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Abstract

THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol) is a GABAA receptor ago-

nist with varying potencies and efficacies at c-subunit-containing receptors.

More importantly, THIP acts as a selective superagonist at d-subunit-containing
receptors (d-GABAARs) at clinically relevant concentrations. Evaluation of

THIP as a potential anticonvulsant has given contradictory results in different

animal models and for this reason, we reevaluated the anticonvulsive properties

of THIP in the murine pentylenetetrazole (PTZ) kindling model. As loss of d-
GABAAR in the dentate gyrus has been associated with several animal models

of epilepsy, we first investigated the presence of functional d-GABAA receptors.

Both immunohistochemistry and Western blot data demonstrated that d-
GABAAR expression is not only present in the dentate gyrus, but also the

expression level was enhanced in the early phase after PTZ kindling. Whole-cell

patch-clamp studies in acute hippocampal brain slices revealed that THIP was

indeed able to induce a tonic inhibition in dentate gyrus granule cells. How-

ever, THIP induced a tonic current of similar magnitude in the PTZ-kindled

mice compared to saline-treated animals despite the observed upregulation of

d-GABAARs. Even in the demonstrated presence of functional d-GABAARs,

THIP (0.5–4 mg/kg) showed no anticonvulsive effect in the PTZ kindling

model using a comprehensive in vivo evaluation of the anticonvulsive

properties.

Abbreviations

aCSF, artificial cerebrospinal fluid; CNS, central nervous system; DGGC, dentate

gyrus granule cell; GABAAR, GABA receptor subtype A; GABA, c-Aminobutyric

acid; i.p., intraperitoneal; IPSC, inhibitory postsynaptic current; Itonic, tonic current;

OD, optical density; PTZ, Pentylenetetrazole; SR 95531, 6-Imino-3-(4-methoxyphe-

nyl)-1(6H)-pyridazinebutanoic acid; THIP, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyri-

din-3-ol; d-GABAAR, d-subunit-containing GABAA receptor.

Introduction

A low-ambient GABA (c-aminobutyric acid) concentra-

tion in the extracellular space continuously activates

extrasynaptic GABAA receptors, resulting in a persistent

inhibitory current causing tonic inhibition (Semyanov

et al. 2004; Farrant and Nusser 2005; Glykys and Mody

2007a,b). In many brain regions, this tonic current is pri-

marily mediated by d-subunit-containing GABA receptors

(d-GABAARs), although other extrasynaptic GABAAR sub-

types may contribute (Brickley et al. 2001; Caraiscos et al.

2004; Jia et al. 2005; Drasbek and Jensen 2006; Glykys
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and Mody 2006, 2007a). In dentate gyrus granule cells

(DGGCs), tonic inhibition is mediated largely by a4bd-
GABAARs with a smaller contribution from a5bc-
GABAARs (Glykys et al. 2008; Liang et al. 2008).

GABAergic neurotransmission is the target of a number

of known antiepileptic drugs (White et al. 2007; Madsen

et al. 2008). However, the potential of extrasynaptic

GABAARs as targets for antiepileptic drugs has not been

elucidated in great detail. Neuroactive steroids with a pos-

itive modulatory effect on d-GABAARs have been shown

to possess anticonvulsant properties (Reddy and Rogawski

2002, 2010). Therefore, the potential anticonvulsant prop-

erties of activating the d-GABAARs are of great interest.

The GABAA agonist THIP activates GABAAR subtypes

with varying potency and efficacy (Ebert et al. 1994;

St�orustovu and Ebert 2006). Importantly, THIP acts as a

superagonist at a1/4/6bd receptors because it has a higher

maximum open-channel probability (= receptor activa-

tion) than GABA. This is in turn due to increase in dura-

tion of the population of longer channel openings and

their frequency, resulting in longer burst durations

(Brown et al. 2002; St�orustovu and Ebert 2006; Morten-

sen et al. 2010).

THIP induces tonic inhibition by activation of d-con-
taining extrasynaptic GABAA receptors (Herd et al., 2009)

and has functional d-GABAAR selectivity at recombinant

and native GABAA receptors in clinically relevant concen-

trations (Drasbek and Jensen 2006; St�orustovu and Ebert

2006; Herd et al. 2009). Furthermore, the hypnotic effect

of THIP has been shown to rely on activation of extrasy-

naptic GABAARs (Boehm et al. 2006; Herd et al. 2009).

The anticonvulsive evaluations of THIP have, however,

resulted in contradictory outcomes in different animal

models of epilepsy (L€oscher and Schwark 1985; Hansen

et al. 2004; Madsen et al. 2011).

The hippocampus has an especially high seizure vulner-

ability, with a relatively low innate after-discharge thresh-

old in the dentate gyrus and CA1 area (McIntyre and

Gilby 2008). C-fos expression studies have shown that the

hippocampus is affected at higher seizure severity scores

after PTZ kindling (Erdtmann-Vourliotis et al. 1998;

Szyndler et al. 2009). The d-subunit has been shown to

be downregulated in the dentate gyrus in the late chronic

phase in several poststatus epilepticus animal models of

epilepsy, which changes the pharmacology but does not

reduce the magnitude of the tonic inhibition (Schwarzer

et al. 1997; Peng et al. 2004; Zhang et al. 2007; Zhan and

Nadler 2009; Rajasekaran et al. 2010). Evidence also exists

for d-subunit mRNA downregulation after electrical kin-

dling in the hippocampus, (Nishimura et al. 2005),

although contradictory results exist for both the electrical

kindling and poststatus epilepticus models (Kamphuis

et al. 1995; Brooks-Kayal et al. 1998). In the PTZ kindling

model GABAA receptor subunit plasticity has only been

studied for a few subunits at mRNA level (Follesa et al.

1999), with no investigations of the d-protein expression.

Downregulation of functional d-GABAARs in kindling

models could therefore potentially account for the lack of

anticonvulsive effect of THIP seen in kindling models

(L€oscher and Schwark 1985; Hansen et al. 2004). In this

study we therefore investigated the d-subunit expression

and THIP-induced tonic inhibition in the dentate gyrus

after PTZ kindling and reevaluated the anticonvulsive

effect of THIP in the murine PTZ kindling model using a

more comprehensive assessment of seizure activity. Some

of the results have been published in abstract form

(Simonsen et al. 2010).

Materials and Methods

Animals

Ethical permission for the studies was granted by the Ani-

mal Welfare Committee, appointed by the Danish Min-

istry of Justice, and all animal procedures were carried

out in compliance with the EC Directive 86/609/EEC and

with the Danish law regulating experiments on animals.

Three to four weeks old male NMRI mice (Taconic,

Denmark) weighing approximately 12–18 g upon arrival

were used. They were housed in groups of 2–5 mice in

plastic home cages kept on a 12-h light-dark cycle (lights

on at 6 a.m.). Standard pellet food (Altromin 1314, Bro-

gaarden, Denmark) and tap water were available ad libi-

tum. The mice were allowed to acclimate for

approximately 7 days before experimentation, so that they

were 4 weeks of age before starting kindling. In vivo exper-

iments were carried out during the light phase of the day.

For immunohistochemistry, Western blot, and electro-

physiological recordings, mice were allocated to one of

two groups: (1) mice receiving saline injections and (2)

mice receiving PTZ injections.

PTZ kindling

PTZ kindling was performed as previously described

(Hansen et al. 2009). Mice were injected with saline or

PTZ (Sigma-Aldrich, Denmark) i.p. in a volume of

10 mL/kg, three times a week (Monday, Wednesday, and

Friday) for 4 weeks. During the kindling process, the ani-

mals were daily examined by educated animal technicians.

In case the animals were exhibiting disease, or misthriving,

for example, not drinking or feeding or exhibiting signs of

pain, the animal were killed by cervical dislocation.

