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Background: Diffuse large B-cell lymphoma (DLBCL) is the most common histologic
subtype of non-Hodgkin’s lymphoma (NHL) with highly heterogeneous genetic and
phenotypic features. Therefore, a comprehensive understanding of cellular diversity
and intratumoral heterogeneity is essential to elucidate the mechanisms driving DLBCL
progression and to develop new therapeutic approaches.

Methods: We analyzed single-cell transcriptomic data from 2 reactive lymph node tissue
samples and 2 DLBCL lymph node biopsy tissue samples to explore the transcriptomic
landscape of DLBCL. In addition, we constructed a prognostic model based on the genes
obtained from differential analysis.

Results: Based on gene expression profiles at the single cell level, we identified and
characterized different subpopulations of malignant and immune cells. Malignant cells
exhibited a high degree of inter-tumor heterogeneity. Tumor-infiltrating regulatory CD4+

T cells showed highly immunosuppressive properties and exhausted cytotoxic CD8+

T cells were highly expressed with markers of exhaustion. Cell communication analysis
identified complex interactions between malignant cells and other cell subpopulations. In
addition, the prognostic model we constructed allows for monitoring the prognosis of
DLBCL patients.

Conclusion: This study provides an in-depth dissection of the transcriptional features of
malignant B cells and tumor microenvironment (TME) in DLBCL and provides new insights
into the tumor heterogeneity of DLBCL.
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INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is the most common histologic subtype of non-Hodgkin’s
lymphoma (NHL) with highly heterogeneous genetic and phenotypic features. Gene expression
profiling divides DLBCL into two distinct molecular subtypes, the activated B-cell-like and the
germinal center B-cell-like subtypes (Scott et al., 2014; Reddy et al., 2017). Although the standard
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first-line treatment regimen (R-CHOP) results in complete and
durable remission in approximately 60% of cases, relapse occurs
in 30–40% of patients and refractory disease in another 10%
(Friedberg 2006; Friedberg 2011). Autologous stem cell
transplantation (ASCT) after salvage chemotherapy is the
standard second-line treatment for relapsed or refractory (R/
R) DLBCL (Gisselbrecht et al., 2010). However, half of the
patients are not eligible for transplantation due to ineffective
salvage therapy, and the other half relapse after ASCT (Crump
et al., 2017). The prognosis of this group of patients is extremely
poor and the choice of treatment options is challenging.

The journal Science selected tumor immunotherapy as the
most important scientific breakthrough of 2013 (Couzin-Frankel
2013). In 2017, the U.S. Food and Drug Administration approved
two chimeric antigen receptor T-cells targeting CD19 for the
treatment of R/R B-cell malignancies (Dwivedi et al., 2019).
Tumor immunotherapy has become a more important
treatment after the development of drug resistance in DLBCL
patients. Studies have shown that the tumor immune
microenvironment has a great impact on the efficacy of
immunotherapy (Li et al., 2018). Thus, it has become a
primary task to improve the current status of DLBCL
treatment with important clinical significance to deeply
explore the state of tumor microenvironment (TME) and drug
resistance mechanism in DLBCL patients and find new
therapeutic targets for DLBCL.

Tumor cells exist in a complex microenvironment composed
of infiltrating immune cells and stromal cells. These immune cells
and stromal cells, together with the cytokines and chemokines
they secrete, as well as the intercellular stroma and
microvasculature in the nearby area, constitute a complex
network of TME (Hui and Chen 2015; Shen and Kang 2018).
Tumor cells maintain their survival and proliferation by
communicating with the TME network, which also allows
tumor cells to develop immunosuppressive mechanisms to
evade immune surveillance and promote disease progression
(Coupland 2011; Ansell and Vonderheide 2013). The unique
structure of the secondary lymphoid organs (including lymph
nodes and spleen) in hematologic malignancies makes their
microenvironment very different from that of solid tumors. In
B-cell NHL, the TME is rich in immune cells, whereas in solid
tumors, the number of infiltrating immune cells is relatively low
(Ansell and Vonderheide 2013). Since the TME plays a crucial
role in tumorigenesis, progression and recurrence, it is
increasingly the focus of research on progression, metastasis
and treatment resistance in solid and hematologic malignancies.

Here, we provide insight into the TME and tumor
heterogeneity in DLBCL by analyzing single-cell
transcriptomic data from 2 reactive lymph node tissue samples
and 2 DLBCL lymph node biopsy tissue samples. We identified a
high degree of inter-tumor heterogeneity in DLBCL samples and
prominent immunosuppressive features in CD4+ regulatory
T cells (CD4+ TREG) and exhausted cytotoxic CD8+ T cells
(CD8+ TEXH). In addition, a prognostic model was constructed
in a Bulk RNA-seq (Bulk-cell RNA sequencing) cohort
containing 481 DLBCL samples based on the results of T cell
subpopulation differential expression analysis, and the efficacy of

the model in predicting prognosis and immunotherapy response
was validated by the Gene Expression Omnibus (GEO) cohort
and the Imvigor cohort.

