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Abstract
With the rising use of machine learning for healthcare applications, practitioners are increasingly confronted with the 
limitations of prediction models that are trained in one setting but meant to be deployed in several others. One recently 
identified limitation is so-called shortcut learning, whereby a model learns to associate features with the prediction target 
that do not maintain their relationship across settings. Famously, the watermark on chest x-rays has been demonstrated to 
be an instance of a shortcut feature. In this viewpoint, we attempt to give a structural characterization of shortcut features 
in terms of causal DAGs. This is the first attempt at defining shortcut features in terms of their causal relationship with a 
model’s prediction target.
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Introduction

Data analyses can be carried out for 3 tasks: description, 
prediction, and counterfactual prediction; the latter is used 
for causal inference [1]. Each of these tasks requires the 
combination of data with different types of external or expert 
knowledge. For example, when performing a causal infer-
ence task, a core piece of expert knowledge is the specifica-
tion of the set of variables to adjust for confounding [2]. 
Domain experts may select those adjustment variables after 
representing their knowledge about the underlying causal 
structure using causal directed acyclic graphs (DAGs) [3].

In contrast, the role of expert knowledge about the causal 
structure is less clear for prediction tasks. The goal of pre-
diction is to learn a mapping from a set of input features to 
the prediction target. For example, the pixels from a chest 
X-ray (the features) may be used to predict the presence of 

a disease (the target). Recently, prediction models based on 
machine learning have demonstrated impressive results on a 
broad set of problems that have historically been challenging 
prediction tasks [4–10]. The success in machine learning has 
largely been driven by deep learning [11] techniques, which 
are extremely flexible models that impose very few assump-
tions and limited amounts of explicit expert knowledge [8]. 
The canonical deep learning approach is to include as many 
features as possible and to learn, solely from data, which 
combinations and transformations of these variables result 
in the most accurate prediction model [12]. Thus, it seems 
that the role of expert knowledge has an increasingly small 
role to play in prediction modeling. However, recent work 
has brought into question the wisdom of the purely data-
driven paradigm in prediction modeling. In this viewpoint, 
we describe the role of expert knowledge in prediction using 
causal DAGs.

An example of a shortcut feature

Suppose that we train a deep learning model to predict 
whether a patient has COVID-19 (the prediction target) 
using chest X-rays (the input features) from a healthcare 
system of 4 hospitals. The goal is that the model uses patho-
physiological markers such as lung opacity, like a human 
physician, to create a clinical decision support tool that can 
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be deployed in the 4 hospitals as well as in additional hospi-
tals that did not provide training data.

However, the model might find a shortcut to predict dis-
ease using the training data but without using pathophysi-
ological markers. Because some hospitals are more likely 
to treat patients with COVID-19, the X-rays from those 
hospitals are more likely to correspond to individuals with 
COVID-19 than the X-rays from other hospitals. Therefore, 
like in a recent study, a deep learning model may associate 
the presence of a hospital-specific watermark in the top-right 
corner of each X-ray with a greater probability of COVID-
19 diagnosis [13]. The watermark in the chest X-ray is an 
example of a predictor that has been referred to as a shortcut 
feature [13, 14] in the machine learning literature. While the 
presence of a watermark for a specific hospital does shift 
the relative probability of COVID-19, the predictive power 
of the watermark is of limited use when the deep learning 
model is applied to X-rays from new hospitals with different 
watermarks or no watermark at all.

The characterization and avoidance of shortcut features 
is an active area of research [15–28]. Here we argue that 
expert knowledge is required to define what a shortcut fea-
ture is and to distinguish between shortcut features and other 
features.

Three types of input features in prediction 
models

The causal DAG in Fig. 1A depicts the prediction target 
(COVID-19 diagnosis) and the input features (lung opacity 
and watermark from the X rays). The arrow from COVID-19 
to lung opacity represents the causal effect of the infection 
that is mediated by changes in the lung, while the arrow 
from COVID-19 to watermark represents the causal effect 
of infection that is mediated by admitting hospital, and the 
absence of an arrow from COVID-19 to number of ribs rep-
resents the lack of effect of infection on the bones. We say 
that a path in a causal DAG is open when it only includes 

two types of nodes: colliders (or their descendants) that are 
conditioned on, or non-colliders that are not [29, 30]. Two 
variables connected by an open path are expected to be sta-
tistically associated.

Using causal DAGs, we can consider 3 types of input 
features based on the paths that link them to the prediction 
target:

(a) Non-shortcut features are connected with the predic-
tion target exclusively through open paths that are con-
served across the training and deployment settings, e.g., 
lung opacity.

