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A B S T R A C T

White matter hyperintensities (WMH) are common radiological findings among older adults and strong pre-
dictors of age-related cognitive decline. Recent work has implicated WMH in the pathogenesis and symptom
presentation of Alzheimer's disease (AD), which is characterized clinically primarily by a deficit in memory. The
severity of WMH volume is typically quantified globally or by lobe, whereas white matter itself is organized by
tracts and fiber classes. We derived WMH volumes within white matter tract classes, including association,
projection, and commissural tracts, in 519 older adults and tested whether WMH volume within specific fiber
classes is related to memory performance. We found that increased association and projection tract defined
WMH volumes were related to worse memory function but not to a global cognition summary score that ex-
cluded memory. We conclude that macrostructural damage to association and projection tracts, manifesting as
WMH, may result in memory decline among older adults.

1. Introduction

White matter hyperintensities (WMH) are areas of increased signal
best visualized on T2-weighted images, thought to reflect the presence
and severity of small vessel cerebrovascular disease (CVD)
(Biesbroek et al., 2016). White matter hyperintensities are considered
to be core etiological features of vascular cognitive impairment
(Biesbroek et al., 2016; van der Flier et al., 2018; Vannorsdall et al.,
2009), which is typically characterized by deficits in executive function
and processing speed (Jokinen et al., 2009; Schmidt et al., 2005;
Vannorsdall et al., 2009). However, WMH severity has been implicated
both in the pathogenesis and symptom presentation of Alzheimer's
disease (AD) and its antecedent risk states (e.g., Brickman, 2013;
Luchsinger et al., 2009), which are characterized clinically by a deficit
in memory, and in memory functioning per se among older adults
(Burton et al., 2004; Rizvi et al., 2018; Swardfager et al., 2018).

Studies that examine the relationship between WMH and cognition
in older adults typically quantitate WMH as a global phenomenon
(Yoshita et al., 2005) or grossly by cerebral lobe (Gootjes et al., 2004).
White matter fiber tracts, however, are organized systematically
throughout the brain and can be divided into three major classes of

fiber bundles: association, projection, and commissural fiber bundles.
Despite the known differential association of white matter fibers within
these different tract classes and cognition (Bennett and Madden, 2014;
Hasan et al., 2010; Makris et al., 1997; Mandonnet et al., 2018), less is
known about how WMH severity within them is associated with cog-
nitive functioning.

Association fibers are long and short fiber tracts that connect cor-
tical areas within hemispheres, and include long tracts such as the su-
perior longitudinal fasciculus (Lee et al., 2015), inferior fronto-occipital
fasciculus (IFOF), and inferior longitudinal fasciculus (ILF). Long as-
sociation fibers are well known to be critical for supporting cognitive
processes, including executive function, language, visuospatial func-
tioning, and memory (Duffau, 2015; Friederici, 2009; Mabbott et al.,
2009; Thiebaut de Schotten et al., 2012; Voineskos et al., 2012;
Wendelken et al., 2015). Commissural tracts are interhemispheric fibers
that connect cortical regions of both hemispheres, such as the corpus
callosum. Commissural tracts are implicated in functional integration
(Aralasmak et al., 2006; Catani et al., 2002), memory and executive
functioning (Voineskos et al., 2012; Zahr et al., 2009). Projection tracts
are fibers that connect subcortical structures and cortex, and include
fibers such as corticospinal tract and thalamic radiations. The anterior
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thalamic radiation connects thalamic nuclei to the prefrontal cortex and
anterior cingulate cortex (Torso et al., 2015; Wakana et al., 2004).
Functions of projection fibers are related to aspects of motor and sen-
sory abilities (Kuypers, 1964; Lemon, 2008). However, specific pro-
jection fibers, such as the anterior thalamic tract, can contribute to
episodic memory function and are vulnerable to the effects of Alzhei-
mer's disease (Aggleton et al., 2016).

In a previous study, we demonstrated the relationship between
WMH volume and cognition is statistically mediated by global cortical
thickness (Rizvi et al., 2018). In this follow-up study, we were inter-
ested in how WMH within the three classes of white matter fiber tracts
are differentially associated with memory in older adults. We hy-
pothesized, given that the connections among frontal, temporal and
parietal areas form networks supporting memory (Cabeza et al., 2008;
Fletcher and Henson, 2001), that increased WMH within association
tracts would be negatively associated with memory functioning in older
adults. We investigated the specificity of the relationship of tract WMH
and memory relative to a global measure of cognition that excluded
memory. To compare our results with previous DTI studies on in-
dividual tracts, and to reveal any driving sources of tract WMH asso-
ciations with memory, we also explored the association between WMH
and memory in individual tracts within the tract classes that were as-
sociated with memory.

