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Abstract
The adverse impact of antibiotics on the gut microbiota has attracted extensive interest, par-

ticularly due to the development of microbiome research techniques in recent years. How-

ever, a direct comparison of the dynamic effects of various types of antibiotics using the

same animal model has not been available. In the present study, we selected six antibiotics

from four categories with the broadest clinical usage, namely, β-lactams (Ceftriaxone Sodi-

um, Cefoperazone/Sulbactam and meropenem), quinolones (ofloxacin), glycopeptides

(vancomycin), and macrolides (azithromycin), to treat BALB/c mice. Stool samples were

collected during and after the administration of antibiotics, and microbial diversity was ana-

lyzed through Illumina sequencing and bioinformatics analyses using QIIME. Both α and β

diversity analyses showed that ceftriaxone sodium, cefoperazone/sulbactam, meropenem

and vancomycin changed the gut microbiota dramatically by the second day of antibiotic ad-

ministration whereas the influence of ofloxacin was trivial. Azithromycin clearly changed the

gut microbiota but much less than vancomycin and the β-lactams. In general, the communi-

ty changes induced by the three β-lactam antibiotics showed consistency in inhibiting

Papillibacter, Prevotella and Alistipes while inducing massive growth of Clostridium. The

low diversity and high Clostridium level might be an important cause of Clostridium difficile
infection after usage of β-lactams. Vancomycin was unique in that it inhibited Firmicutes,

mainly the genus Clostridium. On the other hand, it induced the growth of Escherichia and
effect lasted for months afterward. Azithromycin and meropenem induced the growth of En-
terococcus. These findings will be useful for understanding the potential adverse effects of

antibiotics on the gut microbiome and ensuring their better usage.
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Introduction
Hippocrates has been quoted as saying “death sits in the bowels” and “bad digestion is the root
of all evil” in 400 B.C. [1, 2], showing that the importance of the intestine in human health has
been long recognized. Gastrointestinal tract (GIT) is one of the largest interfaces between the
outside world and the human internal environment. From mouth to anus, it forms a nine-
meter long tube, constituting the body’s second largest surface area, which is estimated to cover
approximately 250–400 m2 [1]. The microbiota of the GIT represents an ecosystem of the high-
est complexity. Human gutmicrobiota is believed to be composed of over 50 genera of bacteria
[3] accounting for over 500 different species [4]. An adult human GIT is estimated to contain
1014 viable microorganisms, which is 10 times the number of eukaryotic cells found within the
human body [5]. The GIT microbiota is involved in the stimulation of the immune system,
synthesis of vitamins (B group and K), enhancement of GIT motility and function, digestion
and nutrient absorption, inhibition of pathogens, metabolism of plant compounds/drugs and
production of short-chain fatty acids (SCFAs) and polyamines [6–8].

Bowel toxemia theories eventually evolved into the intestinal dysbiosis hypothesis. The term
“dysbiosis” was originally coined by Metchnikoff to describe altered pathogenic bacteria in the
gut [8]. Dysbiosis is a state in which the microbial community in the gut produces harm
through qualitative and quantitative changes in the intestinal microbiota, bacterial metabolic
activity and the local distribution of bacteria [9]. The dysbiosis hypothesis states that the mod-
ern diet and lifestyle, as well as the use of antibiotics, have led to the disruption of the normal
intestinal microbiota. These factors have led to alterations in bacterial metabolism, as well as
the overgrowth of pathogenic microorganisms, which results in the release of potentially toxic
compounds that play a role in many chronic and degenerative diseases. An altered intestinal
microbiota is now believed to play a role in a myriad of disease conditions, including GIT dis-
orders such as irritable bowel syndrome (IBS) [10] and inflammatory bowel disease (IBD) [11,
12], as well as more systemic conditions such as rheumatoid arthritis (RA) [13] and ankylosing
spondylitis [14]. Thus, knowledge of the factors that can cause detrimental changes to the
microbiota is becoming increasingly important to the clinician.

Antibiotic use is one of the common and significant cause of major alterations in normal
GIT microbiota [1]. It is known that antimicrobial agents not only affect the pathogens to
which they are directed but may also impact other members of the intestinal microbiota [15].
The potential for an antimicrobial agent to influence the gut microbiota is related to its spec-
trum of activity [16], pharmacokinetics, dosage [17], mode of action [18] and length of admin-
istration [19].