MATERIALS AND METHODS

Acquisition and Processing of scRNA-Seq
Data
Single cell transcriptome data containing 2 reactive lymph node
tissue samples and 2 DLBCL lymph node biopsy tissue samples
were obtained from the heiDATA database (https://heidata.uni-
heidelberg.de) (Supplementary Table S1). Single cell samples
were prepared and Single-cell RNA sequencing (scRNA-seq) as
follows: single cell suspensions, synthetic complementary DNA
and single cell libraries were prepared using Chromium Single
Cell v2 3ʹ kits (10x Genomics) according to the manufacturer’s
instructions. Each was sequenced on a single NextSeq 550 lane
(Illumina). The data were aligned to the hg38 reference genome
with Cell Ranger (v2.1, 10x Genomics) using “mkfastq” and
“count” commands and default parameters. The results of the
Cell Ranger analysis contained the count values of unique
molecular identifiers assigned to each gene in each of the cells
for each individual sample using all mapped reads
(Supplementary Table S2).

Filtering of scRNA-Seq Data
The R package Seurat (v4.0.2) (Butler et al., 2018) was used to
perform quality control. Gene counts per cell, UMI counts per
cell, and percentages of mitochondrial and ribosomal transcripts
were calculated using the functions of the Seurat package. Genes
expressed in three or fewer cells were excluded from downstream
analysis. Before further analysis, libraries with >5% of
mitochondrial transcripts, libraries with UMI numbers
indicating an abnormal range of potential doublets, and
libraries with less than 200 genes were screened out. After
removing low-quality cells, we analyzed scRNA-seq profiles of
11,729 cells with an average sequencing depth of approximately
1,400 genes per cell.

Merging of Multisample Data With
Correction for Batch Effects
The canonical correlation analysis (CCA) and mutual nearest
neighbor (MNN) algorithms in the R package Seurat (v4.0.2)
(Butler et al., 2018) were used for sample whole and correction of
batch effects. After identifying the different cell types, the
subsetdata function was used to split the dataset into subsets
of different cell types.

Clustering and Dimensionality Reduction
We used Seurat (v4.0.2) (Butler et al., 2018) to perform clustering
analysis of cells. Data was normalized to log scale using the
“NormalizeData” function with a default scale parameter of
10,000. “FindVariableFeatures” function was used to identify
highly variable genes with parameters for “selection.method = vst,
nfeatures = 2000”. We standardized the data with the “ScaleData”
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function. These variable genes were used as input for PCA using the
“RunPCA” function. The first 20 principal components (PCs) and a
resolution of 0.5 were used for clustering using “FindClusters”.
Uniform manifold approximation and projection for dimension
reduction (UMAP) was used for two-dimensional representation
of first 20 PCs with “RunUMAP”. We used the “FindAllMarkers” or
“FindMarkers” function to determine the marker genes of each
cluster relative to all other clusters or to a specific cluster. The
selected parameters of marker genes were detected in at least 25%
of the cells in the target cluster, under p value of Wilcoxon test <0.05
and the differential expression threshold of 0.25 log fold change.
FeaturePlot, DotPlot, VlnPlot and DoHeatmap were used for
visualization of gene expression levels. We labeled the obtained
clusters as T cells, B cells, NK cells, Dendritic cells (DC) and
monocytes by known classical markers (T cells: CD3D, CD3E,
CD3G, TRAC; B cells: MS4A1, CD79A; NK cells: NKG7, GNLY;
DC: IRF7, IRF8; monocytes: LYZ, CD68.).

Analysis of Intercellular Communication
Because DLBCL1 contains significantly more cells than DLBCL2,
in order to perform a systematic analysis of intercellular
communication, we re-clustered DLBCL1 for annotation and
used the R package CellChat (v1.1.3) (Jin et al., 2021) to explore
the expression of ligand-receptor pairs.

Cell Trajectory Analysis
Branching developmental trajectories of CD8+ T cell
subpopulations were calculated using the R package Monocle
2 (v2.16.0) (Qiu et al., 2017). Monocle introduces the strategy of
ordering single cells in pseudo-time, by taking advantage of the
asynchronous progression of individual cells in these processes
and aligning them along trajectories corresponding to biological
processes, such as cell differentiation.

