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Abstract: The effects of zinc oxide nanoparticles (ZnONPs) on the properties of rice starch–gelatin
(RS–G) films were investigated. ZnONPs were synthesized by a green method utilizing Asiatic
pennywort (Centella asiatica L.) extract. The ZnONPs were rod-shaped, with sizes ranging from
100–300 nm. An increase in the concentration of ZnONPs significantly (p < 0.05) increased the thick-
ness (0.050–0.070 mm), tensile strength (3.49–4.63 MPa), water vapor permeability
(5.52–7.45 × 10−11 g m/m2 s Pa), and thermal stability of the RS–G–ZnONPs nanocomposite films.
On the other hand, elongation at break (92.20–37.68%) and film solubility (67.84–30.36%) were signifi-
cantly lower (p < 0.05) than that of the control RS–G film (0% ZnONPs). Moreover, the addition of
ZnONPs strongly affected the film appearance, color, transmission, and transparency. The ZnONPs
had a profound effect on the UV-light barrier improvement of the RS–G film. The crystalline structure
of the ZnONPs was observed in the fabricated nanocomposite films using X-ray diffraction analysis.
Furthermore, the RS–G–ZnONPs nanocomposite films exhibited strong antimicrobial activity against
all tested bacterial strains (Staphylococcus aureus TISTR 746, Bacillus cereus TISTR 687, Escherichia coli
TISTR 527, Salmonella Typhimurium TISTR 1470) and antifungal activity toward Aspergillus niger.
According to these findings, RS–G–ZnONPs nanocomposite film possesses a potential application as
an active packaging: antimicrobial or UV protective.

Keywords: active film; Centella asiatica L. extract; nanocomposite; rice starch; uv barrier; zinc
oxide nanoparticles

1. Introduction

Recently, there has been an increased interest in developing biodegradable films
owing to the environmental and marine life impacts. It has been reported that about 30%
of all used packaging has not been appropriately discarded, causing the accumulation of
packaging waste in the world’s lands and oceans [1]. Therefore, films derived from eco-
friendly materials have gained attention in recent years as they have the potential to reduce
or replace petroleum-based packaging. These natural polymers, such as polysaccharides
(chitosan, carrageenan, cellulose, and starch), proteins (gelatin, soy protein, zein, and whey
protein), and lipids (beeswax and fatty acids), are the potential raw materials used to
produce biodegradable packaging films.
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Rice starch is a polysaccharide extensively produced worldwide [2]. Approximately
90% (in dry weight) of the rice grain is its starch, while 6.5% and 0.8% are proteins and lipids,
respectively [3]. Its renewability, biocompatibility, safety, and low cost make rice starch
a potential raw material for producing polysaccharide-based packaging film. However,
ricestarch-based films are rigid, exhibiting poor mechanical [4] and water barrier properties.
In addition, the hydrophilicity and retrogradation mechanism in the rice-starch-based
films, which decreases moisture permeability, results in inferior mechanical properties [5].
Incorporating other excellent film-forming biomaterials such as gelatin into the starch-based
films enhanced the appearance and mechanical properties of the films [6–8].

Zinc oxide nanoparticles (ZnONPs) have attracted attention as reinforcing fillers in
bio-nanocomposite materials for food applications as they are generally recognized as safe
(GRAS) [9,10]. It also possesses excellent thermo-mechanical, outstanding UV barrier, and
antimicrobial properties [11,12]. Generally, ZnONPs can be synthesized using physical,
chemical, and biological (green) methods [13]. However, these days the green biosynthesis
method, using plants, fungus, bacteria, and algae, has been extensively implemented to
synthesize ZnONPs [14–16]. The application of the green methods is safe, simple, cost-
effective, and environmentally friendly compared to the chemical and physical counterparts.
The ZnONPs have been applied as a coating and reinforcing filler on variously based
biopolymers such as polylactic acid (PLA) [17], chitosan-carboxymethyl cellulose [18],
gelatin [19], and gelatin/cellulose nanofiber [20]. However, to the best of our knowledge,
the information regarding the effect of the green synthesized ZnONPs on the properties of
rice starch–gelatin bio-composite films remains scarce.

