
Bulathsinghalage and Liu BMC Bioinformatics 2020, 21(Suppl 14):369
https://doi.org/10.1186/s12859-020-03689-x

RESEARCH Open Access

Network-based method for regions with
statistically frequent interchromosomal
interactions at single-cell resolution
Chanaka Bulathsinghalage and Lu Liu*

From The Sixth International Workshop on Computational Network Biology: Modeling, Analysis, and Control (CNB-MAC
2019)
Niagara Falls, NY, USA. 07 September 2019

*Correspondence:
lu.liu.2@ndsu.edu
North Dakota State University, 1340
Administration Ave, 58102 Fargo,
USA

Abstract
Background: Chromosome conformation capture-based methods, especially Hi-C,
enable scientists to detect genome-wide chromatin interactions and study the spatial
organization of chromatin, which plays important roles in gene expression regulation,
DNA replication and repair etc. Thus, developing computational methods to unravel
patterns behind the data becomes critical. Existing computational methods focus on
intrachromosomal interactions and ignore interchromosomal interactions partly
because there is no prior knowledge for interchromosomal interactions and the
frequency of interchromosomal interactions is much lower while the search space is
much larger. With the development of single-cell technologies, the advent of
single-cell Hi-C makes interrogating the spatial structure of chromatin at single-cell
resolution possible. It also brings a new type of frequency information, the number of
single cells with chromatin interactions between two disjoint chromosome regions.

Results: Considering the lack of computational methods on interchromosomal
interactions and the unsurprisingly frequent intrachromosomal interactions along the
diagonal of a chromatin contact map, we propose a computational method dedicated
to analyzing interchromosomal interactions of single-cell Hi-C with this new frequency
information. To the best of our knowledge, our proposed tool is the first to identify
regions with statistically frequent interchromosomal interactions at single-cell
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resolution. We demonstrate that the tool utilizing networks and binomial statistical
tests can identify interesting structural regions through visualization, comparison and
enrichment analysis and it also supports different configurations to provide users with
flexibility.

Conclusions: It will be a useful tool for analyzing single-cell Hi-C interchromosomal
interactions.

Keywords: Single-cell Hi-C, Interchromosomal interactions, Networks, Statistically
frequent

Background
Stretching the DNA in a human cell, it would be about two meters long, but how can
it fit into a tiny space of about 6 microns across? DNA of cells of different tissues (e.g.
neural cells and heart cells) are essentially the same, but why do these cells function dis-
parately and what factors turn the genes’ on and off and result in the disparities? To gain
insights into these questions, advances in chromosome conformation capture-based tech-
nologies have provided researchers a great opportunity to study the higher-order spatial
organization of chromatin. A popular method is chromosome conformation capture with
high-throughput sequencing (Hi-C), in which genomes are cross-linked with formalde-
hyde, fragmented with enzymes, randomly ligated in proximity and finally sequenced by
next-generation sequencing platforms. After raw reads are processed by bioinformatics
pipelines, a genome-wide contact map of a collection of cells is generated and it reveals
intrachromosomal interactions and interchromosomal interactions. Intrachromosomal
interactions refer to the valid ligations between DNA fragments of the same chromosome
and interchromosomal interactions refer to the valid ligations between DNA fragments
of different chromosomes. Intrachromosomal interactions are the majority of chromatin
interactions in Hi-C experiments and their interaction frequencies are genomic distance
dependent [1]. Interchromosomal interactions are two orders of magnitude weaker than
intrachromosomal interactions [2] and interchromosomal interactions contain a higher
proportion of noise than intrachromosomal interactions [3].