2. Material and methods

2.1. Participants

Participants came from the Washington Heights Inwood Columbia
Aging Project (WHICAP), a community-based study of cognitive aging
and dementia in northern Manhattan New York. Participants from a
third recruitment wave, beginning in 2010, who had 3T MRI acquired
were included in the study. Only participants with complete WMH,
cognitive, and demographic data from the 2010 subset were included in
the analyses (n = 519). WHICAP participants receive semi-structured
and structured interviewing to query for histories of common medical
morbidities and risk factors, including multiple sclerosis and history of
traumatic brain injury with loss of consciousness, two conditions that
can confound measurement of WMH related to cerebrovascular disease.

2.2. Neuropsychological testing

Participants were administered a comprehensive and validated
neuropsychological battery in their preferred language (English or
Spanish) (Siedlecki et al., 2010). Testing covered multiple cognitive
domains, including memory, executive function/speed, language, and

visusospatial function. Domain scores (Siedlecki et al., 2010) were de-
rived by averaging z-scores of individual tests within each domains. Z-
scores were computed from test means and standard deviations of the
entire WHICAP sample at baseline. The memory domain comprised
scores from the Selective Reminding Test, including total recall, de-
layed recall, and delayed recognition (Buschke and Fuld, 1974). The
language domain included letter and category fluency, 15-item Boston
Naming Test (Goodglass et al., 1983), Repetition and Comprehension
subtests from the Boston Diagnostic Aphasia Examination
(Goodglass and Kaplan, 1972), and the Similarities subtest form the
Wechsler Adult Intelligence Scale - Revised (Wechsler and De
Lemos, 1981). The visuospatial domains included matching and re-
cognition trials from the Benton Visual Retention Test (Benton, 1974),
Identities and Oddities from the Mattis Dementia Rating Scale
(Mattis, 1976), and the Rosen Drawing Test (Rosen, 1981). The ex-
ecutive function/speed domain consisted of scores from Color Trails 1
and Color Trails 2 (D'Elia et al., 1996). We created a non-memory
cognition variable by averaging performance scores in all the other
domains (executive function/speed, language, visuospatial function).
Our hypothesis pertained to the relationship of WMH in white matter
tract classes with memory; to test the specificity of this relationship we
also compared WMH volumes with non-memory cognition.

2.3. Magnetic resonance imaging

2.3.1. Image acquisition
Magnetic resonance images were collected on a 3T Philips Achieva

scanner at Columbia University between 2011 and 2015. T1-weighted
(resolution = 1 mm × 1 mm × 1 mm, repetition time = 6.6 ms, echo
time = 3.0 ms, field of view = 256 × 200 × 165 mm with 1-mm slice
thickness) and T2-weighted fluid-attenuated inversion recovery (FLAIR;
resolution = 0.6 mm × 0.43 mm × 0.43 mm, repetition
time = 8000 ms, echo time = 332.0 ms, inversion time = 2400 ms,
field of view = 240 × 240 × 180 mm with 1.20-mm slice thickness)
images were acquired in the transverse orientation.

2.3.2. White matter hyperintensity quantification
Total WMH volumes were quantified with previously developed

methods (Brickman et al., 2011, 2015). Each T2-weighted FLAIR image
was brain extracted and a single Gaussian curve was fit to voxel in-
tensity values. An intensity threshold of 2.1 SD above the mean in-
tensity value defined the lower boundary of hyperintense voxels and
voxels above that threshold were labeled. Each labeled mask was vi-
sually inspected and manually corrected, removing any voxels that
were mislabeled as WMH voxels (Fig. 1).

Fig. 1. Axial slice of a FLAIR sequence with unlabeled white matter hyperintensities (left), and labeled white matter hyperintensities (right).
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2.3.3. Tract-defined white matter hyperintensity classification
FLAIR and T1-weighted images were brain extracted using Brain

Extraction Tool (Smith, 2002) in FMRIB Software Library (FSL). The T1-
weighted and FLAIR images were coregistered with FMRIB's Linear
Image Registration Tool in FSL with trilinear interpolation and corre-
lation ratio as the cost function. Next, the Montreal Neurological In-
stitute (MNI) standard brain template (MNI-152 T1 brain) was trans-
formed into each subject's coregistered T1-weighted and FLAIR image
space, using trilinear interpolation and the resulting transformation
matrix was applied to move the Johns Hopkins University (JHU) white
matter tractography mask (Mori and van Zijl, 2007) into the FLAIR
image space using the nearest neighbor method (Fig. 2). The JHU ICBM
tract atlas had a probability threshold of 0% with 2 mm isotropic re-
solution.