Single-Cell Regulatory Network Inference
and Clustering Analysis
After annotation of each cell type by characterization of cell type
marker genes, we used the SCENIC package (v1.2.4) (Aibar et al.,
2017) to analyze the enriched transcription factors in cell
subpopulations. The input matrix is a normalized expression
matrix, output by Seurat.

Gene Set Variation Analysis
Hallmark gene sets were downloaded from the MSigdb
(Molecular Signatures Database) database and Gene Set
Variation Analysis (GSVA) was performed using the R
package GSVA to determine the molecular characteristics of
different cell subpopulations. Gene-cell matrices are converted
into gene set-cell matrices and GSVA scores are calculated for sets
with at least 5 detected genes; all other parameters are default.

Prognostic Model Construction and
Validation
RNA-seq data and clinical information of 481 DLBCL patients
were downloaded from The Cancer Genome Atlas (TCGA)

database (https://cancergenome.nih.gov/) for screening
prognostic genes and developing prognostic models. RNA
sequencing data and clinical information for 420 DLBCL
patients from the external validation cohort GSE10846 dataset
were obtained from the GEO database. Data for the IMvigor210
immunotherapy cohort were obtained from the website http://
research-pub.gene. com/IMvigor210CoreBiology. Extracted
CD8+ TEXH subpopulation-related genes obtained from
differential gene expression analysis were used to construct
prognostic models. In the TCGA cohort, univariate Cox
regression analysis was performed using the R package
Survival to screen prognosis-related genes (p < 0.05). Lasso
regression analysis was performed using the R package glment
to further screen prognosis-related genes, and finally six
prognosis-related genes were obtained by multivariate Cox
regression analysis for the construction of the prognostic risk
model. The risk score of each patient was calculated as follows:

Risk score � ∑
n

j�1
(βj × expGj)

where β is the regression coefficient obtained by multivariate Cox
regression analysis and expG is the prognostic gene expression
level. Based on the median risk scores obtained from the
prognostic model, the DLBCL samples were divided into high-
risk and low-risk groups, and survival differences between the
different risk subgroups were compared by Kaplan-Meier curves.
We plotted time-dependent subject operating characteristic
(ROC) curves with 1, 3 and 5 years as the defined points,
calculated the corresponding area under the ROC curve to
assess the predictive power of the risk model, and verified
whether the risk score was an independent prognostic
indicator for DLBCL by Cox regression analysis. The
GSE10846 cohort was used as an independent external
validation cohort to verify the efficacy of the prognostic model.

Tumor Microenvironment Score, Immune
Cell Abundance and Immune Response
Prediction
ESTIMATE is an algorithm that uses expression data to estimate
stromal and immune cells in malignant tumor tissues, allowing
estimation of stromal and immune scores for each DLBCL sample
(Yoshihara et al., 2013). The deconvolution algorithmCIBERSORT is
a method for characterizing cell composition from gene expression
profiles of complex tissues, allowing inference of the relative content
of immune cells from large amounts of tumor transcriptome data
(Newman et al., 2015). Gene set enrichment analysis was performed
using GSEA software (v4.1.0) to identify pathways that are
predominantly enriched between high- and low-risk groups.
Significantly enriched gene sets were screened with a threshold of
p < 0.05. To validate the predictive power of prognostic models for
immunotherapy response, the IMvigor210 immunotherapy cohort
was used to assess differences in response to PD-L1 treatment in
patients in different risk groups. Spearman correlation analysis was
used to characterize the correlation between immune checkpoint
genes and risk scores.
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Statistical Analysis
All statistical analyses were performed in R (v4.0.5). Comparisons
between groups were performed using the Wilcoxon test and
t-test. Correlations were analyzed by using Spearmans
correlation. Survival curves were compared using log-rank test.
Statistical significance was accepted for p < 0.05. *p < 0.05, **p <
0.01, ***p < 0.001.

RESULTS

Single-Cell Transcriptomic Analysis
Revealed the Complexity of Diffuse Large
B-Cell Lymphoma
In this study, single-cell transcriptomic data obtained from 10x
Genomics sequencing were used to investigate the cellular
diversity and molecular features in DLBCL tissues. After data
quality control and filtering, 11,729 cells were obtained for
subsequent analysis. After normalization of gene expression
data, descending and clustering were performed using principal
component analysis and UMAP, respectively. Twelve cell
subpopulations were obtained by dimensionality reduction
and clustering (Figure 1A), and these cells were assigned to
five different cell types using known marker genes (Figures
1B,D): B cells (marker genes: MS4A1 and CD79A), T cells
(marker genes: CD3D, CD3E, CD3G and TRAC), NK cells

(marker genes: GNLY and NKG7), DC cells (marker genes:
IR7 and IR8), monocytes (marker genes: LYZ and CD68).
Notably, B cells and T cells are the major cell subsets of
DLBCL (Figure 1C).