As the popularity of the Hi-C approach grows, large amounts of data have been gen-
erated and significant endeavors are devoted to developing computational methods and
tools. These computational methods and tools can be coarsely divided into two cate-
gories, Hi-C data processing and downstream analysis. For the first category, there are
some existing tools used to generate valid chromatin interactions from raw sequenc-
ing reads [4–12]. They follow similar processing steps and may adopt different sequence
alignment strategies (pre-truncation, iterative and trimming), filtering criteria (read-level,
read-pair level, strand and distance) and normalization methods (explicit-factor cor-
rection, matrix balancing and joint correction). Besides, there are some computational
tools to exam the quality of Hi-C data by measuring the reproducibility of Hi-C repli-
cates [10, 13–15]. For the second category, there are several major analysis tasks to
gain insights into the spatial structure and function of chromatin. A/B compartments
which correspond to open and closed chromatin can be identified by using Princi-
ple Component Analysis on transformed chromatin contact maps [16]. Megabase-sized
Topologically Associating Domains (TADs) can be discovered by using a Hidden Markov
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Model with a directionality index [17]. There are other methods available to detect TADs
[18–23]. As TADs are defined as continuous chromosomal loci, these methods only take
intrachromosomal interactions into consideration. Statistically significant long-range
chromatin interactions are extracted from Hi-C data. As there is no prior knowledge
about interchromosomal interactions, computational methods focus on intrachromoso-
mal interactions because the frequency of interactions between two intrachromosomal
loci heavily depends on the genomic distance between the loci. Some methods identify
statistically significant chromatin interactions by fitting the frequencies of intrachromo-
somal interactions with certain distributions, such as power-law [16], double-exponential
[24] and negative binomial [25]. Instead of assuming a certain distribution, a nonparamet-
ric method [26] identifies statistically significant chromatin interactions by estimating the
genomic distance-dependence relationship with splines. Furthermore, there is a method
[19] extracting significant chromatin interactions as calling peaks in a chromatin con-
tact map within the surrounding two-dimensional region. Hi-C data are also used to
construct three-dimensional models of chromatin structure. Some methods [24, 27–
33] try to learn a consensus chromatin structure of a collection of cells. Some meth-
ods [34–39] are intended to learn a set of chromatin structures representative of the
observed chromatin interaction data. Besides the above downstream analysis tasks, there
are some computational methods to carry out differential analysis on Hi-C data [40, 41]
and multiple two-dimensional visualization tools exist [42–45]. For a comprehensive list
of computational tools on Hi-C data, please check out the Omictools website [46] on
high-throughput chromosome conformation capture data analysis software tools.

There are substantial computational methods and tools for downstream analysis of
Hi-C data, however, most of them focus on intrachromosomal interactions and little
attention is paid to interchromosomal interactions. Partly because there is no prior
knowledge such as the strong genomic distance-dependence relationship between fre-
quency of intrachromosomal interactions and the genomic distance. In addition, the
frequency of the interchromosomal interactions is much lower than intrachromosomal
interactions while their search space is much larger (bin pairs across chromosomes VS
bin pairs within chromosomes). To the best of our knowledge, there are few computa-
tional studies that are dedicated to bulk Hi-C interchromosomal interactions. One study
presents an investigation on human and mouse interchromosomal contacts and provides
insights into mammalian chromatin organization [17]. A recent work develops a compu-
tational method based on an autoencoder and a multilayer perceptron classifier to impute
high-resolution interchromosomal interactions [47]. Another paper presents two compu-
tational methods to estimate the transcription factors enriched in the interchromosomal
interactions in yeast [48].

With the development of single-cell technologies, some single-cell Hi-C (scHi-C)
approaches [49–51] are invented and therefore we can examine chromatin interactions at
single-cell resolution. They also bring a new type of frequency information, the number of
single cells with chromatin interactions between two disjoint chromosome regions. Gen-
erally these chromosome regions are defined by dividing chromosomes into equal-sized
bins according to a resolution specified by users. Considering the lack of computational
methods on interchromosomal interactions and the obvious pattern of intrachromosomal
interactions along the diagonal of a chromatin contact map, we propose a computational
method dedicated to analyzing interchromosomal interactions of single-cell Hi-C with
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this new frequency information. The fundamental difference between our research and
previous research on interchromosomal interactions is our research is based on the new
frequency information observed from each cell among all cells profiled. Since a bulk
Hi-C experiment pools cells together at the very beginning so it can’t discern whether
a chromosomal interaction is shared by single cells or not. Therefore, computational
methods on bulk Hi-C experiments don’t consider the new frequency information at
single-cell level, which is not available in bulk Hi-C experiments. In addition, when deal-
ing with frequent interchromosomal interactions our method takes multiple contact maps
as its inputs while computational methods on bulk Hi-C take one contact map as their
inputs. What is more, to the best of our knowledge there is no tool available for frequent
interchromosomal interactions. Specifically, we develop a computational tool to identify
regions with statistically frequent interchromosomal interactions and make it accessible
to the public. We believe that the regions associated with statistically frequent interchro-
mosomal interactions under the single-cell context may be helpful for new hypotheses and
functionally important therefore deserve more attention. Finally, frequent pattern mining
is a longstanding topic in data mining research [52].

