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Abstract

Background: Although Monte Carlo simulations of light propagation in full
segmented three-dimensional MRI based anatomical models of the human head
have been reported in many articles. To our knowledge, there is no patient-oriented
simulation for individualized calibration with NIRS measurement. Thus, we offer an
approach for brain modeling based on image segmentation process with in vivo MRI
T1 three-dimensional image to investigate the individualized calibration for NIRS
measurement with Monte Carlo simulation.

Methods: In this study, an individualized brain is modeled based on in vivo MRI 3D
image as five layers structure. The behavior of photon migration was studied for this
individualized brain detections based on three-dimensional time-resolved Monte
Carlo algorithm. During the Monte Carlo iteration, all photon paths were traced with
various source-detector separations for characterization of brain structure to provide
helpful information for individualized design of NIRS system.

Results: Our results indicate that the patient-oriented simulation can provide
significant characteristics on the optimal choice of source-detector separation within
3.3 cm of individualized design in this case. Significant distortions were observed
around the cerebral cortex folding. The spatial sensitivity profile penetrated deeper
to the brain in the case of expanded CSF. This finding suggests that the optical
method may provide not only functional signal from brain activation but also
structural information of brain atrophy with the expanded CSF layer. The proposed
modeling method also provides multi-wavelength for NIRS simulation to approach
the practical NIRS measurement.

Conclusions: In this study, the three-dimensional time-resolved brain modeling
method approaches the realistic human brain that provides useful information for
NIRS systematic design and calibration for individualized case with prior MRI data.

Keywords: Patient-oriented simulation, Time-resolved Monte Carlo, Brain modeling,
Spatial sensitivity profile

Background
Near-infrared spectroscopy (NIRS) is a promising non-invasive brain imaging techni-

que with a higher sampling rate than positron emission tomography (PET)/functional

magnetic resonance imaging (fMRI) and a more precise and localized spatial resolution

than Electroencephalography (EEG)/Magnetoencephalography (MEG). The NIRS tech-

nique provides information about the slow signal (i.e., hemoglobin response) and fast

signal (i.e., neuronal activation) [1-5]. This optical method permitted several benefits as
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non-invasive, less expensive, non-ionizing radiation imaging, real-time measurement,

compact implementation, long time monitoring and easy operation with high time

resolution and adequate spatial resolution for continuously recording oxy- and deoxy-

hemoglobin changes of brain. Also, NIRS offers a more comprehensive measurement

of brain activity than blood-oxygenation-level-dependent (BOLD) fMRI.

Functional near-infrared brain imaging is achieved with the backscattering light

detection by using source-detector pairs on the surface of human head [5-7]. For NIRS

implementation, there are several issues that including signal-to-noise ratio evaluation,

optimal choice of source-detector separation, the brain structural effects on light pro-

pagation and the brain volume sampled remain to be fully understood well. Therefore,

the simulation approach is important for characterization of photon migration in

human brain with various source-detector separations to provide helpful information

for individualized design of NIRS system [8-10].

In the most previous studies, the simulation results were generally obtained by semi-

infinity five-layer structure [11-22] or two-dimensional head model with a MRI slice

[13,18]. Naturally, the three-dimensional brain structure modeling by utilizing in vivo

MRI data provides a realistic phenomenon of photon migration dynamics. However,

there is no detail description for efficient and systematic modeling method of Monte

Carlo algorithm with three-dimensional anatomical MRI data [14,15,17,19]. Addition-

ally, the three-dimensional model which faithfully represents the realistic human head

from MRI data depends on image processing.

Therefore, we offer a systematic approach for 3D brain modeling based on image

segmentation process with in vivo MRI T1 three-dimensional image. For investigation

of individualized difference in brain structure with NIRS, an adult volunteer was mod-

eling to implement Monte Carlo simulated with various source-detector separations.

According to previously studies, the light guiding effect occurred in the CSF layer of

human brain. The presence of a relatively clear layer such as CSF that has both low

scattering and absorption coefficients has been shown especially to alter the light pro-

pagation in the head [12,16,19,23,24]. This phenomenon cannot be portrayed by diffu-

sion approximation method because the CSF reveals low scattering property [25] but it

can be observed in the Monte Carlo simulation. Accordingly, the result indicates the

advantage of the Monte Carlo method for NIRS modeling. Besides, the NIRS system

typically applies multi-wavelength sources to detect the concentration changes of oxy-

and deoxy-hemoglobin such as 690 nm, 780 nm and 830 nm. Therefore, this study

offers a NIRS simulation method for understanding photon migration dynamics in

human brain by using three-dimensional MRI data with multi-wavelength illumination.