In this study, the ZnONPs were biosynthesized using Asiatic pennywort (Centella asiatica L.)
extract. The Asiatic pennywort, a medicinal plant of the Apiaceae family, contains the
main phytochemicals (i.e., tannins, flavonoids, glycosides, saponins, alkaloids, phenols,
and terpenoids) that showed good antioxidant and antimicrobial activities [21]. The extract
of Asiatic pennywort was used as reducing and capping (stabilizing) agents for ZnONPs
biosynthesis [22,23]. The effects of green synthesized ZnONPs on the physicochemical, me-
chanical, barrier, thermal, and antimicrobial properties of the rice starch–gelatin-ZnONPs
(RS–G–ZnONPs) nanocomposite films were subsequently investigated.

2. Materials and Methods
2.1. Materials and Microbials

Asiatic pennywort (Centella asiatica L.) leaves were obtained from a local market in
Chiang Rai, Thailand. Rice starch was purchased from Cho Heng Rice Co., Ltd., Bangkok,
Thailand. The commercial gelatin and zinc acetate dihydrate were purchased from Ajax
Finechem (New South Wales, Australia). All other reagents used were of analytical grade.

Staphylococcus aureus TISTR 746, Bacillus cereus TISTR 687, Escherichia coli TISTR 527,
Salmonella Typhimurium TISTR 1470, Aspergillus niger, and Colletotrichum alatae were ob-
tained from the Biological Laboratory, Scientific and Technological Instruments Center, Mae
Fah Luang University, Chiang Rai, Thailand.

2.2. Preparation of Asiatic Pennywort Extract and ZnONPs

Fresh leaves of Asiatic pennywort were washed in running tap water, followed by
being dried at 50 ◦C overnight and ground into powder. The powder was passed through
a sieve of 250 µm (60 mesh) to remove larger particles. In preparation of the Asiatic
pennywort extract, 1 g of dried Asiatic pennywort leaf powder was mixed with 100 mL
of distilled water. The mixture was incubated at 60 ◦C for 20 min, cooled down to room
temperature, filtered through Whatman No.1 filter paper. The collected Asiatic pennywort
extract was stored at 4 ◦C for further experiments.

A total of 50 milliliters of 1 M Zinc acetate were mixed with 50 mL of 2 M NaOH to
synthesize ZnONPs. Then, 1 mL of Asiatic pennywort extract was added to the mixture
and stirred continuously at room temperature for 2 h. After centrifugation at 10,000 rpm
for 5 min, the pellet was washed with distilled water 3 times and then dried at 60 ◦C
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overnight [24]. Finally, the shape and size of the ZnONPs were evaluated using transmis-
sion electron microscopy (TEM) (Tecnai 12, Philips, Amsterdam, The Netherlands).

2.3. Preparation of Rice Starch–Gelatin Films Incorporated with ZnONPs

To prepare a ZnONP solution, ZnONPs at different concentrations (0, 0.5, 1, 2, and
3%, w/v) were mixed with distilled water. The designated concentration of ZnONPs was
pre-determined based on the inhibition zone and minimum inhibitory concentration (MIC)
via the disc diffusion method (data not included). The MIC of some microorganisms (i.e.,
E. coli, and S. aureus) agreed with the work of Naseer et al. [25] The mixture was stirred
at 60 ◦C for 1 h and sonicated in an ultrasonic bath (Sonorex digitec, DT255H, Bandeline
electronic, Berlin, Germany) for another 30 min to obtain a homogeneous mixture [26].
Then, rice starch–gelatin (RS–G) powder (3:1 ratio, w/w) and glycerol (30%, w/w with
respect to the rice starch–gelatin content) were added to the ZnONP solution. The bio-
nanocomposite film-forming solution (FFS) was heated and stirred continuously at 85 ◦C
for 1 h, then cooled to 40 ◦C. The obtained FFS (4 ± 0.01 g) was then cast onto a rimmed
silicone resin plate (50 mm × 50 mm) and left at room temperature for 24 h to evaporate
the water content. The prepared nanocomposite films were dried in a dry cabinet (AH-80,
Patron, San Francisco, CA, USA) at 25 ± 0.5 ◦C and 50 ± 5% relative humidity (RH) for 24 h.
The control film was prepared by the same casting procedure but without any ZnONPs.

2.4. Film Properties Determinations

The bio-nanocomposite films were conditioned at 25 ± 0.5 ◦C and 50 ± 5% RH
for 48 h before film characterization. For scanning electron microscopy (SEM), X-ray
diffraction spectroscopy (XRD), Fourier transform infrared spectrometry (FT-IR), and
thermo-gravimetric analysis (TGA), the films were dried in a desiccator containing dried
silica gel at room temperature for two weeks to remove the excess water.