Our contributions may be stated as follows:

• We propose a computational method to identify regions associated with statistically
frequent interchromosomal interactions at single-cell resolution.

• To the best of our knowledge, we are the first to implement a tool to serve the
purpose and make it open to the public. To accommodate different scHi-C
experiments, the tool is flexible on configurations.

• We demonstrate that using our proposed tool on two real scHi-C data sets, it can
identify interesting structural regions.

The rest of paper is organized as follows. The “Method” delineates our proposed
method in detail. The “Data” introduces two scHi-C data sets as our inputs. The
“Results and discussion” demonstrates that our proposed tool’s usability on identifying
interesting regions and flexibility of configurations. The “Conclusion” sections concludes
that the tool will be useful for analyzing scHi-C interchromosomal interactions.

Method
In Fig. 1, the workflow of our proposed tool is illustrated and it includes three steps,
network construction, statistical measurement calculation and region selection. The
inputs of our tool are chromatin interactions of single cells, which are represented
in heatmaps and can be easily generated with scHi-C processing pipelines such as
NueProcess [53]. The outputs of our tool are identified regions, whose interchromo-
somal interactions are statistically frequent, along with frequencies and p-values. They
are provided to help users refine identified regions with some frequency or p-value
cutoff.

First, we construct a network by using interchromosomal interactions for each cell
respectively. Due to low read coverages of scHi-C experiments and the more complex
chromosomal structures of larger mammalian genomes, i.e. homo sapiens and mus mus-
culus, chromosomes are divided into equal-sized bins to accumulate sufficient signals.
Each bin is represented as a node with an index, and if there is an interchromosomal
interaction whose two ends fall within two bins then the corresponding two nodes are
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Fig. 1 Workflow of the proposed method based on networks and statistical tests

connected with an edge. Instead of counting the number of interchromosomal interac-
tions between bins, we are more concerned about their presence or absence because of
the scarcity and variability of interchromosomal interactions in single cells. Therefore, an
unweighted network is constructed for each cell.

Second, we develop a measurement to quantify how statistically frequent for an edge
to be detected among single cells. To avoid an overestimation of this measurement and
therefore reduce false positives, we first remove nodes without any intrachromosomal
and interchromosomal interactions among all cells to narrow down the search space of
edges, which originally is all node pairs of different chromosomes. Assume the number
of edges in the edge search space is M, the number of single cells is N, and the number
of interchromosomal interactions for cell i is represented as ni. Then ni

M represents the
probability for cell i to have an edge between two nodes of different chromosomes. If
a given edge is observed in t cells, we can use the following equations to calculate its
p-value.
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Similar to previous research [27, 54, 55], in Eq. 1 the binomial distribution is applied
to estimate the p-value that reflects how likely it is for an edge to be observed in at least
a given number of cells among all single cells. The rationality behind the selection of the
binomial distribution is assuming whether there is an edge between two nodes of differ-
ent chromosomes is a Bernoulli trial, the binomial distribution can capture edges that
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appear so frequent in multiple single cells that they reach statistical significance among
all single cells. These frequent edges can only be detected in scHi-C experiments instead
of bulk Hi-C experiments because subtle single-cell level information is pooled in bulk
Hi-C experiments. Equation 2 is used to quantify the probability of an edge with all cells
considered, which is determined by a function in Eq. 3. Users can configure the selec-
tion of these functions through a parameter. For scHi-C experiments with larger genomes
or low sequencing depths, it is recommended to use max to select regions with highly
statistically frequent interchromosomal interactions; therefore fewer regions would be
selected. To the contrary, min is applied to select more regions. For scHi-C experiments
with smaller genomes or high sequencing depths, min increases the odds for some regions
to be selected while max may find nothing. mean is a balance between max and min, so
the number of identified regions falls between them.

