mo-
saicism (mitotic non-disjunction) among cases of aneuploidy 
in humans. 

 Another well-described examples of SGV associated 
with chromosomal abnormalities (chromosomal syndromes), 
are small supernumerary marker chromosomes. Over 50% of 
cases demonstrating these chromosomal rearrangements can 
exhibit mosaicism, including tissue-specific forms [4, 56-
58]. More precise information about SGV and marker chro-
mosomes is presented in another review of this Hot Topic 
Issue (T Liehr et al. Somatic mosaicism in cases with small 
supernumerary marker chromosomes). 

 SGV demonstrate a diminished clinical effect of chromo-
some abnormalities [3, 4, 7, 15]. However, cancers, which 
are all caused by somatic mutations, are primarily associated 
with cellular (tissular) pathology [11, 13, 14, 17, 20, 41, 42]. 
Taking into account these facts, a hypothesis suggesting that 
SGV manifested as somatic chromosomal mutations (the 
commonest type of SGV) can be a source or a susceptibility 
factor for complex human diseases was proposed [3, 4, 7, 8, 
12, 15, 48]. 

SGV AND COMPLEX DISEASES 

 Currently, SGV have been described in individuals with 
brain diseases (psychiatric and neurodegenerative) [2-4, 7, 
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15-17, 19, 22, 35, 55, 59-80], autoimmune diseases [81-83], 
congenital heart diseases [84] and cancer [9, 11, 13-15, 20, 
85]. All these data is summarized by Table 4. 

 Theoretically, any mutation can be somatic leading, 
thereby, to a disease [3]. However, since genomic variations 
are classically thought to be a result of germline mutations or 
genomic rearrangements [13, 86], SGV contributions to hu-
man morbidity is poorly appreciated. In contrast, complex 
diseases appear to be likely associated with somatic muta-
tions as to monogenic syndromes and genomic disorders, 
being commonly associated with tissue-specific (or even 
“subtissue-specific”) pathology without any additional dys-
functions in other unaffected tissues [3, 4, 7, 12]. Moreover, 
SGV are able to explain some important features of complex 
disease-causing genetic alterations such as environmental 
effects or specific male-to-female ratios [4, 8, 82, 87-89]. 
Finally, to get an integral view of how SGV and other dis-
ease-causing processes interplay with each other, formation 
mechanisms of somatic mosaicism are to be established. 

SGV FORMATION MECHANISMS  

 Although formation of somatic mutations (aneuploidy 
and polyploidy) was the major focus of numerous studies in 
fields of cell biology, genetics and oncology, it is still in-
completely understood. A number of neonatal mosaics and 
cases of tissue-specific mosaicism is suggested to result from 
trisomy rescue due to placental mosaicism [3, 4, 27, 31, 53], 
but it appears to be not the case of spontaneous abortions 
[50]. In neurodegenerative and aging diseases, somatic ane-
uploidy is probably the result of cellular natural selection — 
abnormal cells possess the potential to survive and to prolif-

erate [8, 10, 45]. Studies of somatic cell division (mitosis) 
suggest that mitotic non-disjunction and anaphase lagging 
are two main mechanisms for post-zygotic aneuploidy for-
mation (aneuploidization). Numerous intracellular processes 
are assumed to be involved in improper somatic cell divi-
sions producing GIN and CIN. Among these are defects in 
kinetochore apparatus, centrosomes amplification, genetic 
and epigenetic alterations to mitotic checkpoint genes (ane-
uploidy/polyploidy) as well as abnormal DNA reparation 
and replication (structural alterations to chromosomes, ane-
uploidy, polyploidy) [3, 11, 45, 90-96]. Polyplodization fol-
lowed by multipolar cellular divisions are also hypothesized 
to be a major contributor to somatic aneuploidization associ-
ated with human diseases [96]. Nonetheless, there is still a 
lack of an integrated view on SGV formation. 