Methods
Three dimensional brain MRI T1 data processing

Figure 1 shows an in vivo MRI T1 image of human brain with five layers that assigned

as scalp, skull, cerebral spinal fluid (CSF), gray matter and white matter, respectively.

The three-dimensional brain image contains 256 × 256 × 92 voxels and each voxel size

is 1 × 1 × 1 mm3.

Segmentation methods are important technique used in image processing to identify

the objects in the image. For segmentation of brain layers, the image process includes

two steps: 1) to segment the scalp and skull by level set method and region growing
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approach and 2) to segment the CSF, gray matter and white matter by using probabil-

istic framework segmentation. Figure 2 demonstrates the contour segmentation of

scalp and skull that was achieved with level set and region growing operator. The level

set method is a numerical technique for tracking interfaces and shapes. The advantage

of the level set method are that it is implicit, parameter free, provides a direct way to

Figure 1 Three dimensional in vivo MRI T1 brain image. In the simulation, the three-dimensional MRI
T1 brain image was considered with five layers as scalp, skull, cerebral spinal fluid (CSF), gray matter and
white matter. The schematic diagram shows the anatomical structure of the human head.

Figure 2 Segmentation of scalp and skull layer. This figure shows the segmentation process of scalp
and skull: (a) two-dimensional anatomical MRI images, (b) contours segmentation with level set operator,
(c) boundaries of the scalp and (d) skull layer, and (e), (f) segmentation with region growing approach
(scalp = 1, skull = 2), (g) the two layers modeling of the scalp and skull.
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estimate the geometric properties of the evolving structure, can change the topology

and is intrinsic [26-29].

In the Figure 2(a), as could be expected, there are holes (boundary gaps) in the edges

of skull layer, so simply coloring and parametric form of deformable models between

the edges would not work. In contrast, level sets are designed to handle topological

changes naturally. However, unlike the parametric form, they are not robust to bound-

ary gaps and suffer from several other deficiencies as well. Thus, the level set method

is suitable to segment the contour of scalp and skull from MRI data. In two dimen-

sions, the level set method amounts to representing a closed curve Γ using a level set

function ø (t, x, y). The closed curve Γ is represented as the zero level set of ø (t, x, y)

by [29]

�(t) = {(x, y)|φ(t, x, y) = 0} (1)

If the curve Γ(t) moves in the normal direction with a speed function F, then the

level set function ø satisfies the level set equation that can be written in the following

general form:

∂φ

∂t
+ F |∇φ| = 0 (2)

To avoid the problem of further computation highly inaccurate with develop shocks,

very sharp or flat shape during the evolution. The level set function ø have to reshape

(also call re-initialize) to be a signed distance function periodically during the evolu-

tion. The variational level set formulation which keeps as an approximate signed dis-

tance function has been proposed that can be easily implemented by simple finite

difference scheme, without the need of re-initialization as following the formula:

ε (φ) = μP (φ) + εm (φ) (3)

where μ > 0 is a parameter controlling the effect of penalizing the deviation of ø

from a signed distance function; P(ø) is considered as the internal energy, defined

within the curve, are designed to keep the model smooth during the deformation pro-

cess. Consider a unit circle Ω⊂ℜ2 that can be written as:

P (φ) =
∫

�

1
2

(|∇φ| − 1)2 dxdy (4)

while the εm (ø) is considered as the external energy which are computed from the

underlying image data, are defined to move the model toward an object boundary or

other desired features within the image. The formula of external energy can be written

as:

εm (φ) = εg,λ,v (φ) = λLg (φ) + vAg (φ) (5)

where l > 0 and ν are constants; Lg(ø) is the length of the zero level curve of ø and

Ag(ø) is introduced to speed up curve evolution of level set function that are defined

as:

Lg (φ) =
∫

�

gδ (φ) |∇φ| dxdy (6)
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Ag (φ) =
∫

�

gH (−φ) dxdy (7)

where δ is the univariae Dirac function, and H is the Heaviside function; g is the

edge indicator function defined by

g =
1

1 + |∇Gσ ∗ I|2 (8)

where Ga is the Gaussian kernel with standard deviation a and I is an image.

Figure 2(b) shows the results obtained using level sets to segment scalp and skull

from the background. To obtain the outer boundary of the scalp, we started with an

initial level set at the boundary of the image. To obtain the structures of skull on the

inside of the brain, we started with an initial level set that was a closed curve around a

point on the inside. This curve evolved to identify the boundaries of skull inside the

brain. The contours generated by the level sets are closed contours.