At last, p-values are adjusted by the Bonferroni correction and a user provided p-
value cutoff, e.g. 0.05, is applied to select regions associated with statistically frequent
interchromosomal interactions.

Data
To demonstrate that our proposed tool can be used to identify interesting structural
regions, we use data from two existing scHi-C studies as our input data sets.

The first study [56] investigated the cell-cycle dynamics of chromosomal organization
at single-cell resolution. The authors processed single F1 hybrid 129 × Castaneus mouse
embryonic stem cells (mESCs) grown in 2i media using 1.5 million reads per cell on aver-
age. They analyzed 1,171 cells with fluorescence-activiated cell sorting, which labeled
these cells to different cell-cycle phases based on levels of the DNA replication marker
geminin and DNA content. Among them, 280 cells with a prefix of 1CDX1 were labeled
as G1 phase; 303 cells with a prefix of 1CDX2 were labeled as Early-S phase; 262 cells with
a prefix of 1CDX3 were labeled as Mid-S phase; 326 cells with a prefix of 1CDX4 were
labeled as Late-S phase. We treat cells of different cell-cycle phases separately and feed
them as inputs of our tool respectively. Therefore we identify regions with statistically
frequent interchromosomal interactions for different cell-cycle phases.

The second one [50] developed a single-nucleus Hi-C protocol which provides >10-fold
more contacts per cell than the previous method [49] to investigate chromatin organiza-
tion at oocyte-to-zygote transition in mice. There are 40 transcriptionally active oocytes
labeled as non-surrounded nucleolus (NSN), 76 transcriptionally inactive oocytes labeled
as surrounded nucleolus (SN), 30 maternal nuclei from zygotes and 24 paternal nuclei
from zygotes. Maternal and paternal nuclei are extracted from predominantly G1 phase
zygotes.

Results and discussion
Both data sets have single cells/nuclei of four conditions, therefore we run the proposed
tool on single cells/nuclei of each condition respectively. Since the genomes used in the
two experiments are large and sequencing read coverages are low, to accumulate sufficient
interchromosomal interactions in a bin, we set the bin size to 500 kilobases (kb), which
is also used in other existing studies [55, 57]. We first show that our tool can identify
regions with statistically frequent interchromosomal interactions, then demonstrate that
our tool is flexible to different configurations, which support sliding windows for region
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diversity, different functions to estimate the probability of having an edge between two
nodes thereby providing adaptability of identified regions, and a configuration of different
bin sizes e.g. 500kb VS 1 megabases (Mb).

Usability of identifying interesting regions

To demonstrate the usability of our proposed method, we first display identified regions
in visualization, then compare the identified regions and at last carry out enrichment
analysis with other genomics features such as CTCF binding sites and enhancers etc.

Identification of statistically frequent regions

In Fig. 2, identified regions associated with statistically frequent interchromosomal inter-
actions among single cells of the cell-cycle data set are visualized in Circos [58]. The max
function is configured for our method. The banded ideograms are mouse chromosomes
(1-19, X and Y) and the black lines between them are interchromosomal interactions and
the ends of these lines correspond to identified regions in chromosomes. Figure 2a shows
the results of single cells of G1 phase; Fig. 2b shows the results of single cells of Early-S
phase; Fig. 2c shows the results of single cells of Mid-S phase; and Fig. 2d shows the results
of single cells of Late-S phase.

Among all four Circos plots, there is an apparent common hub in chromo-
some 11 (between 3Mb and 3.5Mb) whose interchromosomal interactions are highly
enriched. The finding of this hub is corroborated by previous research with bulk Hi-
C experiments to study interchromosomal contact networks in mammalian genomes

Fig. 2 Identified regions of the cell-cycle data set. Visualizing genome-wide identified regions and their
interchromosomal interactions of the cell-cycle data set with an adjusted p-value cutoff of 0.05 in Circos
plots. a single cells of G1 phase; b single cells of Early-S phase; c single cells of Mid-S phase; d single cells of
Late-S phase
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[55]. They also discovered this hub in the mouse genome. Our finding confirms
the hub’s existence at single-cell level and rules out the possibility that its exis-
tence is solely contributed by very few cells with a large amount of interchromoso-
mal interactions in the region. In addition, these four Circos plots are similar but
not exactly the same, which means single cells of different cell phases share some
interchromosomal interactions but also have some variabilities on interchromosomal
interactions.