The regional WMH volumes were derived by extracting the labeled
WMH voxels within each tract and summing them according to the class
of tract fibers. The three classes included the association, commissural,
and projection white matter fiber tracts. A relative WMH volume within
each class of tracts was derived by dividing the volume of WMH within
tracts by the total volume of the tracts. The specific tracts within each
class (Fig. 3) are listed below:

Association fiber tracts: cingulum-cingulate gyrus, cingulum-hippo-
campus, inferior fronto-occipital fasciculus, inferior longitudinal fasci-
culus, superior longitudinal fasciculus, uncinate fasciculus, and superior
longitudinal fasciculus temporal part.

Commissural fiber tracts: forceps major,and forceps minor.
Projection fiber tracts: anterior thalamic radiation, and corticospinal

tract.

2.4. Statistical analysis

Three sets of general linear models were used to test the relationship
between relative WMH volumes within the three tract categories and
memory. For these analyses, relative WMH volume within each tract
class and the memory summary scores were the independent and de-
pendent variables, respectively. We repeated this analysis with the
cognition summary score that excluded memory as the dependent
variable. We further tested the specificity of the memory relationships
by dividing participants into high and low memory groups, based on
their median memory performance, and compared regional WMH vo-
lumes across these groups. A mixed design general linear model was
implemented with Memory Group (low, high) as a between-groups
factor and WMH Region (association, commissural, and projection) as a
within-subjects factor. Covariates included age, sex, race/ethnicity, and
education. Within the tract classes for which WMH were related to
memory, we examined the correlation between WMH volume and

memory within the individual tracts in a series of multiple regressions
with the same covariates listed above. To ensure that relationships
between regional WMH and memory were not due to differential effects
related to diagnosis, we re-ran the primary analysis after removing from
the data the individuals with AD dementia (n = 8). Next, we re-ran the
primary analysis while covaring for MCI diagnosis (n = 83). These
analyses did not lead to different results from our main findings.

3. Results

3.1. Participant characteristics

Participant characteristics, WMH volume measures, and cortical
thickness are displayed in Table 1. No participants reported a history of
multiple sclerosis. Eighteen participants reported a history of head

Fig. 2. The three tract classes using the JHU White Matter Tractography Atlas with corresponding colors (red = commissural, yellow = projection, or-
ange = association) are visualized here, with an overlaid segmented WMH image (in blue) on top.

Fig. 3. A representation of the three classes of white matter tract fibers. Each
tract class was 3D rendered in 3D slicer, and displayed next to a cortical
hemisphere.
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injury with loss of consciousness. White matter hyperintensity volume
did not differ between individuals reporting history of head injury with
loss of consciousness and those reporting no such history (t = 1.468,
p = .143).

3.2. Relationships between tract class-defined WMH and memory

Increased WMH volumes within association tracts and projection
tracts were related to poorer memory performance (see Table 2). White
matter hyperintensity volume within commissural tracts was not asso-
ciated with memory. In all three models, memory performance was
negatively associated with age, and positively associated with educa-
tion. Memory scores were also lower in men compared with women and
in African American and Hispanic participants, compared with non-
Hispanic Whites. Individuals with lower memory had particularly ele-
vated WMH volume in projection tracts (Memory Group x WMH Region
interaction, F = 3.419, p = .037, Fig. 4).

3.3. Relationships between tract class-defined WMH and non-memory
cognition

White matter hyperintensity volumes in the three tract classes were

not related to non-memory cognition (see Table 3). The effect sizes
were largest for the relationships between tract WMH volumes and
memory compared with the relationships between tract WMH volumes
and non-memory cognition.

3.5. Relationships between individual tract WMH and memory

We tested which individual tracts WMH within association and
projection tracts were associated with memory in a series of multiple
regressions. Within projection tracts, increased WMH volume in the
anterior thalamic tract and the corticospinal tract were related to
poorer memory. Within association tracts, increased WMH in the in-
ferior fronto-occipital fasciculus, the superior longitudinal fasciculus,
and the uncinate fasciculus were associated with poorer memory (see
Table 2).

4. Discussion

We demonstrated that higher WMH volumes within association and
projection tracts were associated with lower memory performance in
older adults. These relationships were specific to memory when com-
paring to a global measure of cognition that excluded memory. Within
association tracts, WMH volumes within the inferior fronto-occipital
fasciculus, inferior longitudinal fasciculus, and the uncinate fasciculus
were most reliably related to memory. Both projection tract WMH vo-
lumes, including those within the corticospinal and anterior thalamic
tracts, were associated with memory. These observations were not
systematically influenced by diagnosis of MCI or dementia.