2.4.1. Film Thickness

A digital thickness gauge (Mitutoyo, Tokyo, Japan) was used to determine film thick-
ness. Six random locations were measured on each film sample. Five film specimens were
used for each treatment.

2.4.2. Mechanical Properties

Tensile strength (TS) and elongation at break (EAB) were analyzed using a Universal
Testing Machine (Lloyd Instrument). The films were cut into the 20 mm × 50 mm specimens.
The initial grip length was 30 mm, and the cross-head speed was 30 mm/min. Ten film
specimens were tested for each film treatment.

2.4.3. Film Appearance, Color, Optical Properties, and Morphology

The appearance of all film treatments was examined by using a digital camera (Fu-
jifilm Finepix S4900, Fujifilm Thailand Co., Ltd., Bangkok, Thailand). A Color Quest XE
(Hunter Lab) was used to assess the L* (lightness), a* (redness/greenness), and b* (yellow-
ness/blueness) values of the prepared films. Color determination was conducted on five
films per treatment. The total color difference (∆E*) was calculated as follows Equation (1):

∆E* = [(∆L*)2 + (∆a*)2 + (∆b*)2]0.5 (1)

where ∆L*, ∆a*, and ∆b* are the differences in color value between e standard color plate
and the film samples.

A UV-Vis spectrophotometer (Libra S22; Biochrom Ltd., Cambridge, UK) was used
to evaluate light transmission in UV and visible range (200–800 nm) [27]. First, a film
sample (40 mm × 40 mm) was placed into the spectrophotometer cell, and the transmission
value was recorded at a wavelength of 600 nm. The transparency values of films were then
calculated using the following Equation (2) [28]:

Transparency = log T600/x (2)
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where T600 and x are the transmittance (%) at 600 nm and film thickness (mm), respectively.
Film morphology was analyzed by SEM (LE01450VP). The tests were carried out at

magnifications of 5000× (surface) and 2000× (cross-section) with an acceleration voltage
of 10 kV.

2.4.4. Moisture Content and Film Solubility

Moisture content was examined following the Association of Official Analytical
Chemists standard methods [29]. A film sample (20 mm × 20 mm) was dried at 105 ◦C for
24 h and then weighed. Each treatment was performed in triplicates.

The film solubility test was conducted in triplicates for each treatment according to the
method described in [27]. Film solubility was calculated as the weight difference between
the initial dry matter and the dried undissolved debris. The film solubility was expressed
as a percentage of the total weight.

2.4.5. Water Vapor Permeability

Water vapor permeability (WVP) measurement was conducted in accordance with a
modified ASTM method [30]. A film sample was sealed into a WVP cup containing silica
gel (0% RH). The cup was placed in a dry cabinet (AH-80, Patron) at 25 ◦C and 50% RH.
Each cup was weighed every hour for 8 h. The WVP of the film was expressed as g m/m2 s
Pa. The WVP test was carried out in triplicates for each film treatment.

2.4.6. FT-IR Spectroscopy Analysis

An FT-IR Spectrum GX (PerkinElmer, Waltham, MA, USA) was used to analyze the
FT-IR spectra of the films. Each film treatment was examined in triplicates at 25 ◦C using
the spectrum range of 4000 to 650 cm−1 with 64 scans and a resolution of 4 cm−1 [27].

2.4.7. XRD Analysis

The crystalline structures of film samples were analyzed using an X-ray diffractometer
(X’Pert Pro MPD, Philips) with Cu Kα radiation (k = 0.154 nm) in a 2θ range between 20◦

and 80◦.

2.4.8. TGA Analysis

A thermo-gravimetric analyzer (Model 851e, Mettler Toledo, Columbus, OH, USA)
was used to analyze the thermal stability of the films. Each film sample (10 mg) was put
into a sample pan. The temperature was varied from 25 to 700 ◦C at 10 ◦C/min under a
nitrogen atmosphere (20 mL/min).

2.4.9. Antimicrobial Properties

A film sample (10-mm diameter) was exposed to UV light for 30 min. Subsequently,
it was placed on a Muller–Hinton (MH) agar surface, inoculating with S. aureus, B. cereus,
E. coli, S. Typhimurium, A. niger, and C. alatae [31]. The plates were then incubated at 25 ◦C
and 37 ◦C for 18–24 h for fungal and bacterial testing, respectively. In addition, the inhibition
zones around the film discs were measured. Experiments were carried out in triplicates.
Ampicillin (10 µg/disc), streptomycin (10 µg/disc), and nystatin (100 units/disc) were
used as antibiotics for the tested microorganisms.