In Fig. 3, identified regions associated with statistically frequent interchromosomal
interactions among single cells/nuclei of the oocyte-to-zygote data set are visualized.
Figure 3a shows the results of single oocytes labeled as NSN; Fig. 3b shows the results
of single oocytes labeled as SN; Fig. 3c shows the results of single maternal nuclei from
zygotes; and Fig. 3d shows the results of single paternal nuclei from zygotes. Our tool
reports much fewer regions on this data set and there is no hub. The absence of the
hub may be partly because of cell discrepancies on cell types and cell cycles. To be more
specific, in the second research, oocytes and maternal/paternal nuclei from zygotes only
contain a single set of chromosomes. However, for the chromosome 11 from 3Mb to
3.5Mb, there are comparatively more interchromosomal interactions among all four Cir-
cos plots. Additionally, a similar interchromosomal interaction pattern is observed: there
are some shared interchromosomal interactions but there are also some variabilities at
single-cell resolution.

Fig. 3 Identified regions of the oocyte-to-zygote data set. Visualizing genome-wide identified regions and
their interchromosomal interactions of the oocyte-to-zygote data set with an adjusted p-value cutoff of 0.05
in Circos plots. a single oocytes labeled as NSN; b single oocytes labeled as SN; c maternal nuclei from
zygotes; d paternal nuclei from zygotes



Bulathsinghalage and Liu BMC Bioinformatics 2020, 21(Suppl 14):369 Page 9 of 15

Table 1 Pairwise comparisons of the cell-cycle data set

Comparison Common Unique in former Unique in latter

G1 VS Early-S 757 219 569

G1 VS Mid-S 526 450 198

G1 VS Late-S 708 268 335

Early-S VS Mid-S 595 731 129

Early-S VS Late-S 767 559 276

Mid-S VS Late-S 597 127 446

Pairwise comparisons of identified regions

For the cell-cycle data set, we compare the identified regions from single cells of differ-
ent phases and examine the similarity and dissimilarity. In Table 1, single cells of different
phases share a lot of common regions. There are some unique regions in each phased
single cells. All pairs have more common regions than unique regions except the com-
parison between Early-S and Mid-S. Because the number of common regions is limited
by the identified regions from single cells at Mid-S phase and single cells at Early-S phase
report the most identified regions.

We also compare the identified regions from single cells of the oocyte-to-zygote data
set. In Table 2, single cells of different conditions share some regions and there are more
unique regions than common regions. This phenomenon seems inconsistent with what
we have observed in the cell-cycle data set. But it does make sense and reflects the differ-
ent types of single cells/nuclei used in their experiments. When identified regions from
oocytes labeled NSN are compared with the ones from other cells/nuclei, the oocytes
labeled SN share the most common regions because both of them are the same type of
cells and their common regions are limited by the identified regions from oocytes labeled
NSN; single maternal nuclei share more regions than single paternal nuclei because
oocytes and single maternal nuclei are both from females while single paternal nuclei are
from males. The same reason can also be applied to explain why oocytes labeled SN share
more common regions with single maternal nuclei than single paternal nuclei. At last, sin-
gle maternal nuclei and single paternal nuclei share the fewest common regions because
some are from females and the others are from males.

Enrichment analysis of identified regions

To improve the interpretation of identified regions, we carry out enrichment analysis of
identified regions with genomic features, which are available in the cell-cycle data set. As
there are too many identified regions in the data set, we select top ranked regions/nodes
according to the numbers of statistically frequent unweighted edges with a cutoff (≥3

Table 2 Pairwise comparisons of the oocyte-to-zygote data set

Comparison Common Unique in former Unique in latter

NSN VS SN 35 2 49

NSN VS maternal 18 19 15

NSN VS paternal 15 22 36

SN VS maternal 21 63 12

SN VS paternal 19 65 32

maternal VS paternal 13 20 38
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Table 3 Identified Regions’ Enrichment Analysis of the cell-cycle data set