After image segmentation by utilizing level set method, the contours of scalp and

skull were segmented as shown in Figure 2(c) and 2(d). The region growing approach

was then adopted to segment the two connected layers in binary image. The basic idea

of region growing was starting with seeds. The grow regions from corresponding seeds

revealed similar properties with their neighboring pixels [30,31]. According to the

result of region growing segmentation, the scalp and skull layers were distinguished

and marked as type 1 and 2 in simulation (Figure 2(e) and 2(f)). Figure 2(g) shows the

two layers modeling of the scalp and skull.

After scalp and skull labeling, the probabilistic framework was then applied to clas-

sify CSF, gray matter and white matter layers with unified segmentation, which was

performed by fitting a mixture of Gaussians (MOG) model with prior information of

deformable tissue probability maps [32]. The MOG model can be described by the

probability density of intensity yi and kth Gaussian distribution with mean μk and var-

iance sk2 as

P
(
yi | ci = k, μk, σk

)
=

1√
2πσ 2

k

exp(−
(
yi − μk

)2

2σ 2
k

) (9)

The Gaussian function indicated the probability distribution of brain tissues. The

bias correction and image registration were included within the unified segmentation

approach. Figure 3 shows the probability distributions of CSF, gray matter and white

matter by unified segmentation from in vivo MRI data.

According to the mapping of probability distribution, each image pixel would be

sorted to CSF, gray matter, or white matter by calculated maximum probability of tis-

sue type. The layers of CSF, gray matter and white matter were assigned as type 3, 4

and 5 in simulation. Figure 4(a) shows the five-layer brain structure after image pro-

cess method and Figure 4(b) demonstrates the reconstructed three-dimensional brain

model by 92 slices that corresponded to original in vivo three-dimensional MRI data

(Figure 4(c)).
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Monte Carlo algorithm

Photon migration in human tissue can be numerically simulated by the Monte Carlo

algorithm [33-40]. The photon trajectory can be computed with the parameters for

propagation governing: 1) the mean free path of a scattering or absorption event, 2)

the boundary conditions - refraction and specular reflection, 3) scattering event -

deflection and azimuth angles, 4) absorption event - energy loss, 5) detector location.

The Monte Carlo model relies on the sampling of random variables from their

Figure 3 Segmentation of CSF, gray matter and white matter. Image process by using unified
segmentation. (a) MRI data; (b) segmented CSF, (c) segmented gray matter, and (d) segmented white
matter.

Figure 4 The three-dimensional brain model with five layers. Five layers three-dimensional brain
structure in Monte Carlo simulation: (a) one slice of brain model with five layers, (b) reconstructed three
dimensional brain model, (c) original three dimensional MRI data.
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probability density function. The probability density function of step size s1 is defined

as:

P(s1) = μte
−μt s1 (10)

According to the probability density function as uniform distribution, s1 can be

obtained:

s1 =
−ln (1 − ξ)

μt
(11)

where ξ is uniformly distributed between [0,1]. Consider a multi-layer structure that

the photon may experience a free path over multiple layers before a scattering event,

the counterpart of Eq. (11) becomes:
∑

i

μtiSi = − ln ξ (12)

where μti is the extinction coefficient and si is the path length of the ith voxel. The

Snell’s law and Fresnel reflection formulas were applied at each boundary. The prob-

ability for the occurrence of a scattering process over the distance ds was given by

p(scattering in ds) = μs
′ds (13)

The probability distribution of scattering angle θ was assumed by Henyey and Green-

stein function with the anisotropy factor g as

p (cos θ) =
1 − g2

4π
(
1 + g2 − 2g cos (θ)

)3/2 (14)

The probability distribution of azimuth angle Ψ was assumed to be isotropic as

ξ =

ψ∫

0

1
2π

dψ =
ψ

2π
(15)

where Ψ = 2πξ with the uniform random number ξ Î [0, 1]. At each scattering

event, an individual photon packet dropped part of its power and the energy loss can

be represented by

�w = w × μa

μt
(16)

where w is the weight of the photon packet before the scattering event. In addition,

the formal solution, Mie theory, describes absorption and/or scattering event with a

sphere that has been available in previously study [41]. The photon-passed voxels were

all recorded with temporal evolution for photon footprint tracing. Therefore, the

dynamic behavior of photon migration in human brain can be manifested. Additionally,

we recorded all the paths of the received photons in the simulations, the visited layers

of each photon were marked. Accordingly, spatial sensitivity profiles (SSP) of adult

head models were calculated from the accumulated trajectories of photons. The spatial

sensitivity has been described theoretically by photon measurement density functions

or sensitivity maps [39,42,43].
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The source and multi-detectors arrangement on the surface with transverse view and

sagittal view were applied to investigate the light propagation in human brain (shown

in Figure 5). The source-detector separations in transverse view and sagittal view are

