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Abstract: The armored Harttia catfishes present great species diversity and remarkable cytogenetic
variation, including different sex chromosome systems. Here we analyzed three new species,
H. duriventris, H. villasboas and H. rondoni, using both conventional and molecular cytogenetic
techniques (Giemsa-staining and C-banding), including the mapping of repetitive DNAs using
fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) experiments.
Both H. duriventris and H. villasboas have 2n = ♀56/♂55 chromosomes, and an X1X1X2X2 /X1X2Y
sex chromosome system, while a proto or neo-XY system is proposed for H. rondoni (2n = 54♀♂).
Single motifs of 5S and 18S rDNA occur in all three species, with the latter being also mapped in the
sex chromosomes. The results confirm the general evolutionary trend that has been noticed for the
genus: an extensive variation on their chromosome number, single sites of rDNA sequences and the
occurrence of multiple sex chromosomes. Comparative genomic analyses with another congeneric
species, H. punctata, reveal that the X1X2Y sex chromosomes of these species share the genomic
contents, indicating a probable common origin. The remarkable karyotypic variation, including sex
chromosomes systems, makes Harttia a suitable model for evolutionary studies focusing on karyotype
differentiation and sex chromosome evolution among lower vertebrates.

Keywords: cytogenetics; ribosomal DNA; comparative genomic hybridization; neotropical fishes

1. Introduction

Siluriformes (Actinopterygii; Teleostei) is a monophyletic order that covers a large deal of the
freshwater fish diversity, with more than 3000 species and 36 families [1,2]. Of the six Loricariidae
subfamilies currently recognized, Hypostominae and Loricariinae are the most representative ones, with
the highest number of species (579 and 302, respectively) and a remarkable karyotypic diversity [2,3].
Loricariinae fishes are distributed throughout South and Central American rivers, including two tribes:
Harttiini and Loricariini. The genus Harttia, popularly known as armored catfishes, is represented by
27 valid species [2,4].
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Despite such great species diversity, cytogenetic studies are available for only eight of them,
all from Brazilian Southern regions, with exception for Harttia punctata [3,5–13]. However, although still
limited, the chromosome data are already enough to notice a conspicuous variation of the diploid
number (2n) in the genus, ranging from 2n = 52♀/53♂in H. carvalhoi [8] to 2n = 62♀♂in H. absaberi [9].
Chromosomal breaks and rearrangements as Robertsonian fusions, fissions, as well inversions were
proposed to occur in the karyotype diversification of Harttia species [13]. In addition, two multiple
XY-derived sex chromosome systems were also identified: ♀XX/♂XY1Y2 in H. carvalhoi [8] and
♀X1X1X2X2/♂X1X2Y in H. punctata [12].

In recent years, a range of molecular cytogenetic investigations (e.g., repetitive DNA mapping
based on fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH) and
whole chromosome painting (WCP) has been applied in different fish groups, providing new insights
into the evolutionary relationships among them [14–18]. However, the ribosomal genes are the only
repetitive DNA class that has been analyzed in Harttia till now [3,8,12,13]. The rDNA mapping shows
that the 18S sites presents a conserved pattern in number, with a single chromosome pair carrying these
sequences in all analyzed species, but with variation in location and chromosome carrying them [13].
Similarly, the 5S rDNA is also found in a single chromosome pair in most species, with exception for H.
carvalhoi, in which signals occur in both chromosome pairs 03 and 23 [8,13]. Besides, WCP analyzes
are confined to only one species, H. punctata, highlighting the main chromosomal rearrangements
involved in the origin of the X1X2Y sex system in this species [12].

In the most updated phylogenetical reconstruction based on mtDNA, three distinct clades can be
recognized for the genus Harttia involving: (i) species that inhabit rivers of Guyana shield; (ii) species
occurring in north Brazil, especially in Amazonas river basin and its tributaries and (iii) species
distributed throughout southeast/south Brazilian rivers, such as Grande, São Francisco and Paraná
river basins [19]. However, despite largely widespread in South America, only Harttia species from
southern rivers have been cytogenetically studied to date. Here we analyzed three new species
sampled from Northern Brazilian river basins by performing an extensive cytogenetic investigation
using conventional cytogenetic protocols (Giemsa-staining and C-banding) combined with molecular
cytogenetic ones, including CGH experiments and mapping of several repetitive DNA classes using
FISH. The results allowed us to open a new chapter on the evolutionary history of Harttia fishes,
besides describing new sex chromosome systems.

2. Materials and Methods

2.1. Sampling

The collection sites, number and gender of the specimens investigated are presented in Figure 1 and
Table 1. Samples were collected with the authorization of the environmental agency ICMBIO/SISBIO
(License nº 48628-2) and SISGEN (A96FF09). The specimens were proper identified by evaluation
of their meristic characters by Dr. Osvaldo Takeshi Oyakawa, curator of the Museu de Zoologia da
Universidade de São Paulo (MZUSP) and specialist in this fish group. Samples from H. punctata were
used for gDNA extraction and CGH experiments.
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Figure 1. Brazilian collection sites of the three Harttia species cytogenetically investigated in the present
study (colored circles) and the ones previously cytogenetically analyzed (white circles: data from [9,13]).
1. H. duriventris (red circle); 2. H. villasboas (yellow circle); 3. H. rondoni (3-green circle); 4. H. punctata;
5. H. gracilis; 6. H. carvalhoi; 7. H. torrenticola; 8. H. longipinna; 9. H. loricariformis; 10. H. kronei;
11. H. absaberi. The boxes highlight the non-sympatric distribution of some species.

Table 1. Collection sites and samples size (N) of the species analyzed.