Input CTCF enhancer H3K4me3 H3K27ac Pol II

G1 2.82 1.05 1.75 2.63 2.48

Early-S 10.86 9.81 12.48 12.05 12.58

Mid-S 2.81 1.48 3.08 2.74 3.64

Late-S 3.37 1.74 4.33 4.36 5.05

except ≥4 for single cells at Early-S phase because there are too many top regions). There-
fore we obtain 16 regions for single cells at G1 phase, 37 regions for single cells at Early-S
phase, 34 regions for single cells at Mid-S phase and 47 regions for single cells at Late-S
phase. Genomic features of mESC cell line are downloaded from this paper [59] and they
are CTCF binding sites, enhancer sites, H3K4me3 peaks, H3K27ac peaks and Pol II peaks.

For the above selected regions of each phase, the numbers of genomic features are
counted respectively. Then we ranomly select the same number of regions and count the
numbers of genomic features falling into these randomly selected regions respectively.
We carry out this randomization strategy 50,000 times and therefore we obtain empir-
ical background samples for each genomic feature. We calculate the z-score for each
genomic feature. In Table 3, most of genomic features are enriched (≥1.97, which cor-
responds to 0.05 in p-value) except enhancer. What is more important, for single cells
at Early-S phase, all the genomic features are highly enriched. (When ≥3 is used as the
cutoff, the results become more enriched.) H3K4me3 and H3K27ac are active gene tran-
scirption marks. Pol II plays very important roles in gene transcription. An enhancer
increases the likelihood of gene transcription. CTCF plays important rols in chromatin
structure and insolates the spread of heterochromatin. Early-S phase corresponds to the
commencement of DNA replication. These genomic features seems working coordinately
to facilitate the initialization of DNA replication.

Flexibility of configurations

To make our tool flexible to accommodate different scHi-C experiments, we support dif-
ferent configurations, which include sliding windows for region diversity, edge probability
functions for adjustability of identified regions and different bin sizes.

Configuration of sliding windows

By default, our tool divides chromosomes into bins from the first bases of chromosomes
to the last ones, which limits the starting and ending positions of regions. To overcome
this limitation, our tool supports a sliding window strategy by moving bins toward the
last bases certain bases (e.g. 100kb). It lets users decide where their regions’ starting and
ending positions through a parameter. In Table 4, we adopt four sliding windows of sizes
of 100kb, 200kb, 300kb and 400kb and compare the identified regions with the ones by

Table 4 Overlapping identified regions of the cell-cycle data set with no sliding window and sliding
windows of different sizes

Input Data 100kb 200kb 300kb 400kb

G1 92.11% 92.01% 92.01% 95.49%

Early-S 85.52% 86.05% 86.73% 89.22%

Mid-S 90.33% 89.92% 91.16% 93.65%

Late-S 93.19% 91.08% 91.66% 94.44%
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Table 5 Overlapping identified regions of the oocyte-to-zygote data set with no sliding window and
sliding windows of different sizes

Input Data 100kb 200kb 300kb 400kb

oocyte NSN 100% 92.01% 92.01% 95.49%

oocyte SN 86.90% 89.29% 89.29% 92.86%

pronucleus maternal 93.94% 93.94% 90.91% 100%

pronucleus paternal 94.12% 90.20% 90.20% 92.16%

default (no sliding window). If identified regions mediated by some interchromosomal
interactions from the no sliding window condition overlap with identified regions from
a sliding window condition at both ends, we treat these regions as common identified
regions; otherwise they are different. Therefore, we can calculate the common identi-
fied regions between no sliding window and sliding windows. In Table 4, we conclude
that most identifed regions between no sliding window and sliding windows are common
because some shared interchromosomal interactions fall into these regions. But as these
common regions’ starting and ending positions are different, our tool diversifies the iden-
tified regions to users. What is more interesting is the single cells at Early-S phase share
the fewest identified regions between no sliding window and sliding windows of differ-
ent sizes. As DNA synthesis commences at Early-S phase, interchromosomal interactions
may vary or involve in DNA synthesis initialization activites more at this phase than other
phases. In Table 5 of the oocyte-to-zygote data set, we can reach the same conclusion that
most identified regions are common between no sliding window and sliding windows of
different sizes and meanwhile there are some different regions.