2.5. Statistical Analysis

Data were expressed as mean ± standard deviation. In addition, the data were
subjected to analysis of variance, and the differences between means were carried out by
Duncan’s Multiple Range Tests. Statistical analysis was performed using the SPSS package
(SPSS Inc., Chicago, IL, USA).
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3. Results and Discussion
3.1. The Characterization of ZnONPs

The TEM images demonstrate (Figure 1A) that the green synthesized ZnONPs were
rod-shaped with sizes ranging from 100 to 300 nm. Pure ZnONPs were confirmed by the
presence of an XRD pattern. It was found that the XRD spectra of the obtained ZnONPs
exhibited major characteristic diffraction peaks at 2θ = 31.6, 34.2, 36.1, 47.4, 56.5, 62.7, 66.2,
67.8, and 69.2, corresponding to (100), (002), (101), (102), (110), (103), (200), (112), and (201)
planes of zinc oxide nanoparticles, in respective order (Figure 1B). The diffraction peaks
were observed due to a hexagonal wurtzite structure of zinc oxide. Our results agreed with
that reported by Bhatte et al. [32], Bhuyan et al. [33], and Naseer et al. [25].
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3.2. Properties of RS–G–ZnONPs Nanocomposite Films
3.2.1. Film Thickness

The thicknesses of the rice starch–gelatin films at different concentrations of ZnONPs
are shown in Table 1. It was found that the control rice starch–gelatin (RS–G) film (without
ZnONPs) was the thinnest. The addition of ZnONPs (i.e., 0.5–3%, w/v) led to a significant
increase in the thickness (p < 0.05) of the films. At the highest concentration of ZnONP
incorporation (i.e., 3%, w/v), the developed film showed the greatest increase in film
thickness. An increase in the solid content and the less compact structure due to ZnONPs
might be responsible for the thickness increases in the developed film, resulting in a thicker
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film [34,35]. The thickness increase alongside the incorporation of ZnONPs was similarly
observed in other biopolymer-based films, such as gelatin film [36].

Table 1. Physicochemical, mechanical, and barrier properties of RS–G films reinforced with different
concentrations of ZnONPs.

ZnONPs
(% w/v)

Thickness
(mm)

TS
(MPa)

EAB
(%) Transparency MC

(%)
FS
(%)

WVP
(× 10−11 g m/m2 s Pa)

0 0.050 ± 0.002 d 3.49 ± 0.31 c 92.20 ± 9.74 a 3.21 ± 0.01 a 18.86 ± 1.85 a 67.84 ± 1.02 a 5.52 ± 0.25 b

0.5 0.055 ± 0.002 c 3.55 ± 0.18 c 57.43 ± 3.43 b 2.25 ± 0.06 b 17.15 ± 0.69 ab 63.23 ± 0.28 b 5.84 ± 0.28 b

1 0.060 ± 0.001 b 3.66 ± 0.20 bc 52.10 ± 8.55 b 1.64 ± 0.02 c 17.02 ± 1.15 ab 48.07 ± 0.95 c 6.15 ± 0.32 b

2 0.069 ± 0.002 a 3.80 ± 0.17 b 43.75 ± 8.55 c 1.22 ± 0.09 d 15.02 ± 0.45 bc 40.61 ± 2.02 d 7.26 ± 0.49 a

3 0.070 ± 0.001 a 4.63 ± 0.28 a 37.68 ± 2.58 d 0.91 ± 0.08 e 13.08 ± 1.02 c 30.36 ± 1.72 e 7.45 ± 0.25 a

Values are given as mean ± SD from n = 5 determination for thickness; n = 10 for determinations of TS and EAB;
n = 3 for determinations of MC, FS, and WVP. Different superscripts (a–e) in each column are significantly different
(p < 0.05). ZnONPs: zinc oxide nanoparticles; TS: tensile strength; EAB: elongation at break; MC: moisture content;
FS: film solubility; WVP: water vapor permeability.