The major advantages of using next-generation sequencing (NGS) to determine 16S rRNA
tags compared to traditional microbial community profiling methods are that it is cost-effective
and high throughput [20]. We could obtain the desired microbial community data with NGS,
which provides a sufficient tool to study microbial ecology [20].

There is much research regarding the extent of gut microbiome disturbances after antibiotic
therapy. The amount of disturbance depends on the spectrum of the agent, the dose, the route
of administration, and the pharmacokinetic and pharmacodynamic properties. However, there
are very few reports on the effects of different categories of antibiotics on the gut microbiota. In
the present work, we studied the extent of the gut microbiome disturbance with different cate-
gories of antibiotics in a follow-up study comparing microbial communities before, during and
after antibiotic therapy in mice. We also studied the influence of these various categories of
anti-microbial agents on the recovery time of the gut microbiome after antibiotic therapy.
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Methodology

Ethical Statement
All animal studies were conducted after ethical approval from the Institutional Animal Ethics
Committee (IAEC), Southern Medical University, Guangzhou.

Experimental animals
A total of 56 male BALB/c mice were used in this study. They were divided into 6 groups ran-
domly (8 mice per group) with consistent average weights. After pre-feeding for a week, the
groups of mice were treated short-term with one of the following for 4 days: Ceftriaxone sodi-
um (CTR), cefoperazone/sulbactam (CPZ), meropenem (MEC), ofloxacin hydrochloride
(OFL), vancomycin (VAN), azithromycin (AZI) or a no antibiotic treatment control (CK). The
first three antibiotics, CTR, CPZ and MEC, belong to the ß-lactam group, OFL belongs to the
quinolones, AZI belongs to the macrolides and VAN belongs to the glycopeptides. For each of
the antibiotics, the dosage was calculated based on the human dosage. The dosages (mg/20 gm
body weight) given through subcutaneous injection on each day for four days were as follows:
CTR- 4.325, CPZ-5.767, MEC-4.325, OFL-1.153, VAN-5.676 and AZI-1.442.

Sample collection
Fresh fecal samples were collected directly into sterile 2 ml tubes from the anus of healthy adult
male BALB/c mice without antibiotic treatment and immediately stored at -80°C until DNA ex-
traction. For experimental animals, stool samples were collected before (I.1, I.2, I.3), during (II.1,
II.2, II.3, II.4) and after (III.1, III.2, III.3, III.4, III.5, III.6, III.7, III.14, III.30, III.90) the adminis-
tration of antibiotics. All samples were immediately stored at -80°C until DNA extraction.

DNA extraction and PCR amplification
DNA extraction and PCR amplification were performed as described in our previous study
[19]. DNA extraction was carried out by a boiling method, which is cost-effective and time
saving.

Processing of sequences and bioinformatics analysis
We used the BIPES pipeline to process raw sequences, and UCHIME [21] was used to screen
chimeras. After that, we used a Two-Stage-Clustering (TSC) [22] algorithm to cluster tags into
operational taxonomic units (OTUs); the taxonomy assignment of tags and OTUs was per-
formed using the Global Alignment for Sequence Taxonomy (GAST) [23]. The rarefaction
curves of observed species, the Shannon index and PCoA analysis were implemented using
QIIME based on UniFrac distance [24]. Biomarkers between groups were determined by linear
discriminant analysis (LDA) coupled with the effect size measurements (LEfSe) online tool
http://huttenhower.sph.harvard.edu/galaxy/. Statistical analysis was performed using SPSS
13.0.