Configuration of edge probability functions

Our proposed tool supports three functions, max, mean and min, to estimate the prob-
ability of an edge between two nodes of different chromosomes, therefore improving
adjustability of identified regions. In Table 6 of the cell-cycle data set and Table 7 of the
oocyte-to-zygote data set, our tool configured with the max function identifies the fewest
regions; our tool configured with the min function identifies the most regions and our
tool configured with the mean funciton falls between them. This is because if we fix other
variables except p in Eq. 1, a large p entails a large p-value and a small p entails a small
p-value. As we have explained in the second to last paragrpah of Method, users can select
these functions according to the sizes of genomes and sequencing depths used in their
experiments. Therefore, our proposed tool provides adaptability of identified regions.

Configuration of bin sizes

Finally, our tool also supports different bin sizes. As scHi-C experiments have low read
coverages and scarce interchromosomal interactions, we need to use large bin sizes to
accumulate sufficient interchromosomal interactions in a bin. We run our tool with

Table 6 Number of identified regions of the cell-cycle data set with edge probability functions

Input Data max mean min

G1 976 1651 2133

Early-S 1326 2579 7714

Mid-S 724 1833 2991

Late-S 1043 1999 6058
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Table 7 Number of identified regions of the oocyte-to-zygote data set with edge probability
functions

Input Data max mean min

oocyte NSN 37 79 199

occyte SN 84 229 1846

pronucleus maternal 33 50 268

pronucleus paternal 51 51 274

bin_size=1Mb on the two data sets and compare the identified regions with the ones of
bin_size=500kb. We find that the identified regions of bin_size=500kb and bin_size=1Mb
are quite similar for most single cells except the Early-S phased single cells in the cell-
cycle data set. In Fig. 4b of bin_size=1Mb, the hub of the chromosome 11 at 3Mb becomes
less obvious as it is overshadowed by enrichment of other interchromosomal interactions
because of the increased bin size and single cells of this particular cell phase. Therefore,
different bin sizes may affect the identified regions.

Conclusion
In this paper, we introduce a computational method to identify regions associated with
statistically frequent interchromosomal interactions at single-cell resolution and imple-
ment it as an open source tool, which is the first serving the purpose to the best of
our knowledge. Its workflow includes network construction, binomial statistical mea-
surement calculation and region selection. We demonstrate its usability on two existing
scHi-C data. On the cell-cycle data set, the tool discovers a hub in the mouse chromo-
some 11 from 3Mb to 3.5Mb, which is endorsed by a previous study on interchromosomal
contact networks with bulk Hi-C experiments. On the oocyte-to-zygote data set, there
is no apparent hub at the region, but comparatively interchromosomal interactions are
enriched. Identified regions’ pairwise comparisons show that our method identifies com-
mon regions between different data sets and also reflects the true dissimilarity such as
different cell types. Identified regions’ enrichment analysis helps improve the interpre-
tation of top ranked identified regions and these genomic features are highly enriched

Fig. 4 Comparing identified regions of Early-S phased single cells with different bin sizes. a bin_size=500kb b
bin_size=1Mb



Bulathsinghalage and Liu BMC Bioinformatics 2020, 21(Suppl 14):369 Page 13 of 15

for single cells at Early-S phase, which implies our top ranked regions may be function-
ally important. We also exhibit our proposed tool’s flexibility on configurations, which
support sliding windows for diverse regions, edge probability functions for adjustable
regions and different bin sizes. Overall, it will be a useful tool for analyzing scHi-C
interchromosomal interactions.

Due to low sequencing depths of scHi-C experiments and the paucity of interchromo-
somal interactions, identifying high resolution regions of several kilobases (e.g. 8kb) is
extremely difficult. Our tool can run with this resolution but due to the limitation of scHi-
C data, it can’t identify any regions passing the statistical tests. We will try to mitigate
this problem by imputing high-resolution interchromosomal interactions with data of
other experiments such as interchromosomal interactions from bulk Hi-C experiments.
In addition, further research is needed to improve the signal-to-noise ratio for scHi-C
experiments.
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