1-10 cm with 1 cm step. First, all cases were simulated at typical 800 nm wavelength

illumination with the five-layer scattering/absorption coefficients 1.9/0.018 (scalp), 1.6/

0.016 (skull), 0.24/0.004 (CSF), 2.2/0.036 (gray matter) and 9.1/0.014 (white matter)

mm-1 [16,21,23,36]. For NIRS modeling, multi-wavelength sources (690, 780, and 830

nm) were applied for illumination of the adult brain. The reduced scattering coefficient

μs’, absorption coefficient μa, scatters’ radius, refractive indices of background and scat-

ters of brain tissues are described in Table 1 [35].

Results
Figure 6 shows the tomograms of the adult brain structures of in vivo MRI data and

processed optical models for Monte Carlo simulation. The 92 two-dimensional slices

were used from head top to down and then the three-dimensional images were recon-

structed of both structures. The depth of head model was 9.2 cm.

Figure 5 The geometric configuration of source-detector. The source-detector separations on human
head model in simulation with transverse view and sagittal view. The separations are 1-10 cm with 1 cm
step.
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The light source was located on the frontal surface at the 6 cm from the head top in

transverse and sagittal view (shown in Figure 5). Based on time gating approach, the

temporal responses of photon migration in human brain was made. Figure 7 shows the

trajectories of all 2 × 107 photons in the transverse and sagittal cases of brain struc-

ture. Obviously, the difference patterns of photon migration can be observed. In the

result, the light can reach to white matter layer (~3 cm depth) after 100 psec in trans-

verse views. The result of simulation revealed the photon guiding effect in CSF layer.

In our simulation, all photon-passed voxels were recorded for photon migration analy-

sis. The CSF light guiding effect can be easily observed in the movie file. This paper

has supplementary downloadable material available of Additional file 1 provided by the

authors. This includes a multimedia MOV format movie file, which shows the dynamic

photon migration with 800 nm light pulse illumination through the adult brain model.

Two cross-sectional views are demonstrated as transverse and sagittal. This material is

7.65 MB in size.

Figure 8 demonstrates the paths of detected photons via source-detector separation

in transverse and sagittal view of individualised model. Ten detectors were placed away

from the light source with 1-10 cm as Figure 5. The red arrow indicates the location

of light source and orange one represents each detector. The power of received light

was decreasing while source-detector separation increasing. According to the result,

the optimal source-detector separation was chosen between 2 and 4 cm for brain

detection in this individualised model. However, Figure 8(c) indicates the longer propa-

gation distance of diffuse photon in sagittal view because of its bigger CSF volume in

Table 1 Optical properties of brain tissues in Monte Carlo simulation

Brain
tissues

μa/μs’ at 690 nm (cm-

1 )
μa/μs’ at 780 nm (cm-

1 )
μa/μs’ at 830 nm (cm-

1 )
Anisotropy factor

(g)

Scalp 0.159/8 0.164/7.1 0.191/6.6 0.92

Skull 0.101/10 0.115/9.1 0.136/8.6 0.92

CSF 0.004/0.1 0.017/0.1 0.026/0.1 0.92

Gray matter 0.178/12.5 0.170/11.6 0.186/11.1 0.92

White
matter

0.178/12.5 0.170/11.6 0.186/11.1 0.92

Air – – – –

Figure 6 The tomograms with different depths of the brain. This figure shows the result of optical
brain modeling from in vivo MRI data. (a) shows nine MRI slices of adult brain, (b) shows the processed
optical model with respect to in vivo MRI slices, (c) shows the 3D adult brain structures of reconstructed
optical models for Monte Carlo simulation.
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Figure 7 The photon migration in the horizontal cross section. The dynamics of photon migration in
transverse and sagittal views with 800 nm light illumination: (a) at time = 0 ps, (b) at time = 104 ps, (c) at
time = 161 ps, (d) at time = 312 ps, (e) at time = 611 ps, and (f) at time = 1000 ps.

Figure 8 The spatial sensitivity profile with various source-detector separations. This figure shows
the photon migration of the received photons with different distances of source-detector separation. (a)
Photon trajectories via source-detector separation in transverse view, (b) photon trajectories via source-
detector separation in sagittal view, and (c) the received intensity via source-detector separation.
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interhemispheric fissure. Therefore, the behavior of light propagation in human brain

strongly depends on individualised structure of brain.