3.2.2. Mechanical Properties

The mechanical properties of RS–G films with ZnONPs are tabulated in Table 1. The
TS and EAB were affected by the addition of ZnONPs. The control RS–G film (without
ZnONPs) had a TS and EAB of 3.49 MPa and 92.20%, respectively. After the inclusion of
ZnONPs into the RS–G matrix, the TS of composite films increased from 3.49 to 4.63 MPa,
while the EAB significantly decreased from 92.20 to 37.68% (p < 0.05). The increase in TS
is presumably due to the strong molecular interactions between ZnONPs and the RS–G
matrix [34]. These results could indicate that the ZnONPs and the biopolymer matrix have
high compatibility, resulting in rigid films. However, these interactions could restrict the
mobility of polymer chains which decreases the EAB. Furthermore, the water content in the
starch matrix could also act as a plasticizer that contributes to the flexibility of the resulting
films [37]. Thus, the decrease in water content as a result of the incorporation of ZnONPs
may reduce the flexibility of the starch-based films. Additionally, a large surface area
of ZnONPs could also serve as nanofillers reinforcing the film matrix through interfacial
interactions [38]. A similar finding of increasing the TS and reducing EAB has been observed
in the zinc oxide nanorods-gelatin-based film [36] and ZnONPs-Gracilaria vermiculophylla
extract films [39].

3.2.3. Film Appearance, Color, Optical Properties, and Morphology

Film appearance and color attributes of the RS–G films at various concentrations of
ZnONPs are presented in Figure 2A. The control films were colorless and transparent. The
L*, a*, b*, and ∆E* values of the control film were 86.10, −1.30, 2.48, and 8.64, respectively.
As the concentration of ZnONPs increased from 0.5% to 3% (w/v), the RS–G films became
more turbid and milkier. These changes agree with the increasing tendency in the color
values of L* (86.56–89.06), a* ((−2.68)–(−1.46)), b* (5.40–12.16), and the total color change
(∆E*) (9.53–13.01) of the RS–G–ZnONPs nanocomposite films being proportional to the
ZnONPs concentration. A similar whitening effect has also been reported in linear low-
density polyethylene (LLDPE)-ZnONPs composite films [40].

The optical properties of films were expressed by light transmission and transparency.
The light transmission values of the RS–G–ZnONPs nanocomposite films at the wavelength
between 200 and 800 nm are shown in Figure 2B. The UV-light transmission (200–280 nm)
of the control RS–G composite films (without ZnONPs) varied between 0.06 and 67.80%. At
high concentrations of ZnONPs (>0.5%, w/v), the RS–G–ZnONPs nanocomposite films did
not show any UV-light transmission. Light transmission in the visible range (400–800 nm)
of the control film (without ZnONPs) and the RS–G–ZnONPs nanocomposite films were
in the range of (75.07–83.15) and (0.33–18.82)%, respectively. The results suggested that
adding ZnONPs into RS–G composite films decreased UV- and visible-light transmission.
This phenomenon was caused by light scattering due to ZnONPs present in the film ma-
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trix [41]. The UV- and visible-light-shielding effect were also found in other ZnONPs-added
nanocomposite films, such as Gracilaria vermiculophylla [39], LLDPE [40], and gelatin [36]
films. This finding would benefit the development of UV protective packaging films that
could reduce oxidative deterioration in fatty foods.
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b* = 2.48 ± 0.08, ∆E* = 8.64 ± 0.08; 0.5% ZnONPs, L* = 86.56 ± 0.15, a* = −2.68 ± 0.03,
b* = 5.40 ± 0.39, ∆E* = 9.53 ± 0.31; 1% ZnONPs, L* = 87.10 ± 0.07, a* = −3.00 ± 0.13, b* = 7.14 ± 0.58,
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∆E* = 13.01 ± 0.36), and light transmittance (B) of RS–G films incorporated with different concentra-
tions of ZnONPs. The numbers designate the ZnONPs concentrations (%, w/v).

The transparency of the RS–G–ZnONPs nanocomposite films is illustrated in Ta-
ble 1. The transparency of the control RS–G composite film (without ZnONPs) was the
highest. The addition of the ZnONPs into the RS–G bio-composite films significantly
(p < 0.05) decreased the transparency of the resulting films. The opaquest film was the RS–
G bio-composite film incorporating ZnONPs (3%, w/v). The transparency of the film was
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determined by ZnONP addition and the compatibility of the ZnONPs to the biopolymer
base [42]. This RS–G–ZnONPs nanocomposite film might not be suitable for see-through
food packaging to show the food’s appearance and color inside the package. However,
these opaque films would be of great application as a UV-light barrier packaging film. A
similar UV-shielding effect of ZnONPs has been observed in buckwheat starch films [38].