Inter-Transcriptomic Heterogeneity of
Malignant Cells in Diffuse Large B-Cell
Lymphoma
To investigate the transcriptomic heterogeneity of malignant
B cells in DLBCL tissues, we re-clustered the B cells and
identified 13 cell subpopulations. (Figure 2A). To further
distinguish malignant B cells from non-malignant B cells, we
took advantage of the fact that the malignant B cell population
expresses only one type of immunoglobulin light chain, i.e. κ or λ
light chains. The ratio of light chains per B cell (κ/λ) was
calculated based on the expression of the genes IGKC
(encoding a constant portion of the κ light chain) and IGLC2
(λ light chain). Malignant lymph nodes contain malignant B cells
that uniformly express κ light chains, whereas reactive lymph
node samples contain only non-malignant B cells (Figure 2B).
We then re-clustered the malignant B cells and obtained eight
malignant B cell subpopulations (Figure 2C), which showed a
high degree of heterogeneity. SCENIC analysis identified EGR1,
FOS and STAT1 as potential transcription factors (Figure 2D).
Gene differential expression analysis revealed different
transcriptional profiles among malignant B cell

FIGURE 1 | Identification of cell types using scRNA-seq. (A,B) Cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their cluster (A) or type (B). (C) Bar graph showing the proportion of cell types in each sample. (D) Typical marker genes for the immune cell types defined in
Figure 1B. Coloration was based on expression level.
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subpopulations: subpopulation 0 showed high expression levels
of the malignancy-promoting factors S100A6 and LY6E,
subpopulation 1 showed high expression levels of the tumor
suppressor BTG1 and TXNIP, subpopulation 2 showed high
expression levels of the immune-related genes CD74 and

HLA-DRA, subpopulation 3 and subpopulation 4 showed high
expression levels of cell proliferation genesMCM3, H2AFY, PCN,
MKI67, TK1, subpopulation 5 showed high expression levels of
metabolism-related genes FABP5, LDHA, ENO1, and
subpopulation 6 showed high expression levels of cell cycle-

FIGURE 2 | Transcriptome heterogeneity in malignant cells. (A) B cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their clusters. (B) IGKC fraction, IGKC ÷ (IGKC + IGLC2), was calculated for each B cell. B cells were classified as κ+ if the fraction was >0.5 and as λ+ if the
ratio was below 0.5. The percentage of B cells expressing κ or λ was calculated based on the transcriptionally distinct B cell clusters. Nonmalignant B cells contain
approximately 50% κ and 50% λ-expressing B cells, whereas malignant B cells contain B cells that uniformly express the κ light chain. (C) The umap plot of
malignant B cells. (D)Heat map of area under the curve scores for regulation of expression by transcription factors imputed with SCENIC. (E) Heat map showing the top
10 differential genes in the 8 malignant B cell subpopulations (Wilcoxon test). (F) Differential activity pathways in the 8 malignant B cell subpopulations (scored by GSVA
for each cell).
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related genes CENPF, CCNB1, CDC20 (Figure 2E). GSVA
analysis showed different molecular signatures among
malignant B-cell subpopulations: interferon response-
dominant signature (subpopulation 0), cell proliferation-
dominant signature (subpopulation 3 and subpopulation 4),
metabolism-dominant signature (subpopulation 5), and
hypoxia-dominant signature (subpopulation 7) (Figure 2F).
In conclusion, these results reveal a high degree of inter-
tumor heterogeneity in DLBCL.

Enrichment of Immunosuppressive Tumor
Infiltrating Regulatory T Cells in Diffuse
Large B-Cell Lymphoma
Tumor-infiltrating immune cells are highly heterogeneous and
play an important role in tumor cell immune evasion and
response to immunotherapy. To investigate the transcriptomic
heterogeneity of T cells in DLBCL tissues, we re-clustered
T cells and identified 13 T cell subpopulations (Figures
3A–D). The T cell subpopulations were annotated by
differentially expressed marker genes as: CD4−CD8−Navie T
(IL7R,SELL, CCR7 and LEF1, subpopulations: 0, 3, 4 and 10),

CD4+ TH (CD4 and TRAC, subpopulations: 1, 2 and 5), CD8+

TTOX (CD8A, GZMK and NKG7, subpopulation: 6), CD4+

TREG (FOXP3,TIGIT, ICOS and CTLA4, subpopulations: 7
and 9), CD8+Navie T (CD8A, SELL and IL7R, subpopulation:
8), TPRO (MKI67 and TOP2A, subpopulation: 11), CD8+ TEXH