As sensitivity to PTZ is influenced by seasonal factors

(L€oscher and Fiedler 1996) and plausibly also biological

and technical factors, a dose of 43 mg/kg or 45 mg/kg
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was administrated to ensure at least 85% of the mice were

fully kindled. During the 4th week PTZ-treated mice were

observed for behavioral convulsions for 30 min after PTZ

injections. The severity of convulsion was scored accord-

ing to a modified Racine scale: 0 = no response; 1 = 1–3
myoclonic jerks and/or facial twitching and/or axial waves

going through the body; 2 = more than 3 myoclonic

jerks; 3 = clonic convulsions with forelimb clonus with-

out loss of postural control; 4 = clonic convulsions with

loss of postural control, turning to the side or rearing;

and 5 = clonic convulsion with loss of righting reflex

and/or bouncing, two or more clonic convulsions, tonic

convulsions, or status epilepticus.

Mice were considered as fully kindled if they developed

clonic convulsions after PTZ injections (scored ≥ 3 on the

modified Racine scale) 2 of 3 times during the 4th week.

For electrophysiological recordings, saline-treated mice

and fully kindled mice were used day 1–4 after the last

injection, whereas for immunohistochemistry and Wes-

tern blot tissue was harvested at day 3–8 and 7–8, respec-
tively. Only fully kindled mice were used for

experimentation and all experiments were performed in

parallel on pairs of animals: kindled animals paired with

littermates treated with saline.

Immunohistochemistry

Animals were deeply anesthetized with Hypnorm (Veta

Pharma, UK) + Dormicum (midazolam, Accord Health-

care, UK) and intracardially perfused with PBS followed

by 4% paraformaldehyde/PBS buffer. Subsequently the

brain was removed and postfixed in the same fixative

overnight at 5°C. The tissue was cryoprotected in 30%

glucose solution for at least 24 h at 5°C, submerged in

TissueTek (Sakura, NL), and frozen at �25°C before 40-

lm-thick coronal sections were prepared on a cryostat.

Endogenous peroxidase-like activity was quenched with

0.3% H2O2 in blocking solution (PBS containing 1.5% goat

serum) and antigen retrieval was carried out by incubation

at 90°C for 70 min. Sections were blocked for 30 min in

blocking solution and incubated with anti-GABAAR d anti-

body (1:1000, AB9752; Millipore Corporation) in PBS con-

taining 1.5% goat serum for at least 18 h at RT.

After washing with PBS, sections were incubated

30 min with biotinylated secondary antibody (1:2000,

Vector laboratories) and hereafter treated with an HRP-

conjugated avidin enzyme complex (ABC elite, Vector

laboratories) for 30 min at RT. Sections were then devel-

oped with 3,30-Diaminobenzidine (Vector laboratories)

and subsequently mounted, dehydrated, and coverslipped

before analysis by light microscopy.

Tissue from both kindled and saline-treated littermates

was processed in parallel throughout the staining

procedure and images were obtained under identical con-

ditions on the same day.

Images were analyzed and color transformed (conversion

from a Black/White scale to a Red/Yellow/Blue scale) using

ImageJ software (National Institutes of Health, USA). The

optical density (O.D.) of selected brain regions was mea-

sured as average of a series of sections from each animal; the

molecular layer of dentate gyrus (25–35 sections/mouse),

the three outer layers of cortex, and the striatum (10–15 sec-
tions/mouse). All values were corrected for background by

subtracting a secondary antibody control (treated in parallel

but without the primary antibody) from the optical density

of the dentate gyrus. The data are presented as the averaged

optical density values from each mouse (n = 3).

Western blot

For Western Blotting, mice were anesthetized with isoflu-

rane vapor (Isoba�Vet, Schering-Plough Animal Health,

UK), decapitated, and whole hippocampal tissue was iso-

lated and homogenized in a RIPA buffer containing:

50 mmol/L Tris, 150 mmol/L NaCl, 0.1% SDS, 0.5%

Sodium Deoxycholate, 0.1% Triton X-100, and supple-

mented with protease inhibitors (Complete Mini, Roche,

Switzerland). Samples were centrifuged twice at 40,000 g

for 5 min at 4°C and the supernatant was collected for

analysis. Protein concentrations were determined using a

DC Protein Assay (Bio-Rad) before protein extracts were

supplemented with sample buffer (Kem-En-Tec, Den-

mark), 0.035% 2-mercaptoethanol, and 2 mmol/L dithio-

threitol, and incubated 10 min at 70°C.
Hundred microgram protein was loaded onto a 12%

TeoCl SDS Cassette gel (Kem-En-Tec, Denmark) and sepa-

rated in a SDS running buffer (RanBlue, Kem-En-Tec, Den-

mark). The protein was transferred to a pure nitrocellulose

membrane (Bio-Rad, USA) in a transfer buffer (12.5 mmol/

L Tris, 15% glycine, 1% SDS, and 15% ethanol).

The GABAA receptor d-subunit was detected by

immunoblotting. The membrane was blocked (PBS

containing 2% BSA and 0.1% Tween) and probed with

anti-GABAAR d antibody (1:5000, AB9752; Millipore Cor-

poration, USA) at 4°C over night. The blots were then

incubated with a goat-anti-rabbit peroxidase-conjugated

antibody (1:4000, AB6721; Abcam, UK) and immunoreac-

tive proteins were visualized using Pierce’s Enhanced

Chemiluminescent substrate (Thermo Scientific, USA).

Relative density (RD) of each band was obtained using

ImageJ software (National Institutes of Health, USA) and

background subtracted (n = 5). RD expressed pr 100 lg
protein was used for statistical analysis (Student’s t-test).

Tissue from kindled and saline-treated littermates was

placed in neighboring lanes and processed simultaneously

on shared membranes throughout the blotting procedure.
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Brain slice preparation

Mice were anesthetized with isoflurane vapor (Isoba�Vet,

Schering-Plough Animal Health, UK) and decapitated. A

block of the brain containing the hippocampi was dis-

sected and quickly placed in ice-cold dissection medium

(in mmol/L: 248 sucrose, 3.25 KCl, 1.25 NaH2PO4, 26

NaHCO3, 0.5 CaCl2, 5 MgSO4, 10 D glucose, and bubbled

with carbogen (95% O2/5% CO2); pH~7.4, Osmolality

~350 mOsm/kg) and glued onto the Vibratome stage with

cyanoacrylate. Coronal slices (350 lm thick) were cut on

a Leica Vibratome (VT1200S, Leica, Germany) and

divided into two hemispheres. Slices were stored in an

artificial cerebrospinal fluid (aCSF) (in mmol/L: 124

NaCl, 3.25 KCl, 1.25 NaH2PO4, 26 NaHCO3, 2 CaCl2, 2

MgSO4, 10 D glucose, and bubbled with carbogen; pH

~7.4, Osmolality ~300 mOsm/kg) at 37°C for approxi-

mately 15 min and then allowed to recover at room tem-

perature for ≥1 h before recordings.

Whole-cell patch-clamp recordings in brain
slices

Slices were placed in a submerged recording chamber and

perfused at 2–3 mL/min with 30 � 2°C warm carbo-

genated aCSF. Cells located in the DGGC layer were visu-

alized with an infrared Dodt gradient contrast system

(IR-DGC; Luigs & Neumann, Germany) on an upright

microscope (BX50WI, Olympus; Japan) equipped with a

60 9 water immersion objective and a CCD camera

(CCD-300ETRC; DAGE-MTI, Michigan City, IN).

GABAA receptor-mediated currents were pharmacologi-

cally isolated by adding the nonselective ionotropic gluta-

mate antagonist kynurenic acid (3 mmol/L; Sigma-

Aldrich, Denmark) (Erhardt et al. 2009) to the aCSF and

slices were allowed at least 10 min in presence of the

antagonist before recordings were started. Patch pipettes

were pulled from thin-walled borosilicate glass (outer

diameter = 1.5 mm, World Precision Instruments, Sara-

sota, FL) on a vertical puller (Model PP-830, Narishige,

Japan). Pipette resistances were 3-6 MΩ when filled with

intracellular solution (in mmol/L: 140 CsCl, 4 NaCl, 1

MgCl2, 10 HEPES, 0.1 EGTA, 2 MgATP, 0.3 NaGTP;

pH~7.35 with CsOH, Osmolality ~280 mOsm/kg).