Results and Discussion

Antibiotic influence on alpha diversity
Alpha diversity is the diversity of the community within one site (or one sample), that is the
number of species and their proportion within one sampling site. We utilized observed OTU and
the Shannon index to compare the alpha diversity of different antibiotic groups. Observed OTU
is the number of OTUs that are observed in a sample and it is a richness metrics. Shannon index
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is determined more by the evenness of the microbiota. The observed OTU and Shannon index in
the control (CK) group showed no changes during the complete observation period except at
point III.90(one-way ANOVA, P>0.05). We speculate that the change in alpha diversity on the
90th day after drug withdrawal is a natural change, not the result of subcutaneous injection. In
the CTR, CPZ, MEC and VAN groups, the observed OTU and Shannon index (Fig 1) clearly de-
clined from the second day after drug delivery, which was significantly different compared to the
control group (one-way ANOVA, P<0.05). These results are in accordance with the results of
Knecht et al. [25], who observed that antibiotic therapy led to decreased alpha diversity that was
not responsible for C. difficile colonization. In the OFL and AZI groups, the alpha diversity did
not significantly differ from the control group. During the recovery period, we did not see an im-
mediate return to normal microbiota for any antibiotic group. In the CTR, CPZ, MEC and VAN
groups, the Shannon index and observed OTU returned to normal on the 14th and 90th days, re-
spectively, after drug withdrawal, whereas the OFL and AZI groups returned to normal on the
4thday after drug withdrawal, suggesting a decreased dysbiosis effect. There has been extensive
research carried out by many groups [26–32] on the dysbiosis effect of short-term and long-term
antibiotic therapy, but fewer studies have focused on the recovery time of the gut microbiome
after antibiotic therapy. We observed that the dysbiosis and recovery progress of alpha diversity
in the CTR, CPZ, MEC and VAN groups were similar (one-way ANOVA, P>0.05), while OFL
was similar with that of the AZI group. This may be because the former four antibiotics have a
similar mode of action on the bacterial cell wall.

Influence of antibiotics on beta diversity
Beta diversity means the dissimilarity between communities of two sites (or two samples). The
higher beta diversity means the two communities are more dissimilar. In the CTR, CPZ, VAN
and MEC groups, the intestinal microbiota changed significantly from the second day after
drug delivery and returned to normal very slowly. The unweighted UniFrac of intestinal micro-
biota in the CTR, CPZ and MEC groups changed more obviously than in the control (CK)
group because the antibiotics affected mostly the OTU with low abundance. UniFrac is used to
determine whether communities are significantly different, to compare many communities si-
multaneously using clustering and ordination techniques. The weighted and unweighted Uni-
Frac results (S1 and S2 Figs) were similar in both the OFL and AZI groups, which were highly
similar to those of the CK group during the whole observation period. The weighted UniFrac
result changed more obviously than the unweighted UniFrac result in the VAN group, which
indicated that the VAN group mostly affected OTU with high abundance.

Then, we merged the data of each group at the same time point (S3 Fig), and we could see
that CTR, VAN, CPZ and MEC have the strongest influence on intestinal microbiota, while
OFL had the weakest influence, resembling the control group. It is worth noting that the

Fig 1. α-diversity indices for different antibiotic groups from the fecal microbiota. A. Chao1 index; B.
Shannon index.

doi:10.1371/journal.pone.0126712.g001
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intestinal microbiota of the AZI group did not change significantly during the drug delivery pe-
riod and reached a change maximum after drug withdrawal. This indicates a delayed influence
of AZI on the intestinal microbiota.

We additionally studied the PCoA of UniFrac distance among different antibiotic groups
(Fig 2). We regard the position of drug delivery as the starting point and the end of the observa-
tion period as the terminal point. Each point represents a whole bacterial community, and
the points far from each other represent lower similarity between the two communities. The
weighted and unweighted UniFrac results of the OFL group did not indicate any changes,
which is consistent with the UniFrac results that were affected by time. The influence of AZI
was mild and was similar to the control group. The weighted UniFrac results clearly showed
that the trajectories of the CTR, CPZ and MEC groups were similar, while the VAN group
changed in accordance with the weighted UniFrac results of the VAN group (S2 Fig).