The proposed modeling method can offer multi-wavelength illumination. Figure 9

shows the curves of intensity distribution with various source-detector separations in

this individualised brain model at 690 nm, 780 nm and 830 nm. Figure 9 implies that

the propagated photon through brain was absorbed stronger at longer wavelength.

Also, the result reveals that the change rate of detected intensity via source-detector

separation can provide a quantitative analysis to evaluate the brain structure

individually.

In this study, the paths of received photons from each layer were recorded. Figure 10

shows the ratios of the backscattered intensities from different layer versus the source-

detector separation with multi-wavelength. Obviously, the signal from the surface

(scalp and skull) layer and cerebral cortex layer were crossed at about 3.3 cm of

source-detector separation. In this result of this individualised model, the backscattered

light from the cerebral cortex layer is greater than 50%, while the source-detector

separation exceeds the cross-point. Compare this result with Figure 9, the total

received intensity was decreases strongly with the source-detector separation increas-

ing. Hence, the source-detector separation in this individualised case was optimally set

as 3.3 cm for NIRS measurement.

Discussion
In this paper, the patient-oriented and individualized simulation for brain monitoring

by using in vivo MRI data was proposed. An adult brain was modeled in three-

Figure 9 The curve of intensity distribution with multi-wavelength. This figure shows the multi-
wavelength (690 nm, 780 nm and 830 nm) distribution of received intensity with various source-detector
separations in adult brain models.
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dimensional time-resolved Monte Carlo simulation to investigate the structural charac-

teristic of individualized brain. The result indicates that the three-dimensional model

which faithfully represents the realistic and individualized human head from MRI data

depends on image processing. In order to detect the characteristic of individualized

structural with NIRS measurement, the various source-detector separations on human

head were simulated dynamically with transverse and sagittal views in an adult brain

model. Although the previously studies indicated the light guiding effect occurred in

the CSF layer of human head. We described the Monte Carlo method that is capable

of performing the penetration analysis with dynamic photon migration movies to show

more clearly effects of light guiding by CSF. The penetration of 800 nm light via the

CSF is remarkably clear in the Figure 7.

The CSF is a region that is filled with clear low scattering fluid in the head. In other

words, the effect of both low scattering and absorption coefficients in the CSF layer

reveals a strong effect on light propagation in the head. Thus, the photons propagate

longer distance along the CSF layer can be observed clearly in the movie file of Figure

7, especially in sagittal view. In the Figure 8, we observed that the penetration depth in

sagittal view is longer than transverse with source-detector separation from 3 cm to 10

cm, especially from 6 cm to 10 cm. In other words, the transverse cross-section con-

tains bigger volume of gray and white matter and smaller volume of CSF than the

sagittal cross-section that can observe in Figure 8. Besides, the gray and white matters

generate absorption and multi-scattering that cause shallow penetration in transverse

cross-section. On the contrary, the CSF layer provides low extinction of light that can

help light propagation longer in sagittal cross-section. The results showed that the

Figure 10 The ratios of the backscattered intensities from different layer. This figure shows the
distributions of ratio of the received intensity from different layers of brain versus the distance of source-
detector separation with multi-wavelength.
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spatial sensitivity profile in the head formed unlike the well-known “banana” shape

when the source-detector separations are less than 3 cm, which covered uniformly

between the source and the detector, and covered the gray matter and even the surface

of the white matter. Significant distortions were observed around the cerebral cortex

folding. The spatial sensitivity profile penetrated deeper to the brain in the case of

expanded CSF. Accordingly, the cerebral cortex folding geometry was suggested to sig-

nificantly affect the spatial sensitivity profile in human head because it filled with CSF.

This was discrepant with the previous finding by loose brain models [39,40]. However,

accurate modeling of the brain structure based on image segmentation process, the

effect of the sulcus (filled of CSF) on the spatial sensitivity profile was obvious. There-

fore, in most studies using the brain models based on MRI data of the adult brain

[13-15,17,38,39], the cerebral cortex folding in the models were suggested to be not

exact and large enough to affect the spatial sensitivity profile. In the sagittal section,

the photons propagate longer distance along the CSF layer can be observed clearly

because the expanded interhemispheric fissure. This finding suggests that the optical

method may provide not only functional signal from brain activation but also struc-

tural information of brain atrophy with the expanded CSF layer.