Whole-cell recordings were conducted in voltage-clamp

mode at a holding potential of �70 mV (Vh = �70 mV)

using an EPC 9 amplifier (HEKA, Germany). A stabiliza-

tion period of at least 7 min was allowed before record-

ings were started. Series resistance was monitored before

and after each experiment, and if series resistance changed

> 25% during the recording period or was >20 MΩ,
recordings were excluded. Cell capacitance was estimated

by the Pulse software (HEKA, Germany), and no

significant difference was found in cell size between

groups (P = 0.21, Student’s t-test). A 65–70% compensa-

tion of the series resistance was applied. THIP (1 lmol/L;

Gift from Bente Frølund, University of Copenhagen, Den-

mark) was bath perfused either throughout the recordings

or for 5–8 min after baseline recordings (3–6 min) when

investigating the effect on sIPSC parameters. Twenty mi-

croliter 10 mmol/L stock of the GABAA receptor antago-

nist SR95531 dissolved in water (Sigma-Aldrich,

Denmark) was then added directly to the bath resulting

in a bath concentration > 100 lmol/L.

Currents were low-pass filtered at 2.9 kHz, digitized at

10 kHz, and stored on a personal computer using the EPC

9 amplifier (HEKA, Germany) and Pulse v8.80 software

(HEKA, Germany). Bath application of SR95531 can abol-

ish both GABAA receptor-mediated phasic and tonic cur-

rent (Boddum et al. 2014), and was hence used to evaluate

these currents. Tonic current was assessed as the outward

shift in the holding current. The shift was measured by fit-

ting a Gaussian function to an all-point histogram of a

10 sec recording segment approximately 20 sec before

SR95531 application and to a 10 sec recording segment

covering the minimal current recorded after SR95531

application. Before SR95531 application, the current distri-

bution was negatively skewed due to synaptic currents and

the Gaussian function was fitted to the unskewed part to

exclude spontaneous synaptic events. Total GABA-

mediated tonic current was measured as the size of the

SR95531-induced shift in mean of the Gaussian functions.

sIPSCs were detected in 120 sec recording segments

using Mini Analysis Program (Version 6, Synaptosoft Inc)

and subsequently inspected visually and corrected when

necessary. Inter-sIPSC interval, 10–90% rise time (RT10–

90), and peak amplitude were measured and the decay-

time constant (sdecay) values were calculated. The sIPSC

parameters were obtained from averaged single sIPSCs

excluding escaped action potentials and sIPSCs with an

inter-sIPSC interval less than 4–5 x sdecay corresponding

to 40 msec for all recordings.

Statistical significance was determined using Student’s

t-test (paired or unpaired), one-way ANOVA, or two-way

ANOVA with repeated measures with P < 0.05 as the sig-

nificance level.

Whole-cell patch-clamp experiments in
HEK293 cells

Transient transfections and whole-cell patch-clamp

recordings were performed as previously described (Mad-

sen et al. 2007) with the following modifications. HEK293

cells were transfected with a combination of human a5-
pcDNA3.1, b2/3-pcDNA3.1, and c2S-pcDNA3.1 (1:1:5

ratio) and cotransfected with plasmid coding for green
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fluorescent protein using Targefect-293 as a DNA carrier

(Targeting Systems, USA). HEK293 cells were used for

patch-clamp experiments 40–100 h after transfection.

In these experiments we applied agonists for 5–10 sec

at 1 min intervals. GABA was applied at a saturating con-

centration (here 1 mmol/L) eliciting a maximum response

in order to monitor the cell’s responsiveness and to nor-

malize the other responses. Indeed, every third or fourth

application was 1 mmol/L GABA for 5 sec, where the

peak response was used to monitor cell responsiveness

and update normalization. Sometimes GABA was also

applied for 10 sec to see the full time course of the

response. It was regularly checked that the receptors

recovered from desensitization within the 1 min intervals

by applying the same low dose of THIP twice in sequence

subsequent to 1 mmol/L GABA.

Occasionally, the potentiation by 1 lmol/L diazepam

(Unikem, Denmark) of the GABA-induced current was

determined to ensure the inclusion of the c2-subunit in

the receptor complexes (data not shown).

In vivo anticonvulsive evaluation of THIP

The potential anticonvulsive effect of THIP was investi-

gated in fully kindled mice in a modified roman square

design as previously described (Hansen et al. 2012) with

vehicle test conducted twice. THIP (0.5, 1, 2, or 4 mg/kg

as the hydrochloride salt) or vehicle (saline 0.9%) was

administered subcutaneously (s.c.) 30 min prior to PTZ

injection as a THIP exposure study has revealed a maxi-

mal CNS concentration within 30–60 min after s.c injec-

tion (Cremers and Ebert 2007). All test and vehicle

injections had a volume of 10 mL/kg. Mice were observed

for 30 min after PTZ injection as described earlier.

The effect of THIP was evaluated on seizure severity as

well as incidence of, latency to, and duration of clonic

convulsions. For the incidence the standard error was cal-

culated as S.E. ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�pÞ

n

� �r
, where p is the proportion

of mice with clonic convulsions and n is the number of

mice (Fowler et al. 1998). Statistical significance com-

pared to vehicle treatment was determined using a z-test

for incidence, v2-test for seizure severity and one-way

ANOVA for duration and latency with statistical signifi-

cance level set at P < 0.05.

Results

Changes in d-GABAA receptor expression
after PTZ kindling

In the late chronic phase of poststatus epilepticus animal

models of epilepsy, the d-GABAA receptor subunit has

been shown to be downregulated, resulting in changed

pharmacology, but not reduced magnitude of the tonic

inhibition in DGGCs (Schwarzer et al. 1997; Peng et al.

2004; Zhang et al. 2007; Zhan and Nadler 2009; Rajase-

karan et al. 2010). To ensure that the d-subunit expres-

sion is not lost following PTZ kindling, we performed

immunohistochemical analysis of brains isolated from

PTZ-kindled and saline-treated mice using an antibody

shown to be specific for the d-subunit (Maguire et al.

2009). Gray-scale and spectrum color-transformed d-
stainings showed a notable staining of the dentate gyrus

molecular layer, consistent with the d-protein predomi-

nately being expressed here (Peng et al. 2002). Further-

more, the stainings revealed that the d-subunit expression
was not only present in the molecular layer but also it

was increased after PTZ kindling (Fig. 1A). Semiquantita-

tive analysis suggests that the optical density (average of

25–35 section/mouse, 3 mice) was increased in the

molecular layer of PTZ-kindled animals compared to sal-

ine-treated animals (Fig. 1B). In other brain areas rich in

d-expression, such as the striatum and three outer layers

of the cortex (Peng et al. 2002), the d-levels seemed unal-

tered suggesting that the alteration in d-expression after

PTZ kindling is brain region specific.

To confirm the increased d-subunit expression after

PTZ kindling, Western blot analysis of isolated hip-

pocampi from saline-treated and PTZ-kindled animals

was performed. In whole-tissue lysate, the d-subunit was
recognized as a band with a size of ~51 kDa. The OD per

100 lg total protein was significantly increased for

PTZ-kindled animals (Fig. 1C; n = 5 mice, P = 0.0017,

Student’s t-test). The relative extent of the increase is dif-

ferent between the Western blot and immunohistochemi-

cal analysis, which probably arises due to differences in

the methodology and method of quantification. For

instance, the two methods both include some, however,

different nonlinear steps which consequently results in the

final read out not being directly proportional to the

amount of d-subunit. Moreover, unspecific primary anti-

body binding may introduce an error to the immunohis-

tochemical staining which prevents complete background

correction. Despite these differences, the two methods

consistently showed an upregulation indicating that PTZ

kindling causes increased d-subunit expression in the

hippocampus.

THIP-induced tonic inhibition in DGGCs

In contrast to the downregulation of d-subunit expression
in the dentate gyrus in the late chronic phase in poststa-

tus epilepticus animal models of epilepsy (Schwarzer et al.