(b) Shortcut features are connected with the prediction tar-
get through one or more open paths that are not con-
served across the training and deployment settings, e.g., 
watermarks in the X-rays from the original hospitals 
(which do not provide information on COVID-19 diag-
nosis in other hospitals).

(c) Irrelevant features are not connected with the prediction 
target through any open paths in the training data, e.g., 
number of ribs.

Our classification is qualitative (because we do not pro-
vide a quantitative definition of “conserved path”) and infor-
mal, but it is sufficient to extract some conclusions about the 
role of expert knowledge for prediction tasks and a basis for 
the development of more formal approaches.

The role of expert knowledge

Expert knowledge is not required to conclude that irrelevant 
features (c) are not helpful to improve the prediction model. 
Though they may be statistically associated with the predic-
tion target by chance in finite samples, irrelevant features 
(c) will be automatically discarded by the deep learning 
model given enough training data. In contrast, both non-
shortcut (a) and shortcut (b) features will be incorporated 
into the predictive model, but the only way to distinguish 

Fig. 1  Causal DAG underlying 
the prediction of COVID-19 
status from chest X-rays across 
two different contexts. The 
training context (left) includes 4 
hospitals with different COVID-
19 prevalence and watermark-
ing patterns. The deployment 
context (right) includes a fifth 
hospital with no watermark on 
the X-ray
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between non-shortcut and shortcut features is the use of 
causal knowledge.

The classification of a feature as a shortcut feature 
depends on the set of deployment settings under considera-
tion. Therefore, building a reliable prediction model requires 
that we restrict the model’s access to shortcut features rela-
tive to the expected deployment contexts. In the chest X-ray 
example, lung opacity is a non-shortcut feature (a) because 
we expect it to be affected by COVID-19, regardless of 
which hospital performed the X-ray. In contrast, the water-
mark is a shortcut feature (b) because it lies on an open 
path to the prediction target in the hospitals used to train the 
model, but this path no longer exists in other hospitals in 
which the model is deployed, since the deployment hospital 
uses a different or no watermark.

This failure of predictive models to distinguish features 
(a) and (b) reflects the model’s ignorance about the under-
lying causal structures in the training and deployment con-
texts. Therefore, model developers need to use expert knowl-
edge to characterize the relevant set of deployment contexts, 
identify the shortcut features, and exclude the shortcut fea-
tures from the data before the model is trained. In our exam-
ple, model developers could accomplish this by cropping 
out all watermarks from the X-rays. Some shortcut features 
may be less obvious to experts or may be difficult to define 
concisely. For example, it has been shown that scanners from 
different manufacturers encode information in chest X-rays 
in slightly different ways [31]. This results in a nebulous 
scanner “signature”, invisible to the human eye, that can 

result in shortcut learning if different patient populations 
are scanned using machines from different companies [31].

Causal structures for shortcut features

In general, features (a) and (b) do not have to be causally 
affected by the prediction target. Instead, the open path 
between a shortcut feature and the outcome may have a 
variety of causal structures (see Fig. 2), where a subset of 
the open path differs between the training and deployment 
contexts. In the most extreme case, a subset of the arrows 
and nodes are present in one setting, but absent in the other. 
Figure 2 illustrates some possible causal structures for short-
cut features.

The left column shows the same causal structure that we 
examined in Fig. 1. The prediction target precedes the fea-
tures temporally thus the direction of causation and predic-
tion are opposite, also known as anti-causal prediction [32]. 
The central column shows a shortcut feature that shares a 
common cause with the prediction target in the training data 
but not in the deployment setting. The right column shows 
a shortcut feature that affects the prediction target in the 
training setting but not in the deployment setting. Figure 2 
is not meant to be an exhaustive characterization of causal 
structures that permit shortcut learning, as we can imagine 
other structures with paths containing colliders between 
the shortcut feature and the prediction target that change 
between training and deployment.

Fig. 2  Causal DAGs in the training (top row) and deployment (bottom row) context. Panel (A) depicts the same causal structure as Fig. 1, panels 
(B) and (C) depict alternative causal structures for shortcut features
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Other views on shortcut features

Shortcut features have attracted a great deal of attention from 
research groups in the fields of statistics, machine learning, 
and causal inference. We offer a brief overview of related 
efforts and provide a contrast with the characterization we 
provide in this work.