The multi-wavelength simulations at 690, 780, and 830 nm demonstrate nicely

effects of increasing absorption with wavelength and light guiding effect through the

cerebral cortex folding.

In previous studies, the source-detector separation is usually chosen between 2 and 3

cm in the previous studies. It is still a trade-off problem between the received intensity

and the useful information in NIRS measurement. To our knowledge, this is the first

study to provide an individualized modeling method for patient-oriented simulation

with NIRS measurement. In the Figure 10, the ratio of the received intensity indicates

the existence of brain activation signals from the surface of cerebral cortex (surface of

gray and white matter). According to the distribution of received intensity versus

source-detector separation (shown in Figure 9) and the ratio of the received intensity

from different layers (shown in Figure 10), our results suggest that the optimal choice

of source-detector separation for this individualized case is set as 3.3 cm. In this paper,

the new contributions are stated as follows:

1. In previous studies, although the results of Monte Carlo simulation of light pro-

pagation in full segmented 3D MRI model of the human head was presented and

the code was released for use by other researchers, it was an only one regular brain

model. In our study, we provided an efficient and systematic modeling method of

individual brain model for patient-oriented measurement and analysis. The signal-

to-noise ratio evaluation and optimal choice of source-detector separation for indi-

vidualized brain may provide more helpful information for NIRS systems design.

2. Li et. al. indicated that the significant characterization on the visible Chinese

human model was significantly stronger than that on the MRI model [11]. Addi-

tionally, we clarified and proved that the three-dimensional model which faithfully

represents the realistic human head from MRI data depends on image processing.

3. Currently, most Monte Carlo simulations have been suited to a single wave-

length. However, the NIRS system usually applies multi-wavelength. In our study,
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we reformed the Monte Carlo simulation for multi-wavelength sources to approach

the practical NIRS measurement.

Conclusions
In conclusion, the three-dimensional time-resolved brain modeling method approaches

the realistic human brain that provides useful information for NIRS systematic design

and calibration for individualized case with prior MRI data. Besides, NIRS, with its

advantages, could be a useful research tool for the diagnosis of patient-oriented in the

near future.

Additional material

Additional file 1: The movies of the dynamics of photon migration in brain models. The movie shows the
dynamic photon migration with 800 nm light pulse illumination through the adult brain models. Two cross-
sectional views are demonstrated as transverse and sagittal.

Acknowledgements
This research was supported by National Taiwan University YongLin Biomedical Engineering Center and under grants
FB002-2, National Taiwan University and under grants 10R80921-4, the National Science Council of Taiwan and under
grants NSC 100-2221-E-010-004, NSC 100-2622-E-010-003-CC3, NSC 100-2627-E-010-001, a grant from Ministry of
Education, Aim for the Top University Plan in National Yang-Ming University and Yen Tjing Ling Medical Foundation.

Author details
1Institute of Biomedical Engineering and National Taiwan University Molecular Imaging Center, National Taiwan
University, Taipei, Taiwan, Republic of China. 2Biophotonics and Molecular Imaging Research Center, Institute of
Biophotonics, and Biomedical Optical Imaging Lab, National Yang-Ming University, Taipei, Taiwan, Republic of China.
3Department of Photonics, National Chiao Tung University, Hsinchu, Taiwan, Republic of China.

Authors’ contributions
CC (first author) contributed in the theoretical model, proposal of the method, and writing of the manuscript. YL, CC
(third author), YH and TL contributed equally in the analysis of algorithms. CS conceived of the study, and
participated in its design and coordination and helped to writing the manuscript. All authors read and approved the
final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 9 August 2011 Accepted: 17 April 2012 Published: 17 April 2012

References
1. Strangman G, Boas DA, Sutton JP: Non-invasive neuroimaging using near-infrared light. Biol Psychiatry 2002,

52:679-693.
2. Wolf M, Wolf U, Choi JH, Gupta R, Safonova LP, Paunescu LA, Michalos A, Gratton E: Functional Frequency-Domain

Near-Infrared Spectroscopy Detects Fast Neuronal Signal in the Motor Cortex. NeuroImage 2002, 17:1868-1875.
3. Gratton G, Brumback CR, Gordon BA, Pearson MA, Low KA, Fabiani M: Effects of measurement method, wavelength,

and source-detector distance on the fast optical signal. NeuroImage 2006, 32:1576-1590.
4. Medvedeva AV, Kainerstorferb J, Borisova SV, Barbourc RL, VanMetera J: Event-related fast optical signal in a rapid

object recognition task: Improving detection by the independent component analysis. Brain Res 2008,
1236:145-158.