1997; Peng et al. 2004; Rajasekaran et al. 2010), we

observed that the d-subunit was upregulated in the
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dentate gyrus following PTZ kindling. For this reason,

THIP should be able to induce tonic inhibition in

DGGCs. We confirmed this by recording the THIP-

induced tonic inhibitory current in DGGCs from PTZ-

kindled as well as saline-treated mice. THIP of 1 lmol/L

was used, as this concentration is within the estimated

brain levels of 0.7–3 lmol/L found 30–60 min after s.c.

injections of 2.5–10 mg/kg THIP (free base) (Cremers

and Ebert 2007). Moreover, this THIP concentration has

been shown in other neuronal cell types to activate

extrasynaptic GABAARs but not synaptic GABAARs (Dras-

bek and Jensen 2006; Herd et al. 2009).

GABAergic inhibition was isolated using the nonselec-

tive ionotropic glutamate antagonist kynurenic acid

Figure 1. Increased GABAA receptor d-subunit expression in dentate gyrus after PTZ kindling. (A) Immunohistochemical d-stainings of the dentate

gyrus in gray-scale and color-transformed images. The d-subunit was found to be highly expressed in the molecular layer of the dentate gyrus.

The stained brain sections revealed that the density of the d-subunit is higher in tissue from PTZ-kindled mice. (B) Bar graph suggesting that the

optical density in the dentate gyrus is higher in PTZ-kindled animals relative to saline treated (25 sections/mouse, n = 3 mice). (C) Representative

immunoblots of total protein isolated from hippocampal tissue showing higher d-subunit expression in PTZ-kindled animals relative to saline-

treated animals (left). d-levels expressed as the relative density per 100 lg total protein (right). The relative density was 61.1 � 8.4% lower in

hippocampal tissue from saline-treated mice compared to PTZ-kindled mice (n = 5 animals, **p < 0.01).
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(3 mmol/L). Preliminary data showed that no tonic cur-

rent was present in DGGCs from either saline-treated or

PTZ-kindled animals (data not shown), consistent with

other studies (Song et al. 2011; Wlodarczyk et al. 2013).

This is probably due to a low extracellular GABA concen-

tration arising from washout from the slice preparation

(Glykys and Mody 2007b). As a result, when perfusing

with 1 lmol/L THIP, the shift in tonic current revealed

by application of a saturating concentration of the

GABAA receptor antagonist SR95531 equals the THIP-

induced current (Fig. 2A).

The magnitude of the tonic current induced by 1 lmol/

L THIP was similar in DGGCs from PTZ-kindled and sal-

ine-treated animals, with the average total tonic current

being 13.4 � 1.52 pA in PTZ-kindled mice and

15.3 � 2.21 pA in saline-treated mice (Fig. 2B; n = 15–18
cells, 6 mice, P > 0.05, Student’s t-test). In line with the

observed presence of d-subunit in the dentate gyrus after

PTZ kindling, THIP was able to induce a tonic current in

DGGCs from both saline-treated and PTZ-kindled animals.

However, the upregulation of the d-subunit found in PTZ-

kindled mice did not result in an enhanced THIP-induced

tonic inhibition in DGGCs from PTZ-kindled mice.

The d-subunit selectivity of THIP can, however, be ques-

tioned as 5 lmol/L THIP induced a residual tonic current

in DGGCs from d-knockout mice (Maguire et al. 2005) and

2 lmol/L THIP induced a current in putative a5bc-

GABAARs in CA1 pyramidal cells (Lindquist et al. 2003).

We therefore evaluated the GABAAR selectivity of THIP in a

recombinant system. As it has been shown that GABA-

induced tonic inhibition in DGGCs is predominately medi-

ated by d-GABAARs and to a lesser extent by a5-GABAARs

(Glykys et al. 2008), the effect of THIP was tested on human

recombinant a5b3c2- and a5b2c2-GABAARs expressed in

HEK293 cells. THIP concentration dependently activated

a5-GABAARs expressed in HEK293 cells (Fig. 3A). THIP

had an effect of 0.5 � 0.34% (1 lmol/L), 5.1 � 1.61%

(10 lmol/L), and 87.0 � 9.78% (1000 lmol/L) relative to

the maximum effect of GABA in a5b2c2-GABAARs and

2.0 � 0.56% (1 lmol/L), 6.8 � 1.02% (10 lmol/L), and

87.0 � 3.81% (1000 lmol/L) relative to the maximum

effect of GABA in a5b3c2-GABAARs (Fig. 3B).

Given the minimal effect of 1 lmol/L THIP on a5b2/
3c2-GABAARs in this study and the observation that THIP

potency is highest at the a5bc-GABAARs of all abc-
GABAARs (St�orustovu and Ebert 2006), the THIP-

induced tonic inhibition in DGGCs must primarily be

d-GABAAR mediated.

Phasic inhibition and the effect of THIP in
DGGCs

In a number of DGGCs, phasic inhibitory postsynaptic

currents and the effect of 1 lmol/L THIP were

Figure 2. THIP-induced tonic inhibition in DGGCs from PTZ-kindled and saline-treated mice. (A) Representative current traces from DGGC

recordings in brain slices from saline-treated (upper) and PTZ-kindled animals (lower) (Vh = �70 mV). Some sIPSCs appear truncated. Top lines

indicate presence of the GABAA antagonist SR95531. Right, Gaussian fit to the all-points histogram from 10 s segment with and without the

presence of SR95531. (B) The tonic current induced by 1 lmol/L THIP was similar in saline-treated (n = 15 cells) and PTZ-kindled mice (n = 18

cells, P > 0.05). Data presented as mean + SEM.
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investigated; PTZ kindling was not found to cause a

significant change in the kinetics of the phasic postsy-

naptic currents in DGGCs (Table 1; P > 0.05, Student’s

t-test).

Application of THIP had no effect on the average

sIPSC rise time and amplitude in DGGCs from either sal-

ine-treated or PTZ-kindled mice (Fig. 4, Table 1; n = 8–
10 cells, 4 mice, P > 0.05, two-way ANOVA with repeated

measures for amplitude analysis and Kruskal–Wallis one-

way ANOVA on Ranks for rise time analysis). THIP pro-

longed the IPSC decay in DGGCs (Table 1), however, this

effect only reached significance in DGGCs from saline-

treated animals.

THIP induced an increase in the average inter-sIPSC

interval, again only significant in saline-treated mice

(Fig. 4D; saline treated: 142.8 � 5.65% of control, n = 8

cells, P < 0.001, paired t-test; PTZ kindled:

121.7 � 10.22% of control, n = 10 cells, P > 0.05, paired

t-test). The cumulative distributions for both treatments

are given in Figure 4C (n = 8–10 cells). However, no sig-

nificant effect of PTZ kindling on the sIPSC frequency

was observed, neither before nor after THIP application

(Basal condition: saline treated: 1.41 � 0.114 Hz and PTZ

kindled: 1.58 � 0.146; in presence of THIP: saline treated:

1.00 � 0.096 Hz and PTZ kindled: 1.40 � 0.173 Hz,

P > 0.05, Student’s t-test, n = 8–10 cells).

Figure 3. Functional effect of THIP at human recombinant a5b2/3c2S-GABAA receptors. (A) Representative current traces showing the

concentration-dependent activation of a5b2c2S (left) and a5b3c2S (right) GABAARs subtypes with different THIP concentrations (T; 1, 10,

1000 lmol/L) compared to 1000 lmol/L GABA (G). (B) The effect of THIP at a5b2c2S (n = 5–6 cells) and a5b3c2S (n = 5–7 cells) GABAAR subtypes

normalized to the maximal effect of GABA estimated from the GABA concentration response curve (not shown). THIP of 1 lmol/L had minimal

effect on a5-GABAARs, whereas 1000 lmol/L induced a membrane current of ~87% of the maximal effect of GABA, being significantly different

from GABA Emax only in a5b3c2S subtype (P < 0.05, one-way ANOVA).

Table 1. Spontaneous inhibitory postsynaptic currents (sIPSCs) recorded in DGGCs from saline-treated or PTZ-kindled mice.