Arjovsky et al. [15] introduced invariant risk minimiza-
tion (IRM) for data collected across a set of pre-specified 
settings: the model is trained to minimize the maximum 
error across settings (i.e., a minimax objective) and, by lev-
eraging the pre-specification of deployment settings, the 
IRM framework is expected to discard shortcut features even 
if the causal structure of shortcut features is not explicitly 
characterized.

Other work has defined shortcuts in the representations 
learned by deep learning models rather than in the features 
themselves. For example, Wang and Jordan [25] consider a 
setting in which the input features cause the prediction target 
Y and there is an unobserved common cause C of all fea-
tures (Fig. 3). Under the representation learning framework, 
models attempt to learn a mapping from the input feature 
space to a lower-dimensional representation of each sample. 
In general, we would like this representation to be highly 
predictive of the outcome and free of shortcuts, which the 
authors operationalize by defining a measure of a representa-
tion’s sufficiency for the outcome. However, their notion of 
sufficiency does not apply to individual features but instead 
applies to the black box representation of the inputs. While 
this framework may enable the development of methods that 
optimize for representations with high sufficiency, it does 
not advance our reasoning about individual features, which 
is often the most useful level for reasoning about shortcuts 
in epidemiology.

In the field of statistical transportability, previous work 
has been concerned with estimating the conditional distribu-
tion of Y given X in a target domain using the distribution 
learned in the training domain and limited data from the 
target domain [33–39]. Correa and Bareinboim [26] devel-
oped an approach for solving this task that relies on fac-
torizing the target conditional distribution according to its 
underlying causal DAG using a novel formalism known as a 
c*-factors. It has yet to be shown if the conditions required 
by this approach from this work can be stated in terms of 
graphical conditions that can be easily read off a DAG with-
out requiring c*-factors. However, shortcut features per our 
definition would violate these transportability conditions. 
We believe that a direct structural characterization of short-
cuts at the level of individual features (as opposed to at the 
level of c*-factors) is the most useful for practical discussion 
and enables intuitive reasoning about the surrounding issues.

Conclusion

Shortcut features pose a significant challenge to the safe 
and reliable deployment of prediction models. Models that 
learn shortcut features are unreliable and have the poten-
tial to cause catastrophic errors if used in clinical decision-
making. An explicitly causal characterization of shortcut 
features, as we proposed here, facilitates the incorporation 
of expert knowledge into prediction models and may guide 
future work on remedies to the problem.

Acknowledgements The authors would like to thank Dr. Issa Dahabreh 
and other members of the CAUSALab at Harvard for their helpful 
feedback on this manuscript.

Author contributions All authors contributed to the conception of the 
ideas in this work and participated in the drafting, editing, and approval 
of the final manuscript.

Funding Dr. Beam received funding from the National Institutes 
of Health (K01 HL141771). Dr. Hernan received funding from the 
National Institutes of Health (P50 MH115846). Dr. Beam has equity 
and receives consulting fees from Generate Biomedicines, Inc. The 
authors have not disclosed any funding.

Data availability No data was used to produce the results in the 
manuscript.

Code availability No code was used to produce the results in the 
manuscript.

Declarations 

Competing interests  The authors have no other relevant competing 
interests to declare.

Consent to participate This manuscript did not involve any human 
participants.

Fig. 3  Causal DAG from Wang et  al. [25]. The features  X1, …,  Xm 
cause the prediction target Y and share a common cause C



567A structural characterization of shortcut features for prediction  

1 3

Consent to publish This manuscript did not involve any human par-
ticipants.

Ethical approval This study is a viewpoint and did not require ethics 
approval.

References

 1. Hernán MA, Hsu J, Healy B. A second chance to get causal 
inference right: a classification of data science tasks. Chance. 
2019;32:42–9.

 2. Hernán MA, Robins JM. Causal inference: what if. Boca Raton: 
Chapman & Hall/CRC; 2020.

 3. Pearl J, Glymour M, Jewell NP. Causal inference in statistics: a 
primer. Wiley; 2016.

 4. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification 
with deep convolutional neural networks. NIPS. 2012. p. 4.

 5. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, 
et al. Dermatologist-level classification of skin cancer with deep 
neural networks. Nature. 2017;542:115–8.

 6. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanas-
wamy A, et al. Development and validation of a deep learning 
algorithm for detection of diabetic retinopathy in retinal fundus 
photographs. JAMA. 2016;304:649–56.