5. Hillman EMC: Optical brain imaging in vivo: techniques and applications from animal to man. J Biomed Opt 2007,
12:051402.

6. Obrig H, Wenzel R, Kohl M, Horst S, Wobst P, Steinbrink J, Thomas F, Villringer A: Near-infrared spectroscopy: does it
function in functional activation studies of the adult brain? Int J Psychophysiol 2000, 35:125-142.

7. Boas DA, Gaudette T, Strangman G, Cheng X, Marota JJA, Mandeville JB: The accuracy of near infrared spectroscopy
and imaging during focal changes in cerebral hemodynamics. NeuroImage 2001, 13:76-90.

8. Gebhart SC, Lin WC, Jansen AM: In vitro determination of normal and neoplastic human brain tissue optical
properties using inverse adding-doubling. Phys Med Biol 2006, 51:2011-2027.

9. Zhao H, Tanikawa Y, Gao F, Onodera Y, Sassaroli A, Tanaka K, Yamada Y: Maps of optical differential pathlength factor
of human adult forehead, somatosensory motor and occipital regions at multi-wavelengths in NIR. Phys Med Biol
2002, 47:2075-2093.

10. Bevilacqua F, Piguet D, Marquet P, Gross JD, Tromberg BJ, Depeursinge C: In vivo local determination of tissue optical
properties: applications to human brain. Appl Optics 1999, 38:4939-4950.

Chuang et al. BioMedical Engineering OnLine 2012, 11:21
http://www.biomedical-engineering-online.com/content/11/1/21

Page 14 of 15

http://www.biomedcentral.com/content/supplementary/1475-925X-11-21-S1.MOV
http://www.ncbi.nlm.nih.gov/pubmed/12372658?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12498761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12498761?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16872842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18725213?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17994863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10677642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10677642?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11133311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11133311?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16585842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16585842?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12118602?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12118602?dopt=Abstract


11. Li T, Gong H, Luo Q: Visualization of light propagation in visible Chinese human head for functional near-infrared
spectroscopy. JBO 2011, 16(045001):1-6.

12. Okada E, Delpy DT: Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in
the cerebrospinal fluid layer. Appl Optics 2003, 42:2906-2914.

13. Fukui Y, Ajichi Y, Okada E: Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal
head models. Appl Optics 2003, 42:2881-2887.

14. Mudra R, Nadler A, Keller E, Niederer P: Analysis of near-infrared spectroscopy and indocyanine green dye dilution
with Monte Carlo simulation of light propagation in the adult brain. J Biomed Opt 2006, 11:044009.

15. Xu Y, Graber HL, Barbour RL: Image correction algorithm for functional three-dimensional diffuse optical
tomography brain imaging. Appl Optics 2007, 46:1693-1704.

16. Okada E, Delpy DT: Near-infrared light propagation in an adult head model. II. Effect of superficial tissue thickness
on the sensitivity of the near-infrared spectroscopy signal. Appl Optics 2003, 42:2915-2922.

17. Boas DA, Dale AM: Simulation study of magnetic resonance imaging-guided cortically constrained diffuse optical
tomography of human brain function. Appl Optics 2005, 44:1957-1968.

18. Ogoshi Y, Okada E: Analysis of light propagation in a realistic head model by a hybrid method for optical brain
function measurement. Opt Rev 2005, 12:264-269.

19. Heiskala J, Nissilä I, Neuvonen T, Järvenpää S, Somersalo E: Modeling anisotropic light propagation in a realistic
model of the human head. Appl Optics 2005, 44:2049-2057.

20. Hayashi T, Kashio YO, Okada E: Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-
scattering region. Appl Optics 2003, 42:2888-2896.

21. Hoshi Y, Shimada M, Sato C, Iguchi Y: Reevaluation of near-infrared light propagation in the adult human head:
implications for functional near-infrared spectroscopy. J Biomed Opt 2005, 10:064032.

22. Diamond SG, Huppert TJ, Kolehmainen V, Franceschini MA, Kaipio JP, Arridge SR, Boas DA: Dynamic physiological
modeling for functional diffuse optical tomography. NeuroImage 2006, 30:88-101.

23. Firbanky M, Arridgez SR, Schweigery M, Delpy DT: An investigation of light transport through scattering bodies with
non-scattering regions. Phys Med Biol 1996, 41:767-783.

24. Wolf M, Keel M, Dietz V, von Siebenthal K, Bucher HU, Baenziger O: The influence of a clear layer on near-infrared
spectrophotometry measurements using a liquid neonatal head phantom. Phys Med Biol 1999, 44:1743-1753.