Saline treated PTZ kindled

Control 1 lmol/L THIP % of control Control 1 lmol/L THIP % of control

Amplitude (pA) �25.1 � 1.92 �24.4 � 1.10 99.8 � 6.71 �29.1 � 3.34 �29.8 � 2.92 103.6 � 3.85

RT10-90 (ms) 0.490 [0.407;0.526] 0.543 [0.464;0.945] 140.5 � 25.01 0.517 [0.444;0.662] 0.534 [0.495;0.622] 115.1 � 13.93

sdecay (ms) 8.25 � 0.44 8.94 � 0.50 108.4 � 2.69* 8.91 � 0.37 9.59 � 0.55 108.3 � 6.03

n (cells) 8 10

Data represented as mean � SEM, except for RT10-90 (ms) represented as median � quartiles.

*P = 0.016 (paired t-test)
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Anticonvulsive evaluation of THIP in the PTZ
kindling model

Evaluation of THIP as a potential anticonvulsant drug

has resulted in contradictory results when evaluated in

different animal models of epilepsy. Previously we have

shown that THIP had no anticonvulsive effect in the PTZ

kindling model when evaluated on seizure incidence

(Hansen et al. 2004). However, more recently we found

that an anticonvulsive evaluation conducted with several

observational parameters offered important additional

information about the drug profile that would be lost if

only seizure incidence was used as the single evaluation

parameter (Hansen et al. 2012). For this reason, we

repeated the anticonvulsive evaluation of THIP observing

and analyzing several seizure parameters (incidence and

duration of convulsions, latency to clonic convulsions,

and severity of convulsions) in the PTZ kindling model.

Despite including the additional parameters in the anti-

convulsive evaluation, single administration of THIP in

doses up to 4 mg/kg showed no anticonvulsive effect in the

PTZ kindling model. THIP had no significant effect on inci-

dence of clonic convulsions (Fig. 5A; n = 8 mice, P > 0.05,

z-test compared to vehicle treatment) or seizure severity

Figure 4. Effect of THIP on phasic currents (sIPSCs) in DGGCs. (A) Representative current traces of 2.5 s of DGGC recordings in control and in

presence of 1 lmol/L THIP from the same cell in saline-treated mice and PTZ-kindled mice. (B) Superimposed averaged noncontaminated sIPSC

from the same cells as in A. (C) Cumulative distribution of inter-sIPSC intervals in saline-treated (n = 8 cells) and PTZ-kindled animals (n = 10

cells). (D) Effect of 1 lmol/L THIP on the averaged sIPSC interval normalized to the averaged control sIPSC interval obtained from the same cell in

saline-treated (n = 8 cells) and PTZ-kindled mice (n = 10 cells). Data presented as mean + SEM. THIP of 1 lmol/L significantly increased the sIPSC

interval only in DGGCs from saline-treated animals (***p < 0.001, paired t-test).
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scored according to the modified Racine scale (Fig. 5B;

n = 8 mice, P > 0.05, v2-test). For the latency to clonic con-

vulsions, an overall effect of treatments was detected with

Kruskal–Wallis one-way ANOVA on ranks (P = 0.036), but

no significant pairwise difference between individual treat-

ment groups could be isolated with multiple comparison test

(Fig. 5C; n = 6–13 clonic convulsions). THIP did not affect

the duration of clonic convulsions (Fig. 5D; n = 6–13 con-

vulsions, P > 0.05, one-way ANOVA). Altogether, none of

the parameters used to evaluate seizure activity indicated

any anticonvulsant effects of THIP.

Discussion

In this study we have shown that GABAAR d-subunit
expression is not compromised in the dentate gyrus in the

early phase (up to 8 days) after PTZ kindling, in fact we

found the subunit to be upregulated. THIP was indeed able

to induce a tonic inhibition in dentate gyrus granule cells.

However, the upregulation of the GABAAR d-subunit was
not paralleled by an increase in THIP-mediated tonic inhi-

bition. THIP induced a tonic current of similar magnitude

in DGGCs from saline-treated as from PTZ-kindled mice.

THIP significantly prolonged the sIPSC decay and reduced

the sIPSC frequency in saline-treated animals; effects that

are not significantly different from what was observed in

PTZ-kindled animals. Despite the preserved effect of THIP

on tonic inhibition, no anticonvulsive effect of THIP could

be detected in the murine PTZ kindling model in a com-

prehensive in vivo anticonvulsive evaluation.

Enhanced GABAAR d-subunit expression in
dentate gyrus following PTZ kindling

GABAAR d-subunit plasticity in the dentate gyrus has

been observed in the late chronic phase in several

Figure 5. Lack of anticonvulsive effect of THIP (0.5, 1, 2, and 4 mg/kg) in the PTZ kindling model. (A) Incidence of clonic convulsions represented

for each treatment as percentage + SE of 8 mice. (B) Seizure severity scored according to the modified Racine scale with Score 0 = no response;

Score 1 = 1–3 myoclonic jerks and/or facial twitching and/or axial waves going through the body; Score 2 = more than 3 myoclonic jerks; Score

3 = clonic convulsion with forelimb clonus without loss of postural control; Score 4 = clonic convulsion with loss of postural control, turning to

the side and/or rearing; Score 5 = clonic convulsion with loss of righting reflex and/or bouncing, two or more clonic convulsions, tonic convulsion

or status epilepticus. Data presented for each treatment as percentage of mice achieving the different scores (n = 8 mice). (C) Latency to first

clonic convulsions presented for each treatment as the median with 25–75% interval. (D) Duration of clonic convulsions represented as

mean + SEM. For (C and D) n represents the total number of clonic convulsions. In conclusion, THIP showed no anticonvulsive properties on any

of the measured parameters.
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poststatus epilepticus animal models of epilepsy employ-

ing mice and rats (Schwarzer et al. 1997; Peng et al. 2004;

Rajasekaran et al. 2010). In this study we found that

GABAAR d-subunit plasticity also exist in the early phase

after PTZ kindling, but in contrast to the downregulation

found in poststatus epilepticus models, the GABAAR d-
subunit expression appears to be increased in the dentate

gyrus in the murine PTZ kindling model.

Immunohistochemistry showed that, in the molecular

layer of the dentate gyrus, a prominent d-staining was

present which was enhanced in PTZ-kindled mice. The

GABAAR d-subunit upregulation was confirmed by Wes-

tern blotting on isolated hippocampal tissue, although the

relative extent of the increase was different, likely due to

differences in the methodology and method of quantifica-

tion. Due to the predominant location of the d-protein in

the molecular layer (shown here and by Peng et al. (2004,

2002)), the upregulation shown by the Western blot anal-

ysis probably reflects an altered expression level in the

dentate gyrus.

In this study, the GABAAR d-subunit plasticity seemed

to be brain-region specific in the PTZ kindling model as

the expression level appeared unaltered in the striatum

and cortex. This is in agreement with findings in the pilo-

carpine-induced poststatus epilepticus model, where only

moderate-to-no GABAAR d-subunit plasticity was

observed in the striatum, cortex, and thalamus (Peng

et al. 2004). Extrasynaptic GABAAR plasticity is not only

associated with epilepsy models, but has also been found

during the estrus cycle (Maguire et al. 2005), pregnancy

(Maguire and Mody 2008; Maguire et al. 2009), and

schizophrenia (Maldonado-Avil�es et al. 2009; Kjaerby

et al. 2014).

THIP-induced tonic inhibition in DGGCs

In DGGCs, physiological tonic inhibition is mediated lar-

gely by a4bd-GABAARs with a smaller contribution from

a5bc-GABAARs (Glykys et al. 2008; Liang et al. 2008).

The tonic inhibition in DGGCs induced by 1 lmol/L

THIP is likely mediated by a4bd-GABAARs as 1 lmol/L

THIP had minimal effect on recombinant a5b2/3c2-
GABAARs, although a small contribution from

a5-GABAARs cannot be excluded.

The GABAAR d-subunit upregulation in the dentate

gyrus did not result in enhanced THIP-induced tonic

inhibition in DGGCs in the PTZ kindling model. Instead

THIP induced a tonic current of similar magnitude in

both saline-treated and PTZ-kindled mice, suggesting a

preservation rather than an increase in functional

d-GABAARs after PTZ kindling. The lack of functional

d-GABAAR observed in the chronic state of several post-

status epilepticus models (Zhang et al. 2007; Zhan and

Nadler 2009; Rajasekaran et al. 2010) must indeed be

model specific as a d-GABAAR response to neurosteroids

has been found in DGGCs in human temporal lope epi-

lepsy (Scimemi et al. 2006), and functional d-GABAARs

have been demonstrated in animal models of posttrau-

matic epilepsy (Mtchedlishvili et al. 2010; Pavlov et al.