(CD8A, GZMA, NKG7, LAG3 and HAVCR2, subpopulation:
12). To understand the state transitions between CD8+ T cell
subtypes, we used Monocle2 to construct potential
developmental trajectories of T cells. Developmental
trajectories inferred from expression data or marker genes
suggest (Supplementary Figures S1A, B) that CD8+ T cells
have two differentiation pathways: cytotoxic CD8+ T cells
(CD8+ TTOX) and exhausted CD8+ T cells (CD8+ TEXH).
GSVA analysis revealed different signaling pathway
enrichment among subpopulations: WNT and TGF
signaling (CD4+ TH), TGF and TNF signaling (CD8+ TTOX),
IL6/STAT3, IL2/STAT5 and KRAS signaling (CD4+ TREG),
and interferon response (CD8+ TEXH) (Supplementary Figure
S1C). SCENIC analysis identified SREBF2, RAD21, IRF7 as
potential transcription factors in different T cell
subpopulations (Supplementary Figure S1D). Taken
together, our single-cell analyses reveal that CD4+ TREG are

FIGURE 3 | Transcriptome heterogeneity in T cells. (A,B) T cells from 4 samples were combined and visualized using UMAP association. Cells were colored
according to their cluster or subtype. (C) Bar graph showing the proportion of cell types in each sample. (D) Differentially expressed genes used to identify T cell
subpopulations.
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highly immunosuppressive and CD8+ TEXH highly express
exhaustion markers such as LAG3, TIGIT and HAVCR2.

Cellular Communication in Diffuse Large
B-Cell Lymphoma
To explore the interactions between cells in the DLBCL
microenvironment, we used CellChat to infer and analyze
intercellular communication networks. Dimension reduction,
clustering and cell type annotation of sample DLBCL1
identified 13 cell subpopulations containing 9 malignant
B cell subpopulations (MB1-9), 3 T cell subpopulations
(TREG, TTOX, Naive T), and 1 DC cell subpopulation (DC).
CellChat analysis revealed complex interactions between
malignant B cell subpopulations and with other cell
subpopulations, and 22 important pathways between 13 cell
subpopulations were detected in DLBCL tissues, with the MIF
signaling pathway being the prominent incoming and
outgoing signaling mode (Figures 4A–D). Network
centrality analysis of the inferred MIF signaling network
showed that malignant B cell subpopulations (MB-2, MB-7)

are the major senders and DCs are the major receivers of the
MIF signaling pathway (Figure 4E). Notably, among all
known ligand-receptor pairs, MIF signaling was
predominantly dominated by the MIF ligand and its
multimeric CD74/CXCR4 receptor (Figure 4F). CellChat
uses a pattern recognition approach based on non-negative
matrix decomposition to identify global communication
patterns as well as key signals in different cell groups (i.e.
pattern recognition modules). The output of this analysis is a
set of the so-called communication patterns that connect cell
groups with signaling pathways either in the context of
outgoing signaling (i.e. treating cells as sources) or
incoming signaling (i.e. treating cells as targets). The
application of this pattern recognition module revealed
three patterns of the outgoing signal and three patterns of
the incoming signal (Figures 5A,B). The outgoing signaling of
all malignant B cells is characterized by pattern #1, which
includes the MHC-II, MIF, MHC-I, CD22, CD45 and other
pathways, the outgoing signaling of T cells is characterized by
pattern #2, which represents the ADGRE5, LCK, IFN-II,
VCAM, PECAM1 and other pathways, and the outgoing

FIGURE 4 |Cellular communication in DLBCL. (A,B)Circle diagram showing the number of interactions or strength of interactions between any two groups of cells.
(C,D) Heat map of the cell-cell communication network for incoming or outgoing signaling action analysis. (E) Heat map showing the relative importance of each cell
group based on the four network centrality degrees of the calculated MIF signaling network. (F) Relative contribution of each ligand-receptor pair to the overall
communication network of the MIF signaling pathway.
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FIGURE 5 | Cellular communication patterns in DLBCL. (A) Visualization of outgoing communication patterns of secretory cells by alluvial plots showing the
correspondence between inferred potential patterns and cell populations, as well as signaling pathways. The thickness of the flow indicates the contribution of the cell
population or signaling pathway to each potential pattern. The height of each pattern is proportional to the number of cell populations or signaling pathways associated
with it. Outgoing communication patterns reveal how sending cells coordinate with each other and how they coordinate with certain signaling pathways to drive
communication. (B) Incoming communication patterns of target cells. Incoming communication patterns reveal how target cells coordinate with each other and how they
coordinate with certain signaling pathways in response to incoming signals.
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signaling of DC is characterized by pattern #3, which includes
the APP, BAFF, ICAM and other pathways. On the other
hand, the communication patterns of target cells show that

incoming malignant B cell signaling is dominated by patterns
#1, which includes signaling pathways such as CD22, CD45,
CD70, BAFF, IFN-II, etc. Incoming T cell signaling is