25. Dehghani H, Delpy DT, Arridge SR: Photon migration in non-scattering tissue and the effects on image
reconstruction. Phys Med Biol 1999, 44:2897-2906.

26. Oshe S: Fronts Propagating with Curvature- Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations.
J Comput Phys 1998, 79:12-49.

27. Raviv TR, Kiryati N, Sochen N: Segmentation by Level Sets and Symmetry. IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Volume 1 CVPR06 2006, 00:1015-1022.

28. Leventon ME, Faugeras O, Grimson WEL, Wells WM: Level Set Based Segmentation with Intensity and Curvature
Priors. IEEE Workshop on Math Met Biomed Imag Anal 2000, 00:4-11.

29. Li C, Xu C, Gui C, Fox MD: Level set evolution without re-initialization: a new variational formulation. IEEE Comp Soc
Conf Comp Vis Pattern Recogn 2005, 1:430-436.

30. Hojjatoleslami SA, Kittler J: Region growing: a new approach. IEEE T Image Process 1998, 7:1079-1084.
31. Tremeau A, Borel N: A region growing and merging algorithm to color segmentation. Pattern Recognition 1997,

30:1191-1203.
32. Ashburner J, Friston KJ: Unified segmentation. NeuroImage 2005, 26:839-851.
33. Strangman G, Franceschini MA, Boas DA: Factors affecting the accuracy of near-infrared spectroscopy concentration

calculations for focal changes in oxygenation parameters. NeuroImage 2003, 18:865-879.
34. Lee CK, Sun CW, Lee PL, Lee HC, Yang CC, Jiang CP, Tong YP, Yeh TC, Hsieh JC: Study of photon migration with

various sourcedetector separations in near-infrared spectroscopic brain imaging based on threedimensional
Monte Carlo modelling. Opt Express 2005, 13:8339-8348.

35. Wang LH, Jacques SL, Zheng L-Q: MCML - Monte Carlo modeling of photon transport in multilayered tissues.
Comput Meth Prog Bio 1995, 47:131-146.

36. Kirillin M, Meglinski I, Kuzmin V, Sergeeva E, Myllylä R: Simulation of optical coherence tomography images by Monte
Carlo modeling based on polarization vector approach. Opt Express 2010, 18:21714-21724.

37. Churmakov DY, Meglinski IV, Greenhalgh DA: Influence of refractive index matching on the photon diffuse
reflectance. Phys Med Biol 2002, 47:4271-4285.

38. Meglinsky IV, Matcher SJ: Modelling the sampling volume for skin blood oxygenation measurements. Med Biol Eng
Comput 2001, 39:44-50.

39. Mansouri C, Huillier JPL, Kashou NH, Humeau A: Depth sensitivity analysis of functional near-infrared spectroscopy
measurement using three-dimensional Monte Carlo modelling-based magnetic resonance imaging. Lasers Med Sci
2010, 25:431-438.

40. Boas DA, Culver JP, Stott JJ, Dunn AK: Three dimensional Monte Carlo code for photon migration through complex
heterogeneous media including the adult human head. Opt Express 2001, 10:159-170.

41. Bohren CF, Huffman DR: Absorption and Scattering of Light by Small Particles. John Wiley & Sons; 1983.
42. Okada E, Firbank M, Schweiger M, Arridge SR, Cope M, Delpy DT: Theoretical and experimental investigation of near-

infrared light propagation in a model of the adult head. Appl Opt 1997, 36:21-31.
43. Meglinsky IV, Matcher SJ: Analysis of the spatial distribution of the detector sensitivity in a multilayer randomly

inhomogeneous medium with strong light scattering and absorption by the Monte Carlo method. Opt Spectrosc
2001, 91:692-697.

doi:10.1186/1475-925X-11-21
Cite this article as: Chuang et al.: Patient-oriented simulation based on Monte Carlo algorithm by using MRI
data. BioMedical Engineering OnLine 2012 11:21.

Chuang et al. BioMedical Engineering OnLine 2012, 11:21
http://www.biomedical-engineering-online.com/content/11/1/21

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/16965166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16965166?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16409097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16409097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16242967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16242967?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8730669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8730669?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10442710?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10616143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10616143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15955494?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12725763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12725763?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19498863?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20941071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20941071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12502049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12502049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11214272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20143117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20143117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250644?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18250644?dopt=Abstract

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Three dimensional brain MRI T1 data processing
	Monte Carlo algorithm

	Results
	Discussion
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