2011) and in the PTZ kindling model (as shown here).

The discrepancy between GABAAR d-subunit upregula-
tion and maintained THIP-induced tonic inhibition in

the dentate gyrus could indicate an increased pool of

spare d-GABAAR located intracellularly in DGGCs after

PTZ kindling. Altered cytoplasmic-to-membrane ratio of

the d-protein has previously been shown in pilocarpine-

treated rats, where animals suffering from frequent sei-

zures had a higher level of the GABAAR d-subunit than

control animals, when measured in cell lysate obtained

from the dentate gyrus (Gonz�alez et al. 2015). However,

no significant difference in the level of cell surface local-

ization of GABAAR d-subunits was found between these

two groups.

Alternatively, alterations in posttranslational modifica-

tions such as the degree of phosphorylation could account

for the discrepancy between d-GABAAR expression and

function following PTZ kindling. Indeed, diminished

THDOC sensitivity of tonic inhibition in layer II pyrami-

dal cells in the piriform cortex after amygdala kindling

probably occurred as a consequence of hyperphosphoryla-

tion (Kia et al. 2011).

In some studies, PTZ kindling has been shown to

increase neurogenesis in the dentate gyrus (Park et al.

2006; Yin et al. 2007; Aniol et al. 2009), whereas several

other studies have shown granule cell loss in the dentate

gyrus following PTZ kindling (Pohle et al. 1997; Franke

and Kittner 2001; Pavlova et al. 2006). If the outcome is

an increased number of d-GABAAR-expressing DGGCs

rather than a changed expression of d-protein in the indi-

vidual DGGC, the total level of d-GABAAR in the dentate

gyrus would be increased, however, the level of tonic

inhibition recorded from a single DGGC is left unaltered.

Effect of THIP on synaptic inhibition in
DGGCs

THIP of 1 lmol/L had no effect on the average sIPSC

amplitude or rise time. THIP tended to prolong the

sIPSC decay time, but this effect only reached significance

in DGGCs from saline-treated animals. This is in line

with a small but significant THIP-induced prolongation

of the sIPSC decay time in DGGCs, observed by others

(Liang et al. 2006).

THIP also showed a tendency to reduce the sIPSC fre-

quency, but again this was only significant in DGGCs

from saline-treated animals. A THIP-induced decrease in
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sIPSC frequency has also been observed in neocortical

layer 2/3 pyramidal cells in naive mice consistent with a

presynaptic mode of action by decreasing the interneuron

firing activity (Drasbek and Jensen 2006; Drasbek et al.

2007). Tonic inhibition of interneurons has been observed

in several brain areas (Semyanov et al. 2003; Scimemi

et al. 2005, 2006; Glykys et al. 2007) and the lack of a

THIP effect on synaptic inhibition of DGGCs in the PTZ

kindling model could be a result of either downregulation

of d-GABAARs on interneurons or reduction in the num-

ber of interneurons. Additionally, transient collapse of the

chloride gradient and a depolarizing action GABAA recep-

tor activation has been demonstrated in hippocampal

interneurons (Song et al. 2011; Ellender et al. 2014),

which in this case will cancel or even reverse the effect of

THIP.

Both a loss of interneurons and a differential regulation

of the d-subunit expression between principal cells and

interneurons have been reported in the pilocarpine-

induced poststatus epilepticus animal model of epilepsy

(Kobayashi et al. 2003; Peng et al. 2004), however, with

our experimental techniques, it was not possible to

resolve such changes.

Lack of anticonvulsive effect of THIP in the
murine PTZ kindling model

In this study we reevaluated the anticonvulsive properties

of THIP in the murine PTZ kindling model using a more

comprehensive assessment of seizure activity than earlier

studies. Despite the presence of functional d-GABAARs

and the ability of THIP to induce a tonic current in

DGGCs, our results indeed confirmed that THIP has no

anticonvulsive effect in the murine PTZ kindling model.

In doses ranging from 0.5 to 4 mg/kg, THIP showed no

change in seizure severity or the occurrence or duration

of clonic convulsions. Even though an overall decrease in

latency to first convulsion was seen (which may suggest a

proconvulsive effect), no significant difference between

the different treatment groups could be isolated. Higher

doses of THIP were not tested for anticonvulsive effect as

doses above 2.5 mg/kg will result in marked sedation

(Hansen et al. 2004).

The lack of an anticonvulsive effect of THIP in the

PTZ kindling model agrees with previous findings (Han-

sen et al. 2004), based solely on evaluation of seizure inci-

dence. Lack of anticonvulsive effect of THIP has also

been found in female amygdala-kindled rats (L€oscher and

Schwark 1985) and in doses up to 41 mg/kg on acute

PTZ-induced seizures (Hansen et al. 2004). In contrast,

THIP has shown protective effect against audiogenic sei-

zures (Madsen et al. 2011), and was found to provide

better protection against kainic acid-induced seizures in

female mice during diestrus when hippocampal d-subunit
levels are enhanced (Maguire et al. 2005). Even procon-

vulsive properties have been reported, as THIP was shown

to induce absence seizures in rats (Cope et al. 2009).

Therefore, the therapeutic potential of extrasynaptic

GABAA receptor agonists or modulators as antiepileptic

drugs may well be restricted to certain types of epilepsy,

perhaps with an associated risk of initiating epileptiform

activity elsewhere in the brain.

Disclosure

None declared.

References

Aniol VA, Yakovlev AA, Stepanichev MY, Lazareva NA,

Gulyaeva NV (2009). Development of pentylenetetrazole

kindling in rats is associated with an increase in hippocampal

doublecortin expression. Neurochem J 3: 179–183.

Boddum K, Frølund B, Kristiansen U (2014). The GABAA

Antagonist DPP-4-PIOL Selectively Antagonises Tonic over

Phasic GABAergic Currents in Dentate Gyrus Granule Cells.

Neurochem Res. 39: 2078–2084. https://doi.org/10.1007/
s11064-014-1397-9

Boehm SL, Homanics GE, Blednov YA, Harris RA (2006).

delta-Subunit containing GABAA receptor knockout mice are

less sensitive to the actions of 4,5,6,7-tetrahydroisoxazolo-[5,4-

c]pyridin-3-ol. Eur J Pharmacol 541: 158–162.

Brickley SG, Revilla V, Cull-Candy SG, Wisden W, Farrant M

(2001). Adaptive regulation of neuronal excitability by a

voltage-independent potassium conductance. Nature 409: 88–
92.

Brooks-Kayal AR, Shumate MD, Jin H, Rikhter TY, Coulter

DA (1998). Selective changes in single cell GABA(A) receptor

subunit expression and function in temporal lobe epilepsy. Nat

Med 4: 1166–1172.

Brown N, Kerby J, Bonnert TP, Whiting PJ, Wafford KA

(2002). Pharmacological characterization of a novel cell line

expressing human a 4 b 3 d GABA A receptors. Br J Pharmacol

136: 965–974.

Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D,

Newell JG, et al. (2004). Tonic inhibition in mouse

hippocampal CA1 pyramidal neurons is mediated by alpha5

subunit-containing gamma-aminobutyric acid type A

receptors. Proc Natl Acad Sci. U. S. A. 101: 3662–3667.

Cope DW, Di Giovanni G, Fyson SJ, Orb�an G, Errington AC,

Lorincz ML, et al. (2009). Enhanced tonic GABAA inhibition

in typical absence epilepsy. Nat Med 15: 1392–1398.

Cremers T, Ebert B (2007). Plasma and CNS concentrations of

Gaboxadol in rats following subcutaneous administration. Eur

J Pharmacol 562: 47–52.