CONCLUDING REMARKS 

 In a previous issue of Current Genomics, we have hy-
pothesized that uniqueness of a cell is achieved via SGV [3]. 
Single-cell gene expression studies showing that there is no 
an average cell, because each one has own unique epigenetic 
profiling (or epigenome) [21, 97]. Here, we would like re-
peatedly adopt this idea to the cellular genome. Four years 
after the first postulation [3], important additional data on 
SGV contribution to normal and pathological human biodi-
versity have been accumulated. It was found that early hu-
man prenatal development was defined as a major source for 
SGV [5, 6]. It has been shown that neurodegeneration is me-
diated by GIN and CIN like in cancer in such devastative 
genetic brain diseases as ataxia-telangiectasia and Alz-
heimer’s disease [10, 45]. Several psychiatric diseases 
(autism and schizophrenia) have been associated with mosaic 

Table 3. Mosaic Cases Among Common Aneuploidies (in Parts from [3, 4, 15, 55]) 

Aneuploidy Cases of Mosaicism/Mitotic Non-Disjunction Incidence Disease 

Trisomy of chromosome 2 7% unknown — 

Trisomy of chromosome 7 57%* unknown — 

Trisomy of chromosome 8 50% * >100 cases reported Trisomy 8 

Trisomy of chromosome 13 1% 1:6000-1:29000 Patau syndrome 

Trisomy of chromosome 14 8% ~25 cases reported Trisomy 14 

Trisomy of chromosome 15 None ~10 cases reported — 

Trisomy of chromosome 16 None ~10 cases reported — 

Trisomy of chromosome 18 8% 1:7000 Edwards syndrome 

Trisomy of chromosome 21 5% 1:600 Down syndrome 

Trisomy of chromosome 22 2%*  Cat eye syndrome (?) 

Monosomy of chromosome X 38%* 
1:2000 

(females) 
Turner sydnrome 

Trisomy of chromosome X 20% 1:1000 (females) Trisomy X 

47,XXY 9% 1:500 (males) Klinefelter syndrome 

47,XYY 16% 1:800 (males) Double Y syndrome 

* — postnatal cases suggested to be all mosaic. 



Somatic Genome Variations in Health and Disease Current Genomics, 2010, Vol. 11, No. 6    393 

Table 4. SGV in Complex Human Diseases 

Disease Type of SGV Key Refs 

Brain diseases (psychiatric) 

Learning disability/Mental retar-

dation 
Gene mutations, CNV mosaic aneuploidy [2-4, 7, 15-17, 19, 22, 55] 

Mosaic structural/numerical chromosomal abnormalities: 

Partial tetrasomy 3q 

Ring chromosome 14 

Rearrangements of 15pter-q13.2 

Ring chromosome 17 

Structural abnormalities + ring chromosome 18 

Mosaic deletion 20p 

[59-61] 

[62] 

[63] 

[64, 65] 

 [66] 

[67, 68] 

[69] 

Mosaic aneuploidy (~16% of cases) [35] 

Autism 

Fragile sites [70, 71] 

Mosaic sex chromosome aneuploidy (blood lymphocytes) [72-76] 

Low-level mosaic aneuploidy of chromosomes 1, 18 and X in the diseased brain [12, 44] Schizophrenia 

Fragile sites [7, 77] 

Brain diseases (neurodegenerative) 

Gene mutations [78] 
Alzheimer’s disease 

Mosaic aneuploidy of chromosome 21 in the diseased brain [10] 

Huntington’s disease Gene mutations (trinucleotide repeat expansion) including brain-specific mutations [79] 

Friedreich ataxia Gene mutations (trinucleotide repeat expansion) [80] 

Ataxia-telangiectasia 
Mosaic aneuploidy and chromosome 14-specific breaks/additional rearranged chromo-

somes  
[45] 

Autoimmune diseases 

Primary immune deficiencies Revertant somatic mosaicism [81] 

Primary biliary cirrhosis Mosaic monosomy of chromosome X [82] 

Systemic sclerosis 

Autoimmune thyroid disease 
Mosaic monosomy of chromosome X [83] 

Heart disease 

Gene mutations [84] 
Congenital heart diseases 

Chromosomal abnormalities/syndromes (?) [3, 17, 55] 

Cancers 

Almost all types of cancers 

Almost all cancers are caused by different types of SGV including ane-

uploidy/polyploidy; balanced and unbalanced structural chromosomal/genomic (subtle 

and gross) rearrangements; gene amplifications; telomere shortening; microsatellite 

instability; gene mutations; 

[9, 11, 13-15, 20, 85] 

 

(somatic) aneuploidy [35, 44]. Additionally, very recent re-
ports provided by others groups of researchers showed SGV 
implicated in the normal and abnormal brain physiology and 
aging [98-100]. These results provide essential evidences 
that neuronal DNA variation is a new feature of the human 
brain, which may contribute to neural diversity in normal 

and pathophysiological states and differences amongst indi-
viduals. Together, one can conclude that SGV research has 
proven itself sufficiently to become an important biomedical 
field that would help to understand cellular and molecular 
processes determining human life- and health-span. 
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