Impact of different antibiotics on the gut microbial community structure
After Illumina sequencing of the16srRNA and standardizing the sequences obtained, we de-
tected 28 phyla. More than 98.2% of the sequences belonged to Firmicutes, Bacteroidetes,
Proteobacteria and Actinobacteria (Fig 3). At the early stage of the drug delivery period, Firmi-
cutes was the largest phyla among the control and antibiotic groups. The control group was sta-
ble during the whole observation period. β-lactam antibiotics interfere with cell wall synthesis
by binding to penicillin-binding proteins located in bacterial cell walls, which leads to suppres-
sion of peptidoglycan synthesis and finally to cell death [33]. During the whole drug delivery
period, we observed Firmicutes increased and Bacteroidetes and Proteobacteria decreased in
CTR and MEC (β-lactam group), with a return to normal after drug withdrawal. However, in
CPZ, Firmicutes decreased and Proteobacteria increased during the drug delivery period, and
Firmicutes increased early and decreased later after drug withdrawal. Previous studies by Hen-
rik et al. [25, 31] and Panda et al. [32] showed results similar to the CPZ group, whereas the
CTR and MEC results were not in agreement with their results. Quinolones inhibit bacterial
DNA gyrase and topoisomerase IV in gram-negative and gram-positive groups, respectively

Fig 2. Principal coordinates analysis of unweighted and weighted UniFrac distances among different antibiotic groups. The starting points of the
arrow lines are from the second day of antibiotic administration, and the arrow point is the end of observation period.

doi:10.1371/journal.pone.0126712.g002
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[34]. In the OFL group, Firmicutes, Bacteroidetes and Actinobacteria did not change through-
out the observation period, whereas Proteobacteria decreased after drug delivery and remained
low until the end of observation. Similar results were obtained by Panda et al. [32] after quino-
lone treatment in the human gut. In the VAN group, Firmicutes decreased from the second
day after drug delivery, and Proteobacteria was the dominant phylum until drug withdrawal.
During the recovery period, Bacteroidetes first rose and then returned to normal. A previous
study by Anne et al. [35] showed similar results in vancomycin-treated gut microbiota. Vanco-
mycin has a unique mode of action, including inhibiting the second stage of cell wall synthesis
of susceptible bacteria, altering the permeability of the cell membrane and selectively inhibiting

Fig 3. Microbial composition at the phylum level of distribution for different antibiotic groups. A.CK; B.
CTR; C. OFL; D. CPZ; E. VAN; F. MEC; G AZI.I is sampling time before antibiotic treatment (I.1, I.2, I.3), II is
the sampling during antibiotic administration (II.1, II.2, II.3, II.4), and III is after the antibiotic therapy (III.1, III.2,
III.3, III.4, III.5, III.6, III.7, III.14, III.30, III.90). Here, 1, 2, 3, 4 and so on were sampling days.

doi:10.1371/journal.pone.0126712.g003
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ribonucleic acid synthesis [36]. The change in the AZI group is not significant. Macrolides in-
hibit protein synthesis in the bacterial cell by preventing peptidyl transferase activity, as well as
by inhibiting ribosomal translocation [37].

For the genus level comparison, we analyzed the top ten most abundant species. Lactobacil-
lus, Bacteroides, Papillibacter, Sporobacter, Eggerthella were the dominant genera in most sam-
ples (Fig 4, S1 Table). Different antibiotic groups changed the gut microbiota in different ways.
Clostridium rose soon after drug delivery in the CTR and MEC groups, while in the CPZ
group, it reached a maximum level after drug withdrawal. Papillibacter and Sporobacter de-
creased in the CTR, MEC and CPZ groups. After drug withdrawal, Clostridium and Lactobacil-
lus decreased and Bacteroides increased in the CTR group. In the CPZ group, Lactobacillus
increased significantly and Clostridium rose and reached a maximum level after drug with-
drawal, which was a delayed effect. There were no significant changes in the OFL group. In the
VAN group, there was an increase in Escherichia from the second day after drug delivery until
the end of the observation period. Bacteroides and Parabacteroides almost disappeared during
VAN administration. Lactobacillus and Eggerthella decreased from the second day of drug de-
livery and continued decreasing until the 14th day after drug withdrawal. This specific phenom-
enon was caused by VAN’s unique antibacterial spectrum and mechanism. Further studies are
needed to determine whether VAN has a long-term impact on the intestinal microbiota in
mice. Bacteroides (Bacteroidetes) and Escherichia (Proteobacteria) increased only in the VAN
group during the drug delivery period, possibly because vancomycin eradicated most of the
gram-positive bacilli.AZI had a slight impact on the intestinal microbiota, in which Lactobacil-
lus and Papillibacter decreased after drug delivery while Enterococcus significantly increased
until the second week after drug withdrawal. Increases in Enterococcuscan lead to urinary tract
infections, endocarditis and meningitis [38, 39] in humans.