2017 | Vol. 5 | Iss. 4 | e00322
Page 12

ª 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Anticonvulsive Evaluation of THIP C. Simonsen et al.

https://doi.org/10.1007/s11064-014-1397-9
https://doi.org/10.1007/s11064-014-1397-9


Drasbek KR, Jensen K (2006). THIP, a hypnotic and

antinociceptive drug, enhances an extrasynaptic GABAA

receptor-mediated conductance in mouse neocortex. Cereb

Cortex 16: 1134–1141.

Drasbek KR, Hoestgaard-Jensen K, Jensen K (2007).

Modulation of extrasynaptic THIP conductances by GABAA-

receptor modulators in mouse neocortex. J Neurophysiol 97:

2293–2300.

Ebert B, Wafford KA, Whiting PJ, Krogsgaard-Larsen P,

Kemp JA (1994). Molecular pharmacology of gamma-

aminobutyric acid type A receptor agonists and partial

agonists in oocytes injected with different alpha, beta, and

gamma receptor subunit combinations. Mol Pharmacol 46:

957–963.

Ellender TJ, Raimondo JV, Irkle A, Lamsa KP, Akerman CJ

(2014). Excitatory effects of parvalbumin-expressing

interneurons maintain hippocampal epileptiform activity via

synchronous afterdischarges. J Neurosci 34: 15208–15222.

Erdtmann-Vourliotis M, Riechert U, Mayer P, Grecksch G,

H€ollt V (1998). Pentylenetetrazole (PTZ)-induced c-fos

expression in the hippocampus of kindled rats is suppressed

by concomitant treatment with naloxone. Brain Res 792: 299–
308.

Erhardt S, Olsson SK, Engberg G (2009). Pharmacological

manipulation of kynurenic acid: potential in the treatment of

psychiatric disorders. CNS Drugs 23: 91–101.

Farrant M, Nusser Z (2005). Variations on an inhibitory

theme: phasic and tonic activation of GABA(A) receptors. Nat

Rev Neurosci 6: 215–229.

Follesa P, Tarantino A, Floris S, Mallei A, Porta S, Tuligi G,

et al. (1999). Changes in the gene expression of GABAA

receptor subunit mRNAs in the septum of rats subjected to

pentylenetetrazol-induced kindling. Brain Res Mol Brain Res

70: 1–8.

Fowler J, Cohen L, Jarvis P. (1998). How good are our

estimates?. In: Pract. Stat. F. Biol., 2nd ed. John Wiley and

Sons, Ltd., Chichester, UK, pp 90–103.

Franke H, Kittner H (2001). Morphological alterations of

neurons and astrocytes and changes in emotional behavior in

pentylenetetrazol-kindled rats. Pharmacol Biochem Behav 70:

291–303.

Glykys J, Mody I (2006). Hippocampal network hyperactivity

after selective reduction of tonic inhibition in GABA A

receptor alpha5 subunit-deficient mice. J Neurophysiol 95:

2796–2807.

Glykys J, Mody I (2007a). The main source of ambient GABA

responsible for tonic inhibition in the mouse hippocampus. J

Physiol 582: 1163–1178.

Glykys J, Mody I (2007b). Activation of GABAA receptors:

views from outside the synaptic cleft. Neuron 56: 763–770.

Glykys J, Peng Z, Chandra D, Homanics GE, Houser CR,

Mody I (2007). A new naturally occurring GABA(A) receptor

subunit partnership with high sensitivity to ethanol. Nat

Neurosci 10: 40–48.

Glykys J, Mann EO, Mody I (2008). Which GABA(A) receptor

subunits are necessary for tonic inhibition in the

hippocampus? J Neurosci 28: 1421–1426.

Gonz�alez MI, Grabenstatter HL, Cea Del Rio C, Cruz Y, Angel

D, Carlsen J, et al. (2015). Seizure-Related Regulation of

GABA A Receptors in Spontaneously Epileptic Rats HHS

Public Access. Neurobiol Dis 77: 246–256.

Hansen SL, Sperling BB, S�anchez C (2004). Anticonvulsant

and antiepileptogenic effects of GABAA receptor ligands in

pentylenetetrazole-kindled mice. Prog Neuropsychopharmacol

Biol Psychiatry 28: 105–113.

Hansen SL, Nielsen AH, Knudsen KE, Artmann A, Petersen G,

Kristiansen U, et al. (2009). Ketogenic diet is antiepileptogenic

in pentylenetetrazole kindled mice and decrease levels of N-

acylethanolamines in hippocampus. Neurochem Int 54: 199–

204.

Hansen SL, Sterjev Z, Werngreen M, Simonsen BJ, Knudsen

KE, Nielsen AH, et al. (2012). Does brain slices from

pentylenetetrazole-kindled mice provide a more predictive

screening model for antiepileptic drugs? Eur J Pharmacol 682:

43–49.

Herd MB, Foister N, Chandra D, Peden DR, Homanics GE,

Brown VJ, et al. (2009). Inhibition of thalamic excitability by

4,5,6,7-tetrahydroisoxazolo[4,5-c]pyridine-3-ol: a selective role

for delta-GABA(A) receptors. Eur J Neurosci 29: 1177–1187.

Jia F, Pignataro L, Schofield CM, Yue M, Harrison NL,

Goldstein PA (2005). An extrasynaptic GABAA receptor

mediates tonic inhibition in thalamic VB neurons. J

Neurophysiol 94: 4491–4501.

Kamphuis W, De Rijk TC, Lopes da Silva FH (1995).

Expression of GABAA receptor subunit mRNAs in

hippocampal pyramidal and granular neurons in the kindling

model of epileptogenesis: an in situ hybridization study. Brain

Res Mol Brain Res 31: 33–47.

Kia A, Ribeiro F, Nelson R, Gavrilovici C, Ferguson SSG, Poulter

MO (2011). Kindling alters neurosteroid-induced modulation of

phasic and tonic GABAA receptor-mediated currents: role of

phosphorylation. J Neurochem 116: 1043–1056.

Kjaerby C, Broberg BV, Kristiansen U, Dalby NO (2014).

Impaired GABAergic inhibition in the prefrontal cortex of

early postnatal phencyclidine (PCP)-treated rats. Cereb Cortex

24: 2522–2532.

Kobayashi M, Wen X, Buckmaster PS (2003). Reduced

inhibition and increased output of layer II neurons in the

medial entorhinal cortex in a model of temporal lobe epilepsy.

J Neurosci 23: 8471–8479.

ª 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2017 | Vol. 5 | Iss. 4 | e00322
Page 13

C. Simonsen et al. Anticonvulsive Evaluation of THIP



Liang J, Zhang N, Cagetti E, Houser CR, Olsen RW,

Spigelman I (2006). Chronic intermittent ethanol-induced

switch of ethanol actions from extrasynaptic to synaptic

hippocampal GABAA receptors. J Neurosci 26: 1749–1758.

Liang J, Suryanarayanan A, Chandra D, Homanics GE, Olsen

RW, Spigelman I (2008). Functional consequences of GABAA

receptor alpha 4 subunit deletion on synaptic and

extrasynaptic currents in mouse dentate granule cells. Alcohol

Clin Exp Res 32: 19–26.

Lindquist CEL, Ebert B, Birnir B (2003). Extrasynaptic GABA

(A) channels activated by THIP are modulated by diazepam in

CA1 pyramidal neurons in the rat brain hippocampal slice.

Mol Cell Neurosci 24: 250–257.

L€oscher W, Fiedler M (1996). The role of technical, biological

and pharmacological factors in the laboratory evaluation of

anticonvulsant drugs. VI. Seasonal influences on maximal

electroshock and pentylenetetrazol seizure thresholds. Epilepsy

Res 25: 3–10.

L€oscher W, Schwark WS (1985). Evaluation of different GABA

receptor agonists in the kindled amygdala seizure model in

rats. Exp Neurol 89: 454–460.

Madsen C, Jensen AA, Liljefors T, Kristiansen U, Nielsen B,

Hansen CP, et al. (2007). 5-Substituted Imidazole-4-acetic

Acid Analogues: Synthesis, Modeling, and Pharmacological

Characterization of a Series of Novel c-Aminobutyric AcidC

Receptor Agonists. J. Med. Chem. 50(17): 4147–4161.