The SEM-observed surface and cross-sectional morphology of different RS–G–ZnONPs
nanocomposite films (0–3%, w/v ZnONPs) are shown in Figure 3. It was found that the
control RS–G composite film (without ZnONPs) showed a smooth, homogenous, and
compact surface and cross-sectional micrographs. A similar report of a smooth surface film
was found in the native rice starch film [43]. In contrast, the RS–G–ZnONPs nanocomposite
films exhibited a rough surface and cross-section morphology. The roughness of the films
was proportional to the increasing concentration of ZnONPs in the films. The SEM surface
micrographs showed that the ZnONPs evenly dispersed and protruded the RS–G composite
films. The cross-sectional images indicate that the ZnONPs were self-aggregated in the
matrix of the developed films, causing the heterogeneity of the film cross-sections. The
results obtained were associated with the increase in the WVP and thickness values (Table 1)
when incorporating the higher concentrations of ZnONPs in the nanocomposite films. The
effects of ZnONPs on the alteration of film morphology have also been illustrated in the fish
gelatin film [44], fish protein isolate/fish gelatin film [41], LLDPE film [40], and buckwheat
starch film [38].

3.2.4. Moisture Content and Film Solubility

The moisture contents and the film solubility of the RS–G films reinforced with
ZnONPs at different concentrations are shown in Table 1. The developed films exhib-
ited moisture contents ranging between 13.08 and 18.86%. The control film had the highest
moisture content (18.86%). As the ZnONP concentration increased from 0 to 3%, w/v, the
moisture content of RS–G–ZnONPs nanocomposite films decreased significantly (p < 0.05).
The moisture content reduction in the nanocomposite film might result from nanoparticle
addition, as it increased the hydrophobicity characteristic of the resulted films [45–47].
Furthermore, the increasing interaction of hydrogen bonding between nanoparticles and
hydroxyl groups in the film matrix also limited the availability of the hydroxyl groups from
bonding with water [37,48]. Consequently, the RS–G–ZnONPs nanocomposite films exhib-
ited lower moisture content than the RS–G composite film (without ZnONPs). Additionally,
the lower moisture content in the nanocomposite films was related to the mechanical
properties of the film as the water is served as a plasticizer in the bio-composite film. Thus,
decreasing moisture content resulted in the higher TS values and the lower EAB values of
the developed films (Table 1). A similar effect of nanoparticle addition on the decreasing
moisture contents in various biopolymer-based films has been reported in chitosan [47],
soluble soybean polysaccharide [37], agar/banana powder [34], pectin [49], buckwheat
starch [38].

The solubility of the RS–G–ZnONPs nanocomposite films varied between 30.36 and
67.84%. The RS–G-blend film had the highest film solubility. A significant decrease (p < 0.05)
in the film solubility (63.23–30.36%) was observed when the concentration of ZnONPs was
increased from 1 to 3% (w/v). The lower film solubility of the nanocomposite corresponded
to the lower moisture contents due to the lower availability of the hydroxy groups to
scavenge the water, as discussed earlier. Thus, the lowest film solubility was found at
the highest ZnONP content in the RS–G–ZnONPs nanocomposite film (Table 1). Similar
results have been discovered in other biopolymer-based films, for example, Gracilaria
vermiculophylla [39], buckwheat starch [38], and corn starch [50].
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3.2.5. Water Vapor Permeability (WVP)

The WVP values of RS–G–ZnONPs nanocomposite films ranged from
5.52–7.45 × 10−11 g m/m2 s Pa and are illustrated in Table 1. The control rice starch–gelatin
film (without ZnONPs) showed the lowest WVP value (5.52 × 10−11 g m/m2 s Pa), while
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films containing 3% (w/v) of ZnONPs exhibited the highest (7.45 × 10−11 g m/m2 s Pa)
WVP value.

Generally, the nanoparticles’ inclusion reduced the WVP of the resulting nanocom-
posite film. This typical result was possibly due to the tortuous pathway for a water
molecule to travel through the film and the limited hydrophilicity portions [20,51,52]. How-
ever, at a high concentration of nanoparticle addition (>1%, w/v), the increasing WVP of
the developed films has been reported [39,53]. In this study, the increasing WVP values
were significantly observed in the developed nanocomposite film with ZnONPs higher
than 1%, w/v. The possible explanation for this phenomenon might be the high porosity
(roughness) and the void space caused by ZnONPs aggregation in the film matrix at high
ZnONPs concentrations [54]. Additionally, the disrupted structure and discontinuous
complex biopolymer matrix caused by nanoparticle addition might also be responsible for
the event [55]. A similar observation has been illustrated in Gracilaria vermiculophylla films
incorporated with ZnONPs [39].