The consideration of white matter tract classification has been
predominantly applied to diffusion tensor imaging (DTI) analyses to
study the effects of white matter integrity on cognitive function
(Madden et al., 2009). Metrics derived from DTI in cross-sectional
analyses capture aspects of white matter microstructure, which may
reflect a combination of individual developmental differences and da-
mage or neurodegenerative changes. White matter hyperintensities, on
the other hand, reflect the degree of macrostructural damage to white
matter and change from younger age because young, healthy in-
dividuals do not typically have WMH. Our observations linking WMH
volume to memory indicate that the relationship between regional
white matter damage and memory may be tract specific. No studies to
our knowledge have examined the effects of WMH volume in tract-
defined classes of white matter – namely association, projection, and
commissural – on memory. As cognitive functions are supported by
multiple white matter tracts performing similar and complementary
functions, it is useful to group these tracts into the three established
types of fibers.

Our findings do, however, complement those from DTI studies,
which also suggest a role of association tracts in supporting memory

Table 1
Descriptive information regarding the participants studied.

Variable

N 519
Age, mean years (SD) 73.98 (5.64)
Sex, n (%) Women 292 (56.3%)
Education, mean years (SD) 12.78 (4.51)
Diagnostic Category NC, n (%) 411 (81.9%)

MCI, n (%) 83 (16%)
AD, n (%) 8 (1.5%)
Missing diagnosis (%) 17 (3%)

Race / Ethnicity White, n (%) 159 (30.6%)
Black, n (%) 188 (36.2%)
Hispanic, n (%) 158 (30.4%)
Other, n (%) 14 (2.7%)

WMH volume, cm3 Total, mean (SD) 5.50 (7.11)
Association WMH ratio, mean
(SD)

0.0098 (0.0123)

Projection WMH ratio, mean
(SD)

0.0043 (0.0077)

Commissural WMH ratio, mean
(SD)

0.0099 (0.0092)

Domain score Memory, mean (SD), range 0.44 (0.73),
−2.63–2.04

Average Cognition (no memory),
mean (SD), range

0.63 (0.54),
−1.39–1.68

NC = Normal Controls, MCI = Mild cognitive impairment, AD = Alzheimer's
disease.

Table 2
Results of multiple regressions of relationships between WMH volumes and memory.

Tract Class WMH Volume Standardized β coefficient Significance (p-value) 95% CI

Association tract WMH −0.115 0.005 (−18.606, −3.433)
Projection tract WMH −0.121 0.003 (−12.165, −2.445)
Commissural tract WMH −0.063 0.120 (−11.505, 1.337)
Individual Tract WMH Volume
Anterior Thalamic Radiation WMH −0.112 0.006 (−0.113, −0.019)
Corticospinal Tract WMH −0.117 0.005 (−0.190, −0.035)
Cingulum cingulate gyrus WMH −0.072 0.077 (−0.253, 0.013)
Cingulum hippocampus WMH −0.027 0.513 (−1.819, 0.909)
Inferior Fronto-occipital Fasciculus WMH −0.081 0.049 (−0.122, 0.000)
Inferior Longitudinal Fasciculus WMH −0.068 0.096 (−0.247, 0.020)
Superior Longitudinal Fasciculus WMH −0.126 0.002 (−0.090, −0.020)
Uncinate Fasciculus WMH −0.144 0.000 (−2.027, −0.593)
Superior Longitudinal Fasciculus temporal part WMH −0.067 0.101 (−2.441, 0.218)

Covariates included: age, sex, education, race/ethnicity.
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functioning in older adults. Diffusion tensor imaging studies typically
report relationships between integrity of association tracts, including
fronto-temporal tracts the parahippocampal cingulum and the uncinate
fasciculus, and episodic memory (Metzler-Baddeley et al., 2011). A
previous study reported that fractional anisotropy of the inferior long-
itudinal fasciculus and posterior and anterior cingulum was associated
with memory function (Kantarci et al., 2011). Lockhart and colleagues
(Lockhart et al., 2012) extended this line of work on microstructure by
finding that macrostructural white matter injury, as measured by WMH,
within tracts connecting frontal and temporal cortex, and frontal-sub-
cortical regions, were also associated with memory in older adults. We
add to this body of work by confirming that not only that macro-
structural damage to association tracts, but also projection tracts, have
a role in memory function. Our unexpected finding regarding the re-
lationship between WMH in projection white matter tracts, particularly
the relationship between corticospinal tract and memory, deviates from
previous DTI studies, which suggested a role of the corticospinal tract in
sensorimotor functions rather than cognitive functions (Carter et al.,
2012; Karahan et al., 2019). A plausible explanation of the relationship
between corticospinal tract WMH and memory may simply be due to
the tract's proximity to the lateral ventricles, where periventricular
WMH reside and are known to be associated to memory
(Munoz Maniega et al., 2019; Smith et al., 2011).