FIGURE 6 | Construction and validation of prognostic model. (A,B) Coefficients of selected characteristics are shown by the lambda parameter, the horizontal axis
represents the value of the independent variable lambda and the vertical axis represents the coefficient of the independent variable; partial likelihood deviation is plotted
against log(λ) using the lasso Cox regression model. (C,E) Survival analysis curves for high and low risk score groups. (D,F) ROC curves of the prognostic model. (G)
Univariate Cox regression analysis of DLBCL risk factors. (H) Multivariate Cox regression analysis of DLBCL risk factors.
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characterized by two patterns #2 and #3, driven by pathways
such as MHC-I, LCK, VCAM, ICAM, etc., while incoming DC
signaling is also characterized by patterns #3. These results
suggest that different cell types in the same tissue have
different signaling networks and the pattern of malignant
B-cell communication is homogeneous.

Construction of a Prognostic Model Based
on Exhausted CD8+ T Cell-Associated
Genes
The CD8+ TEXH subpopulation-related genes obtained from
the differential analysis were extracted for the construction of
the prognostic model. Nineteen genes were obtained by
univariate Cox regression analysis and lasso regression
analysis (Figures 6A,B), and finally six prognosis-related
genes for model construction were obtained using
multivariate Cox regression analysis (GABRA3, HOXC8,
RTN4R,CRLF1, BIRC3, REXO5). Using the regression
coefficients for each of the above 6 prognostic genes, we
constructed a prognostic model for DLBCL patients and
calculated the risk score according to the following
formula: risk score = (2.201 × GABRA3 expression level) +
(−0.719 × HOXC8 expression level) + (−0.765 × RTN4R

expression level) + (0.545 × CRLF1 expression level) +
(−0.013 × BIRC3 expression level) + (−0.226 × REXO5
expression level). Using the median value of the risk score
as the threshold, we divided DLBCL patients into low-risk
and high-risk groups. Survival analysis showed that patients
in the high-risk group had a poorer prognosis (p < 0.001)
(Figure 6C), with an area under the ROC curve of 0.83, 0.80
and 0.80 for 1-year, 3-years and 5-years OS, respectively
(Figure 6D). In the external validation cohort, survival analysis
also showed a poorer prognosis for patients in the high-risk group
(p < 0.001) (Figure 6E), with an area under the ROC curve of 0.71,
0.70 and 0.63 for 1-year, 3-years and 5-years OS, respectively
(Figure 6F). The results of univariate and multivariate Cox
regression analyses indicated that risk score was an independent
prognostic factor (Figures 6G,H).

Gene Set Enrichment Analysis for Different
Risk Groups
We performed gene set enrichment analysis (GSEA) to
identify potential biological processes between high- and
low-risk groups. The results showed that pathways such as
nitrogen metabolism, oxidative phosphorylation, ribosomes,
Alzheimer’s disease, and Parkinson’s disease were enriched in

FIGURE 7 | Gene and enrichment analysis of different risk groups. (A) KEGG-enriched pathway in the high-risk group (p < 0.05 and fdr-adjusted q < 0.05). (B)
KEGG-enriched pathway in the low-risk group (p < 0.05 and fdr-adjusted q < 0.05).
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the high-risk group, and pathways such as extracellular matrix
receptor interactions, focal adhesion, gap linkage, pathways in
cancer, and regulation of the actin cytoskeleton were enriched
in the low-risk group (Figures 7A,B).

Immune Landscape and Response to
Immunotherapy in Different Risk Groups
We used the ESTIMATE algorithm to assess the TME immune and
stromal abundance in the different risk groups, and the results showed
that the high-risk group had higher levels of immune and stromal
component abundance (Supplementary Figures S2A–C). We also
analyzed the proportion of 22 types of immune infiltrating cells
among different risk groups in 481 DLBCL samples using the
CIBERSORT algorithm (Supplementary Figure S2D), and the
results showed that seven types of immune infiltrating cells were
associated with risk scores: resting CD4 memory T cells, activated
CD4 memory T cells, regulatory T cells, γδ T cells, and M0, M1, and

M2macrophages (Figure 8A). Correlation analysis of risk scores with
immune checkpoint genes showed that most of the immune
checkpoint gene expression levels were positively correlated with
risk scores (Figure 8B). In addition, higher risk scores in the
IMvigor210 immunotherapy cohort were associated with anti-PD-
L1 treatment response (Figure 8C).