Madsen KK, Larsson OM, Schousboe A (2008). Regulation of

excitation by GABA neurotransmission: focus on metabolism

and transport. Results Probl Cell Differ 44: 201–221.

Madsen KK, Ebert B, Clausen RP, Krogsgaard-larsen P,

Schousboe A, White HS (2011). Selective GABA Transporter

Inhibitors Tiagabine and EF1502 Exhibit Mechanistic

Differences in Their Ability to Modulate the Ataxia and

Anticonvulsant Action of the Extrasynaptic GABA A Receptor

Agonist Gaboxadol. J Pharmacol Exp Ther 338: 214–219.

Maguire J, Mody I (2008). GABA(A)R plasticity during pregnancy:

relevance to postpartum depression. Neuron 59: 207–213.

Maguire JL, Stell BM, Rafizadeh M, Mody I (2005). Ovarian

cycle-linked changes in GABA(A) receptors mediating tonic

inhibition alter seizure susceptibility and anxiety. Nat Neurosci

8: 797–804.

Maguire J, Ferando I, Simonsen C, Mody I (2009). Excitability

changes related to GABAA receptor plasticity during

pregnancy. J Neurosci 29: 9592–9601.

Maldonado-Avil�es JG, Curley AA, Hashimoto T, Morrow AL,

Ramsey AJ, O’Donnell P, et al. (2009). Altered markers of

tonic inhibition in the dorsolateral prefrontal cortex of

subjects with schizophrenia. Am J Psychiatry 166: 450–459.

McIntyre DC, Gilby KL (2008). Mapping seizure pathways in

the temporal lobe. Epilepsia 49(Suppl 3): 23–30.

Mortensen M, Ebert B, Wafford K, Smart TG (2010). Distinct

activities of GABA agonists at synaptic- and extrasynaptic-type

GABAA receptors. J Physiol 588: 1251–1268.

Mtchedlishvili Z, Lepsveridze E, Xu H, Kharlamov EA, Lu B,

Kelly KM (2010). Increase of GABAA receptor-mediated tonic

inhibition in dentate granule cells after traumatic brain injury.

Neurobiol Dis 38: 464–475.

Nishimura T, Schwarzer C, Gasser E, Kato N, Vezzani A,

Sperk G (2005). Altered expression of GABA(A) and GABA(B)

receptor subunit mRNAs in the hippocampus after kindling

and electrically induced status epilepticus. Neuroscience 134:

691–704.

Park J-H, Cho H, Kim H, Kim K (2006). Repeated brief

epileptic seizures by pentylenetetrazole cause

neurodegeneration and promote neurogenesis in discrete brain

regions of freely moving adult rats. Neuroscience 140: 673–
684.

Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G,

Pitk€anen A, et al. (2011). Progressive loss of phasic, but not

tonic, GABAA receptor-mediated inhibition in dentate granule

cells in a model of post-traumatic epilepsy in rats.

Neuroscience 194: 208–219.

Pavlova T, Stepanichev M, Gulyaeva N (2006).

Pentylenetetrazole kindling induces neuronal cyclin B1

expression in rat hippocampus. Neurosci Lett 392: 154–158.

Peng Z, Hauer B, Mihalek RM, Homanics GE, Sieghart W,

Olsen RW, et al. (2002). GABA(A) receptor changes in delta

subunit-deficient mice: altered expression of alpha4 and

gamma2 subunits in the forebrain. J Comp Neurol 446: 179–

197.

Peng Z, Huang CS, Stell BM, Mody I, Houser CR (2004).

Altered expression of the delta subunit of the GABAA receptor

in a mouse model of temporal lobe epilepsy. J Neurosci 24:

8629–8639.

Pohle W, Becker A, Grecksch G, Juhre A, Willenberg A (1997).

Piracetam prevents pentylenetetrazol kindling-induced

neuronal loss and learning deficits. Seizure 6: 467–474.

Rajasekaran K, Joshi S, Sun C, Mtchedlishvilli Z, Kapur J

(2010). Receptors with low affinity for neurosteroids and

GABA contribute to tonic inhibition of granule cells in

epileptic animals. Neurobiol Dis 40: 490–501.

Reddy DS, Rogawski MA (2002). Stress-induced

deoxycorticosterone-derived neurosteroids modulate GABA(A)

receptor function and seizure susceptibility. J Neurosci 22:

3795–3805.

Reddy DS, Rogawski MA (2010). Ganaxolone suppression of

behavioral and electrographic seizures in the mouse amygdala

kindling model. Epilepsy Res 89: 254–260.

Schwarzer C, Tsunashima K, Wanzenb€ock C, Fuchs K,

Sieghart W, Sperk G (1997). GABA(A) receptor subunits in

2017 | Vol. 5 | Iss. 4 | e00322
Page 14

ª 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Anticonvulsive Evaluation of THIP C. Simonsen et al.



the rat hippocampus II: altered distribution in kainic acid-

induced temporal lobe epilepsy. Neuroscience 80: 1001–1017.

Scimemi A, Semyanov A, Sperk G, Kullmann DM, Walker MC

(2005). Multiple and plastic receptors mediate tonic GABAA

receptor currents in the hippocampus. J Neurosci 25: 10016–
10024.

Scimemi A, Andersson A, Heeroma JH, Strandberg J,

Rydenhag B, McEvoy AW, et al. (2006). Tonic GABA(A)

receptor-mediated currents in human brain. Eur J Neurosci

24: 1157–1160.

Semyanov A, Walker MC, Kullmann DM (2003). GABA

uptake regulates cortical excitability via cell type-specific tonic

inhibition. Nat Neurosci 6: 484–490.

Semyanov A, Walker MC, Kullmann DM, Silver RA (2004).

Tonically active GABA A receptors: modulating gain and

maintaining the tone. Trends Neurosci 27: 262–269.

Simonsen C, Kloppenburg A, Sønderskov K, Kristiansen U,

Hansen S. (2010). Anticonvulsive evaluation of THIP in the

murine pentylenetetrazole kindling model. Basic Clin

Pharmacol Toxicol 107: abstract 2707.

Song I, Savtchenko L, Semyanov A (2011). Tonic excitation or

inhibition is set by GABA(A) conductance in hippocampal

interneurons. Nat Commun 2: 376.

St�orustovu SI, Ebert B (2006). Pharmacological

characterization of agonists at delta-containing GABAA

receptors: Functional selectivity for extrasynaptic receptors is

dependent on the absence of gamma2. J Pharmacol Exp Ther

316: 1351–1359.

Szyndler J, Maciejak P, Turzy�nska D, Sobolewska A, Taracha

E, Sk�orzewska A, et al. (2009). Mapping of c-Fos expression in

the rat brain during the evolution of pentylenetetrazol-kindled

seizures. Epilepsy Behav 16: 216–224.

White HS, Smith MD, Wilcox KS (2007). Mechanisms of

action of antiepileptic drugs. Int Rev Neurobiol 81: 85–110.

Wlodarczyk AI, Sylantyev S, Herd MB, Kersante F, Lambert JJ,

Rusakov DA, et al. (2013). GABA-Independent GABAA

Receptor Openings Maintain Tonic Currents. J Neurosci 33:

3905–3914.

Yin J, Ma Y, Yin Q, Xu H, An N, Liu S, et al. (2007).

Involvement of over-expressed BMP4 in pentylenetetrazol

kindling-induced cell proliferation in the dentate gyrus of

adult rats. Biochem Biophys Res Commun 355: 54–60.

Zhan R-Z, Nadler JV (2009). Enhanced tonic GABA current in

normotopic and hilar ectopic dentate granule cells after

pilocarpine-induced status epilepticus. J Neurophysiol 102:

670–681.

Zhang N, Wei W, Mody I, Houser CR (2007). Altered

localization of GABA(A) receptor subunits on dentate granule

cell dendrites influences tonic and phasic inhibition in a

mouse model of epilepsy. J Neurosci 27: 7520–7531.

ª 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2017 | Vol. 5 | Iss. 4 | e00322
Page 15

C. Simonsen et al. Anticonvulsive Evaluation of THIP