Our findings have implications for the potential role of WMH, as a
marker of small vessel cerebrovascular disease, in the pathogenesis of
AD. We found previously (Tosto et al., 2015) that WMH predicts ac-
cumulation of tau protein in the cerebrospinal fluid over time, but not
vice versa. Data from animal models support the idea that small vessel
cerebrovascular disease may promote neurodegenerative changes
through its direct effect on tau hyperphosphorylation, mediated by an
inflammatory cascade (Raz et al., 2019). Furthermore, higher WMH
within specific tract classes may contribute to the disruption of cortical

networks that support memory, the primary cognitive domain typically
affected in AD, possibly contributing additively to an AD-like symptoms
(Greicius et al., 2004), perhaps lowering a clinical diagnostic threshold.
Tract WMH, which we hypothesize disrupt structural and functional
networks, leading to cognitive dysfunction, may also increase the pro-
pagation and trans-synaptic spread of tau in affected networks
(Ahmed et al., 2014; De Calignon et al., 2012; Lehmann et al., 2013).
Thus, overall, we believe that there is accumulating evidence that
WMH, as a marker of small vessel cerebrovascular disease, may con-
tribute directly to the pathogenesis of AD through tau pathology, and
also to an Alzheimer's “phenotype” of memory dysfunction independent
of primary AD pathology through network disruption. The possibility
that some degree of white matter macrostructural change can result
from Alzheimer's-related neurodegeneration may also be contributing
(McAleese et al., 2017).

In considering potential limitations of the study, we acknowledge
that there may be other possible causes of WMH formation, such as
through white matter degenerative diseases, like multiple sclerosis and
traumatic brain injury. In our sample, no participants reported a history
of multiple sclerosis. A small number of participants reported a history
of traumatic brain injury with loss of consciousness, but these in-
dividuals did not differ in terms of their WMH volumes from those with
no history of traumatic brain injury. Wallerian-like degeneration, sec-
ondary to AD-related neurodegeneration may be an additional source of
WMH (McAleese et al., 2017). Although we cannot rule out this pos-
sibility entirely, we feel that the extant literature overwhelmingly
supports the primary role of small vessel cerebrovascular disease in
WMH formation and that the temporality (i.e., only 8 participants in
this study had dementia and others who may have had preclinical
disease were presumably in stages prior to widespread neurodegen-
eration) speak against this possibility. We are also restricted in our
ability to infer causality of our findings, due to the cross-sectional

Fig. 4. The interaction plot of Memory Group by WMH Region (F= 3.419, p= .037) illustrating that individuals with lower memory had particularly elevated WMH
volume in projection tracts.

Table 3
Results of multiple regressions of relationships between WMH volumes and global cognition (excluding memory).

Tract Class WMH Volume Standardized β coefficient Significance (p-value) 95% CI

Association tract WMH −0.049 0.145 (−8.514, 1.261)
Projection tract WMH −0.057 0.097 (−5.759, 0.477)
Commissural tract WMH −0.033 0.328 (−6.174, 2.070)

Covariates included: age, sex, education, race/ethnicity.
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design of the study. We recognize that while focusing on macrostrutural
markers of white matter damage, we did not account for micro-
structural abnormalities within areas of normal appearing white matter.
This issue can be addressed using diffusion tensor imaging metrics in
future analysis.

We suggest our findings of the impact of tract-defined WMH on
memory performance is partially explained by the previously proposed
concept of “disconnection” (Lockhart et al., 2012; Munoz Maniega
et al., 2019; O'Sullivan et al., 2001; Ritchie et al., 2015), which may
mediate the effect of tract WMH on cognitive performance. Neuroi-
maging studies suggest that long-term memory is dependent on mul-
tiple cortical and subcortical regions, which are integrated via neural
networks (Charlton et al., 2010; Grady et al., 2003; Ranganath et al.,
2005). White matter hyperintensities within tracts may disrupt path-
ways that support memory performance.

5. Conclusion

The study examined the role of WMH within three tract categories
and found that association and projection WMH are related to memory
functioning in older adults.
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