 7. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, et al. 
CheXNet: radiologist-level pneumonia detection on chest X-rays 
with deep learning. arXiv [cs.CV]. 2017. Available: http:// arxiv. 
org/ abs/ 1711. 05225

 8. Beam AL, Kohane IS. Big data and machine learning in health 
care. JAMA. 2018;319:1317–8.

 9. Schmaltz A, Beam AL. Sharpening the resolution on data mat-
ters: a brief roadmap for understanding deep learning for medi-
cal data. Spine J. 2020. https:// doi. org/ 10. 1016/j. spinee. 2020. 
08. 012.

 10. Yu K-H, Beam AL, Kohane IS. Artificial intelligence in health-
care. Nat Biomed Eng. 2018;2:719–31.

 11. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 
2015;521:436–44.

 12. Bengio Y, Courville A, Vincent P. Representation learning: a 
review and new perspectives. IEEE Trans Pattern Anal Mach 
Intell. 2013;35:1798–828.

 13. DeGrave AJ, Janizek JD, Lee S-I. AI for radiographic COVID-
19 detection selects shortcuts over signal. medRxiv. 2020. 
https:// doi. org/ 10. 1101/ 2020. 09. 13. 20193 565.

 14. Geirhos R, Jacobsen J-H, Michaelis C, Zemel R, Brendel W, 
Bethge M, et al. Shortcut learning in deep neural networks. Nat 
Machine Intell. 2020;2:665–73.

 15. Arjovsky M, Bottou L, Gulrajani I, Lopez-Paz D. Invariant risk 
minimization. arXiv [stat.ML]. 2019. Available: http:// arxiv. 
org/ abs/ 1907. 02893

 16. Cheng PW, Lu H. 5 Causal invariance as an essential constraint 
for creating representation of the world: generalizing the invari-
ance of causal power. The Oxford handbook of causal reason-
ing. 2017;65.

 17. Creager E, Jacobsen J-H, Zemel R. Environment Inference for 
Invariant Learning. In: Meila M, Zhang T, editors. Proceed-
ings of the 38th International Conference on Machine Learning. 
PMLR; 18--24 2021; 2189–2200.

 18. Lu C, Wu Y, Hernández-Lobato JM, Schölkopf B. Invariant 
causal representation learning. 2020. Available: https:// openr 
eview. net/ pdf? id= K4wkU p5xNK

 19. Lu C, Wu Y, Hernández-Lobato JM, Schölkopf B. Nonlinear 
invariant risk minimization: a causal approach. arXiv [cs.LG]. 
2021. Available: http:// arxiv. org/ abs/ 2102. 12353

 20. Moraffah R, Shu K, Raglin A, Liu H. Deep causal representation 
learning for unsupervised domain adaptation. arXiv [cs.LG]. 
2019. Available: http:// arxiv. org/ abs/ 1910. 12417

 21. Moyer D, Gao S, Brekelmans R, Galstyan A, Ver Steeg G. 
Invariant representations without adversarial training. Adv Neu-
ral Inf Process Syst. 2018;31. Available: https:// proce edings. 
neuri ps. cc/ paper/ 2018/ hash/ 41518 5ea24 4ea2b 2bede b0449 
b9268 02- Abstr act. html

 22. Puli A, Zhang LH, Oermann EK, Ranganath R. Out-of-distribu-
tion generalization in the presence of nuisance-induced spurious 
correlations. arXiv [cs.LG]. 2021. Available: http:// arxiv. org/ 
abs/ 2107. 00520

 23. Veitch V, D’Amour A, Yadlowsky S, Eisenstein J. Counterfac-
tual invariance to spurious correlations: why and how to pass 
stress tests. arXiv [cs.LG]. 2021. Available: http:// arxiv. org/ abs/ 
2106. 00545

 24. Kilbertus N, Parascandolo G, Schölkopf B. Generalization in 
anti-causal learning. arXiv [cs.LG]. 2018. Available: http:// 
arxiv. org/ abs/ 1812. 00524

 25. Wang Y, Jordan MI. Desiderata for Representation Learning: 
A Causal Perspective. arXiv [stat.ML]. 2021. Available: http:// 
arxiv. org/ abs/ 2109. 03795

 26. Correa JD, Bareinboim E. From Statistical Transportability to 
Estimating the Effect of Stochastic Interventions. IJCAI. 2019; 
1661–1667.

 27. Paul MJ. Feature selection as causal inference: experiments 
with text classification. Proceedings of the 21st Conference 
on Computational Natural Language Learning (CoNLL 2017). 
Vancouver, Canada: Association for Computational Linguistics; 
2017. pp. 163–172.