3.2.6. FT-IR Spectroscopy

The interactions between rice starch–gelatin matrix and ZnONPs were monitored
using FT-IR analysis. Figure 4A represents FT-IR spectra of the RS–G films incorporated
with different ZnONP concentrations. The spectra of all nanocomposite films displayed the
IR bands varying from 3500 to 650 cm−1. All RS–G films exhibited the typical characteristic
peaks of rice starch [56], gelatin [41], and the RS–G composite [6] at 3278.98 cm−1 (amide-
A, representing O–H stretching), 2927.68 cm−1 (amide-B, relating to C–H stretching),
1639.09 cm−1 (amide-I, exhibiting C=O stretching), 1551.47 cm−1 (amide-II, representing the
deformation of N–H and C–N stretching), 1238.43 cm−1 (amide-III, displaying vibrations
of C–N and N–H groups in plane). The presence of ZnONP was confirmed by the IR
peak of Zn-OH group at 810 cm−1. This Zn-OH peak was also observed in the report of
Doan Thi et al. [57] In addition, the IR peaks at 1015 cm−1 of all RS–G–ZnONPs designate
the interaction of the O–H group of glycerol with the film structure [41]. The shift of
this peak towards the higher wavenumber indicated some conformational changes in the
functional group or complex forming with the larger functional groups [6,58]. The peak at
1417 cm−1 represents the symmetric stretching of the COO– group. The shift of this peak to
a lower wavenumber was observed, indicating the weaker –OH groups and COO– group
interaction [43] in the RS–G–ZnONPs matrix.

All nanocomposite films containing different ZnONP content did not differ in the
vibrational wavenumber for amide-B, amide-I, amind-II and amide-III peaks, except for
the amide-A peak. The slight shifts of the peak in the amide-A region from 3278.98 cm−1

(0% ZnONPs) [59] to a lower wavenumber (3250.61, 3229.96, 3241.25, and 3260.11 cm−1

for 0.5 to 3% ZnONPs (w/v), respectively) when adding ZnONPs into the RS–G composite
films were observed. These IR changes in the amide-A region, indicating that the functional
groups of the biopolymers adsorbed on the ZnONPs, were related with the interactions of
the N–H group in gelatin with ZnONPs through hydrogen bonding [41,44]. This shift in
IR bands of amide-A was associated with the changes in mechanical properties, namely
the increase in the TS and decrease in EAB of the RS–G–ZnONPs composite films. Similar
reports were found by Kaewprachu et al. [58] and Arfat et al. [41]
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3.2.7. XRD Results

XRD analysis was used to determine the crystalline structure of the RS–G film and their
nanocomposite films. According to the report of Rouhi et al. [44], there was no XRD diffrac-
tion peaks observed in the fish gelatin film. In addition, according to Suriyatem et al. [43],
the native rice starch film exhibited a semi-crystalline matrix with a Vh-type crystalline
polymorphic structure at 13.8 and 21.9◦. However, in this work, the XRD diffraction peak
(Figure 4B) investigation found that no XRD patterns of the control RS–G composite films
were observed at 0% ZnONPs. This phenomenon indicates an amorphous behavior of
the control RS–G film, implying that a typical A-type crystalline polymorph of the native
rice starch was degraded by the film preparation [43,60], possibly through the complex
formation of amylopectin and gelatin. However, when the ZnONPs were incorporated
into the RS–G composite films, prominent characteristic diffraction peaks at 31.6, 34.2, 36.1,
47.4, 56.5, 62.7, 67.8, and 69.2◦ of 2θ were observed, which corresponded to (100), (002),
(101), (102), (110), (103), (112), and (201) planes of zinc oxide nanoparticles, respectively. At
higher concentrations of ZnONPs, the aforementioned XRD diffraction peaks of the RS–G
films showed stronger signals indicating a high portion of crystalline structure. Similar
observations were also found in other biopolymer-based films with ZnONPs (i.e., cellu-
lose [61], carrageenan [11], chitosan-carboxymethyl cellulose [18], fish gelatin [44] and fish
protein isolate/fish skin gelatin [41]).