We used LEfSe to search the biomarkers of the metagenome using LDA analysis of nonpara-
metric rank and inspection through the analysis of high-throughput sequencing data, provid-
ing biomarkers at different levels. We compared the changes in antibiotic groups with the
control (CK) group during the drug delivery period (Fig 5). In all the antibiotic groups, there
was a decline in Bacteroidetes, Prevotella, Parabacteriodes and Porphyromonadaceae. However,
there was a proliferation of Gammaproteobacteria, mainly Enterobacteriaceae, Pseudomona-
dales, Acinetobacter andMoraxellaceae, except in the OFL group. The OFL group did not show
any changes in gram-positive bacteria. Other than the VAN group, there were decreases in
Desulfovibrionaceae, whereas Escherichia was increased only in the VAN group. Treatment
with the three antibiotics belonging to the β-lactam category resulted in increased Bacillus and
Bacteroides. These parallel shifts in the microbial community among different antibiotics were
small. The OFL group had a very small effect on the mouse gut bacterial community structure.
In this group, there was mainly decrease in Beta and Deltaproteobacteria. There were massive
variations in bacterial communities among the different antibiotics. To further understand the
effect of different antibiotics in the same category, we performed LEfSe (Fig 6) analyses for the
β-lactam group. The bactericidal spectrum of CPZ is wider than CTR and MEC. In the CTR
and MEC groups, Firmicutes was dominant, whereas in the CPZ group, Bacteroidetes, Actino-
bacteria and Proteobacteria were dominant. From this, we can conclude that antibiotics be-
longing to same category have distinct dysbiosis effects on the mouse gut microflora. It is well
known that the gut microbiome of mouse model is different with that of human beings [40],
which could be a limitation for extrapolating our results of the changes about specific genera or
species. However, the general patterns, such as changes at high taxonomic levels and extend of
alpha diversity, could be useful for future studies on the effect of antibiotics on gut microbiome
of human and other animals.
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Conclusion
Changes in the gut microbial community structure and recovery time were distinct for different
antibiotics, providing potential clues to aid in the clinical selection of antibiotics. To the best of
our knowledge, this is the first comparative study focusing on the dysbiosis effect of different
categories of antibiotics on the mouse gut microbiota and the associated recovery time. There
is lot to explore in this field; we believe our findings will provide a baseline to carry out similar
studies in humans.

Fig 4. Microbial structure at the genus level for different antibiotic groups. A. CK; B. CTR; C. OFL; D.
CPZ; E. VAN;F. MEC; G. AZI.

doi:10.1371/journal.pone.0126712.g004
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Fig 5. LEfSe comparison chart of control and antibiotic groups during antibiotic administration. A. VAN, B. OFL, C. CTR, D. CPZ, E. MEC and F. AZI.

doi:10.1371/journal.pone.0126712.g005
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Supporting Information
S1 Fig. PCoA of unweighted UniFrac distances among different antibiotic groups influ-
enced by time factor. A1.CTR; A2.OFL; A3.CPZ; A4.VAN; A5.MEC;A6. AZI.
(TIF)

S2 Fig. PCoA of weighted UniFrac distances among different antibiotic groups influenced
by time factor. B1.CTR; B2.OFL; B3.CPZ; B4.VAN; B5.MEC;B6. AZI.
(TIF)

S3 Fig. Principal coordinates analysis of unweighted (A) and weighted UniFrac (B) dis-
tances among different antibiotic groups influenced by time factor.
(TIF)

S1 Table. Significant differences in genus among antibiotic groups during antibiotic ad-
ministration. S1 Table shows that Bacteroides (Bacteroidetes)and Escherichia (Proteobacteria)
increased only in the VAN group during the drug delivery period. The reason may be that van-
comycin killed most gram-positive bacilli. The influence of OFL was slight, and Bacteroides de-
creased only during the mid-drug administration period. AZI mainly eliminated Bacteroidetes,
and it induced the enrichment of the OTUs with low abundance.
(DOCX)
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