 28. Zhao H, Combes RTD, Zhang K, Gordon G. On learning 
invariant representations for domain adaptation. In: Chaudhuri 
K, Salakhutdinov R, editors. Proceedings of the 36th Inter-
national Conference on Machine Learning. PMLR; 09—15, 
2019;7523–7532.

 29. Hernan MA, Robins JM. Causal inference causal inference: 
what if. Boca Raton, FL, USA: CRC Press; 2018.

 30. Pearl J. Causality. Cambridge University Press; 2009.
 31. Badgeley MA, Zech JR, Oakden-Rayner L, Glicksberg BS, Liu 

M, Gale W, et al. Deep learning predicts hip fracture using 
confounding patient and healthcare variables. NPJ Digit Med. 
2019;2:31.

 32. Peters J, Janzing D, Schölkopf B. Elements of causal inference: 
foundations and learning algorithms. The MIT Press; 2017.

 33. Pearl J, Bareinboim E. Transportability of causal and statistical 
relations: a formal approach. Twenty-Fifth AAAI Conference 
on Artificial Intelligence. 2011. Available: https:// www. aaai. 
org/ ocs/ index. php/ AAAI/ AAAI11/ paper/ viewP aper/ 3769

 34. Quinonero-Candela J, Sugiyama M, Schwaighofer A, Lawrence 
ND. Dataset shift in machine learning. MIT Press; 2008.

 35. Zhang K, Schölkopf B, Muandet K, Wang Z. Domain adaptation 
under target and conditional shift. In: Dasgupta S, McAllester 
D, editors. Proceedings of the 30th International Conference 
on Machine Learning. Atlanta, Georgia, USA: PMLR; 17—19, 
2013; 819–827.

 36. Zhang K, Gong M, Schoelkopf B. Multi-source domain adapta-
tion: a causal view. Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence. 2015. Available: https:// www. aaai. org/ ocs/ 
index. php/ AAAI/ AAAI15/ paper/ viewP aper/ 10052

 37. Magliacane S, van Ommen T, Claassen T, Bongers S, Versteeg 
P, Mooij JM. Domain adaptation by using causal inference to 
predict invariant conditional distributions. Adv Neural Inf Pro-
cess Syst. 2018;31. Available: https:// proce edings. neuri ps. cc/ 

http://arxiv.org/abs/1711.05225
http://arxiv.org/abs/1711.05225
https://doi.org/10.1016/j.spinee.2020.08.012
https://doi.org/10.1016/j.spinee.2020.08.012
https://doi.org/10.1101/2020.09.13.20193565
http://arxiv.org/abs/1907.02893
http://arxiv.org/abs/1907.02893
https://openreview.net/pdf?id=K4wkUp5xNK
https://openreview.net/pdf?id=K4wkUp5xNK
http://arxiv.org/abs/2102.12353
http://arxiv.org/abs/1910.12417
https://proceedings.neurips.cc/paper/2018/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/415185ea244ea2b2bedeb0449b926802-Abstract.html
http://arxiv.org/abs/2107.00520
http://arxiv.org/abs/2107.00520
http://arxiv.org/abs/2106.00545
http://arxiv.org/abs/2106.00545
http://arxiv.org/abs/1812.00524
http://arxiv.org/abs/1812.00524
http://arxiv.org/abs/2109.03795
http://arxiv.org/abs/2109.03795
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPaper/3769
https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPaper/3769
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/10052
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewPaper/10052
https://proceedings.neurips.cc/paper/2018/hash/39e98420b5e98bfbdc8a619bef7b8f61-Abstract.html


568 D. Bellamy et al.

1 3

paper/ 2018/ hash/ 39e98 420b5 e98bf bdc8a 619be f7b8f 61- Abstr 
act. html

 38. Rojas-Carulla M, Schölkopf B, Turner R, Peters J. Invari-
ant models for causal transfer learning. J Mach Learn Res. 
2018;19:1309–42.

 39. Tian J, Pearl J. A general identification condition for causal 
effects. eScholarship, University of California; 2002.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://proceedings.neurips.cc/paper/2018/hash/39e98420b5e98bfbdc8a619bef7b8f61-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/39e98420b5e98bfbdc8a619bef7b8f61-Abstract.html

	A structural characterization of shortcut features for prediction
	Abstract
	Introduction
	An example of a shortcut feature
	Three types of input features in prediction models
	The role of expert knowledge
	Causal structures for shortcut features
	Other views on shortcut features
	Conclusion
	Acknowledgements 
	References