DISCUSSION

In this study, we combined scRNA-seq and bulk RNA-seq to
investigate the tumor heterogeneity and TME characteristics of
DLBCL.We showed the existence of malignant cell subpopulations
with different transcriptional characteristics in DLBCL samples,
such as a characteristic malignant cell subpopulation with
predominantly cellular proliferation and a malignant cell
subpopulation with predominantly metabolic characteristics.
Roider T et al. investigated intra-tumor heterogeneity in B-NHL

FIGURE 8 |Relationship between risk score and immune landscape. (A)Distribution of 22 immune cell types in high and low risk groups. (B)Correlationmatrix heat
map showing the correlation analysis of risk scores with immune checkpoint genes. (C) Boxplot showing the difference in the distribution of risk scores in different
immunotherapy response groups.
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at the level of drug response by scRNA-seq, with tumor subgroups
in the same lymph node responding significantly differently to
targeted and chemotherapeutic agents (Roider et al., 2020). This
suggests that a rational combination of anticancer drugs is needed
to target all tumor subgroups, especially those with proliferative
and aggressive characteristics, to improve therapeutic response and
avoid the development of tumor drug resistance.

Immunotherapy has become a major hot topic in oncology
treatment research, and inhibitors targeting the PD1-PDL1 axis
have been approved as second- or first-line therapies for an
increasing number of types of malignancies, including
melanoma, lymphoma, lung cancer, renal cell carcinoma, head
and neck squamous cell carcinoma, bladder cancer, liver cancer,
and gastroesophageal cancer. However, great progress has been
made in clinical application, but most patients receiving immune
checkpoint inhibitors (ICIs) have not benefited from them (Gong
et al., 2018). ICIs have shown significant efficacy in relapsed/
refractory classic Hodgkin’s lymphoma (cHL), with an overall
response rate (ORR) of 70–90% and have been approved for this
indication (Ansell et al., 2015; Kasamon et al., 2017; Rossi et al.,
2018). Unfortunately, ICIs are less effective in DLBCL, mainly
due to its high biological heterogeneity. (Armand et al., 2013;
Ansell et al., 2016; Lesokhin et al., 2016; Ansell et al., 2019;
Frigault et al., 2020). By transcriptomic analysis of the
microenvironment of multiple independent cohorts of DLBCL,
Kotlov N et al. characterized four major lymphoma
microenvironment (LME) categories associated with different
biological abnormalities and clinical behaviors, namely GC-
like, mesenchymal, inflammatory (IN), and depleted (DP)
(Kotlov et al., 2021). Analysis of the correlation between LME
category and response to chemoimmunotherapy showed that the
number of responders was highest in GC-like patients and lowest
in DP-LME patients. IN-LME is enriched in CD8+ T cells and a
subpopulation of CD8+ T cells with high PD-1 expression and
high expression of the immune checkpoint molecule PD-L1 and
the tryptophanolytic enzyme IDO1, suggesting that this LME class
may benefit from ICIs treatment. Steen CB et al. characterized
clinically relevant DLBCL cell states and ecosystems with EcoTyper
(a machine-learning framework integrating transcriptome
deconvolution and single-cell RNA sequencing), identified 5 cell
states ofmalignant B cells with different prognostic associations and
differentiation status, and revealed nine multicellular ecosystems in
DLBCL, known as lymphoma ecotypes (LE) (Steen et al., 2021).
They found T-cell transcriptomic heterogeneity in DLBCL and that
tumors high in LE4 are characterized by an immunoreactive T-cell
state with widespread expression of co-inhibitory and stimulatory
molecules, with potential implications for immunotherapeutic
targeting. These studies suggest that exploring the heterogeneity
of the DLBCL tumormicroenvironment may better stratify patients
to improve the efficacy of ICIs. Here, we identified seven different
T cell subsets, CD4−CD8−Navie T, CD4+ TH, CD8