3.2.8. TGA Results

The thermal stability of the RS–G–ZnONPs nanocomposite films was measured by
using TGA. TGA thermograms of the developed films are shown in Figure 4C. The results
showed two main steps of thermal degradations for the control film and the RS–G–ZnONPs
nanocomposite films. The initial thermal degradation was observed between 80–95 ◦C
with weight loss ranging from 5.98 to 9.69%, indicating the loss of water content from the
films. The second thermal degradation was revealed at approximately 310–320 ◦C, which
can be attributed to the thermal decomposition of polymers [62]. The heat resistance of
the RS–G–ZnONPs nanocomposite films increased with ZnONPs content. After the final
thermal decomposition, the percentage of residue at around 700 ◦C for the control rice
starch–gelatin film and nanocomposite films added with 0.5–3% (w/v) of ZnONPs were
27.95, 32.50, 34.79, 45.26, and 56.93%, respectively. Thus, the inclusion of ZnONPs into the
RS–G film increased the thermal stability of the resulting films. This phenomenon might
be attributed to the properties of the ZnONPs, such as heat insulation, the enhancement
of polymer chain interaction, and the escape of volatile compounds blocking [63]. Similar
findings have been observed in ZnONPs-fabricated carrageenan films [11], and alginate
films containing halloysite nanotubes and ZnONPs [17].

3.2.9. Antimicrobial Activity

Antimicrobial activity of RS–G films with ZnONPs was tested against Gram-positive
bacteria (S. aureus and B. cereus), Gram-negative bacteria (E. coli and S. Typhimurium), and
fungi (A. niger and C. alatae) by the disc diffusion method in comparison with the control
RS–G film (Figure 5). All RS–G–ZnONPs nanocomposite films showed strong antibacterial
effects on all bacterial strains tested. The antibacterial activity of ZnONPs against E. coli
and S. aureus were also found in the report of Doan Thi et al. [57], Naseer et al. [25].
The antifungal ability of all RS–G–ZnOPNS films showed good activity on A. niger. The
inhibition of A. niger was also observed in Naseer et al. [25]. However, there was no
observable clear zone on C. alatae. The decrease in reactive oxygen species (ROS) (i.e., H2O2,
OH−, or O2-radicals), generated from the interactions of ZnONPs with water [57,64,65],
was possibly responsible for this phenomenon. ROS affected the antibacterial [66] and
antifungal abilities [65] of the ZnONPs-containing films. The reduction in antifungal
inhibition might be due to the RS–G–ZnONPs films possessing less water binding ability
when increasing the concentration of the ZnONPs in the films. The control RS–G film
did not show any antimicrobial activity. An increase in the observable clear zone was
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proportional to the amount of incorporated ZnONPs. Baek and Song [39] also reported an
increase in the antimicrobial effect of Gracilaria vermiculophylla films against L. monocytogenes
and S. Typhimurium with the increase in the amount of ZnONPs. Jebel et al. [61] reported
that the inclusion of ZnONPs enhanced the antimicrobial activity of the cellulose-based
films against S. aureus and E. coli. The strong antimicrobial activity of ZnONPs was most
likely due to disruption of the cell membrane of microorganisms caused by Zn2+ ions. The
ZnONPs have been reported to mediate the generation of hydrogen peroxide (H2O2), a
powerful oxidizing agent, which causes damage to the cell membrane [67]. According
to this finding, the RS–G–ZnONPs nanocomposite films have the potential to be used as
antimicrobial food packaging.
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4. Conclusions

The effects of ZnONPs on the properties of the RS–G composite films were investigated.
The results revealed that the inclusion of ZnONPs improved the UV-light barrier, thermal
stability, tensile strength, and antimicrobial activity against all tested bacterial strains and
A. niger fungi. In addition, the thickness and water vapor permeability of the developed
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films were also increased. On the other hand, the ZnONPs significantly decreased the
transparency, EAB, moisture content, and film solubility compared to the control RS–G film
(without ZnONPs). The presence of ZnONPs also changed the crystalline properties of the
rice starch–gelatin films. Therefore, the RS–G–ZnONPs nanocomposite films have good
antibacterial, heat-resistant, and UV-protective properties that are potentially useful for
food packaging applications. However, at a high concentration of ZnONP incorporation,
the opacity and elasticity of the RS–G–ZnONPs nanocomposite film might be compromised.
Additionally, the antifungal properties of the RS–G–ZnONPs composite films to inhibit
C. alatae and other pathogenic fungi should be further investigated at higher concentrations
of ZnONPs for antifungal applications in the food and packaging industry.
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