+ TTOX, CD4
+

TREG, CD8+Navie T, TPRO, and CD8+ TEXH. we found a
significantly higher proportion of CD4+ TREG cells in DLBCL
samples compared to reactive lymph node tissue. Recently,
several studies have found that CD4+FOXP3+ T cells can be
divided into three subpopulations: 1) effector Tregs (eTregs),
which have a strong suppressive function; 2) naive Tregs, which

have the potential to differentiate into eTregs upon antigen
stimulation; and 3) non-Tregs, which are a non-suppressive
subpopulation (Nishikawa and Sakaguchi 2014). Studies have
shown that high infiltration of FOXP3+ Tregs cells in DLBCL is
associated with better prognosis, but these studies have targeted the
entire FOXP3 population rather than the true Tregs cells (eTregs)
that are essential for the impact of tumor immunity (Lee et al., 2008;
Serag El-Dien et al., 2017). Nakayama S et al. found that high
infiltration of FOXP3/CTLA-4 double-positive cells as eTregs was
associated with a poorer prognosis (Nakayama et al., 2017). Recent
animal studies with anti-CTLA-4 mAb using mice lacking
antibody-dependent cytotoxic activity (by modulation of the Fc
fraction or Fc receptor knockdown) showed that the anti-CTLA-4
mAb antitumor activity was attributed to depletion of
FOXP3+CD4+ Treg cells from tumor tissue rather than direct
activation of effector T cells (Bulliard et al., 2013; Selby et al.,
2013; Simpson et al., 2013). Indeed, the reduction of FOXP3+CD4+

Treg cells in tumor tissue after anti-CTLA-4 mAb (Ipilimumab)
treatment was strongly associated with clinical benefit (Hodi et al.,
2008; Liakou et al., 2008). Furthermore, the critical role of CTLA-4
on FOXP3+CD4+ Treg cell function was revealed in animal studies,
which showed that specific deletion of CTLA-4 in FOXP3+CD4+

Treg cells impairs their suppressive function and thus enhances
antitumor immunity (Wing et al., 2008; Ise et al., 2010). Our single-
cell analysis showed that the CD4+ TREG subpopulation (highly
expressing FOXP3 and CTLA-4) in DLBCL showed highly
immunosuppressive properties, attributed to the eTregs,
suggesting that immunotherapy against eTregs could be an
effective and novel treatment strategy for DLBCL patients with
highly infiltrated FOXP3/CTLA-4 double-positive cells.

In addition to the classical immune checkpoint molecules PD-1
and CTLA-4, T cell immunoglobulin mucin receptor 3 (TIM3, or
HAVCR2) and LAG-3 are also included in the field of tumor
immunotherapy research. TIM-3 is a type I transmembrane
protein that is expressed on T cells in a number of malignancies,
including melanoma, lung cancer, hepatocellular carcinoma, and
colon cancer. In these tumors, TIM-3 expression is usually
associated with dysfunctional T cells and poorer prognosis in
some tumor types (Anderson 2014). In hematologic malignancies,
TIM-3 expression has been observed in adult T-cell leukemia/
lymphoma and extranodal NK/T-cell lymphoma (Horlad et al.,
2016; Feng et al., 2018). In addition, TIM-3 expression levels in
DLBCL patients have been found to correlate with tumor stage and
response to chemotherapy (Xiao et al., 2014; Zhang et al., 2015).
LAG-3 is a member of the immunoglobulin superfamily and
functions as a negative regulator of T cell homeostasis. LAG-3 has
been shown to be expressed in tumor-infiltrating lymphocytes in a
variety of tumor types, including breast, ovarian, and lung cancers,
and is commonly associated with increased numbers of PD-1+ T cells
(Matsuzaki et al., 2010; Burugu et al., 2017; He et al., 2017). In
follicular lymphoma, high expression of LAG-3 is associated with
poorer patient prognosis and T-cell failure (Yang et al., 2017). Here,
we characterized a population of CD8+T cells with high expression of
LAG-3, TIM-3, TIGHT, i.e. exhausted cytotoxic CD8+ T cells, which
showed a molecular profile dominated by interferon response and
retained the expression of GZMA, GZMB and NKG7. Furthermore,
by SCENIC analysis, we revealed potential transcription factors, such
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as STAT1 and IRF7, in the CD8+ TEXH cell subpopulation. Beltra JC
et al. showed that in exhausted CD8+ T cells are enriched with open
chromatin regions that bind to STAT1 and IRF7 (Beltra et al., 2020),
which is consistent with our findings.

We constructed prognostic models based on differential
genes associated with CD8+ TEXH subpopulations obtained
from previous differential gene expression analysis, and the
efficacy of the prognostic models in predicting survival, and
response to immunotherapy was validated by internal or
external validation cohorts. This prognostic model could
identify high-risk DLBCL patients and helped clinicians
make better clinical decisions.

In conclusion, this study provides an in-depth dissection of the
transcriptional features of malignant B cells and TME in DLBCL
and provides new insights into the tumor heterogeneity of DLBCL.
The data from our study can serve as a resource for subsequent in-
depth studies to provide therapeutic targets and biomarkers for
immunotherapy in DLBCL through deeper biological exploration.
In addition, the prognostic model we developed can well predict
the prognostic status and immunotherapeutic response of DLBCL
patients with promising clinical applications.
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