Species Locality N

1. H. duriventris Parauapebas River, Canaã dos Carajás-PA (Brazil)
(6◦30’06.5” S 50◦02’35.3” W) 08♀, 07♂

2. H. villasboas Curuá River, Cachoeira da Serra-PA (Brazil)
(8◦44’09.0” S 54◦57’46.0” W) 34♀, 38♂

3. H. rondoni 13 de Maio River, Cachoeira da Serra-PA (Brazil)
(8◦38’53.0” S 55◦01’41.0” W) 15♀, 14♂

4. H. punctata Itiquira river, Formosa—GO (Brazil)
(15◦19’25” S 47◦25’26” W) 10♀, 12♂

2.2. Chromosome Preparation and C-Banding

Mitotic chromosomes were obtained by the protocol described in [20]. Briefly, the animals
were first injected in the abdominal region with a 0.025% aqueous solution of colchicine at a dose
of 1 mL/100 g of weight. After 50–60 min, the specimens were euthanized, and the chromosomal
preparations were obtained from cells of the anterior kidney. The experiments followed ethical and
anesthesia conducts and were approved by the Ethics Committee on Animal Experimentation of the
Universidade Federal de São Carlos (Process number CEUA 1853260315). C-positive heterochromatin
(C-banding) was identified according to [21]. Briefly, slides were treated with 0,2 N HCl for 10 min,
followed by a short wash in water; incubated in 5% Ba(OH)2 for 3 min at 42 ◦C ; rinsed in water for 1
min and then incubated in 2× SSC (pH 7.0) for 1 h at 60 ◦C. The slides were then stained in 5% Giemsa
solution (phosphate buffer, pH 6.8).
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2.3. Fluorescence In Situ Hybridization (FISH) for Repetitive DNA Mapping

The 5S rDNA probe included 120 base pairs (bp) of the 5S rRNA codificant gene and 200 bp of a
non-transcribed spacer (NTS) isolated according to [22]. In its turn, the 18S rDNA probe contained a
1400 bp segment of the 18S rRNA gene and was isolated following [23]. These probes were directly
labeled with the Nick-Translation mix kit (Jena Bioscience, Jena, Germany). The 5S rDNA was
labeled with ATTO550-dUTP and the 18S rDNA with AF488-dUTP, according to the manufacturer’s
manual. The microsatellite sequences (A)30, (CA)15 and (GA)15 were directly labeled with Cy-3
during their synthesis, as described by [24]. These sequences were selected once they are among the
most abundant ones in fish genomes [14] and generated well visible hybridization patterns in our
experiments. Telomeric (TTAGGG)n sequences were mapped using the DAKO Telomere PNA FISH
Kit/FITC (DAKO, Glostrup, Denmark). The FISH experiments followed the methodology described
in [25]. Briefly, metaphase chromosome slides were incubated with RNAse (40 µg/mL) for 1.5 h
at 37 ◦C. After the denaturation of the chromosomal DNA in 70% formamide/2× SSC at 70 ◦C for
3 min, the hybridization mixture (2.5 ng/µL probes, 2 µg/µL C0t-1 DNA, 50% deionized formamide,
10% dextran sulphate) was dropped on the slides, and the hybridization was performed overnight at
37 ◦C in a moist chamber containing 2× SSC. The first post-hybridization wash was performed with
2× SSC for 5 min at 65 ◦C, and a final wash was performed at room temperature in 1× SSC for 5 min.
Finally, the slides were counterstained with DAPI and mounted in an antifade solution (Vectashield
from Vector Laboratories, Burlingame, CA, USA)

2.4. Comparative Genomic Hybridization (CGH)

The total genomic DNAs (gDNAs) from male and female specimens of H. duriventris, H. villaboas,
H. rondoni and H. punctata were extracted from liver tissue by the standard phenol-chloroform-isoamyl
alcohol method [26]. It was focused on inter-and intraspecific comparisons, with special emphasis on
molecular composition of the putative and multiple sex chromosomes. In the first set of experiments
(intraspecific genomic comparisons), the male-derived gDNAs of all species were labelled with
Atto550-dUTP and the female gDNAs with Atto488-dUTP, by means of nick translation (Jena
Bioscience, Jena, Germany). For blocking repetitive sequences, it was used unlabeled C0t-1 DNA
in all experiments (i.e., fraction of genomic DNA enriched with highly and moderately repetitive
sequences), prepared according to [27]. The final hybridization mixture for each slide (20 µL) was
composed of male- and female-derived gDNAs (500 ng each), plus 25 µg of female-derived C0t-1
DNA from the respective species. The probe was ethanol-precipitated, and the dry pellets were
resuspended in hybridization buffer containing 50% formamide, 2× SSC, 10% SDS, 10% dextran sulfate
and Denhardt´s buffer, pH 7.0. In the second set of experiments (interspecific genomic comparisons),
the gDNA of all male specimens now analyzed, plus the gDNA of H. punctata (a species harboring
multiple X1X2Y sex system), were hybridized against metaphase chromosomes of H. villasboas. For this
purpose, male-derived gDNA of H. villasboas was labeled with Atto550-dUTP, while the gDNAs of the
other three species were labeled with Atto488-dUTP (H. duriventris and H. rondoni) or Atto425-dUTP
(H. punctata) both by means of nick translation (Jena Bioscience, Jena, Germany). In a first slide, the
final probe mixture was composed of 500 ng of male-derived gDNA of each H. villasboas, H. duriventris
and H. punctata and 10 µg of female-derived C0t-1 DNA of each species. In a second slide, the final
probe mixture was composed of 500 ng of male-derived gDNA of H. villasboas and H. rondoni and
15 µg of female-derived C0t-1 DNA of each species. The chosen ratio of probe vs. C0t-1 DNA amount
was based on previous experiments performed in our fish studies [18,28,29]. The CGH experiments
followed the methodology described in [30].

2.5. Microscopic Analysis and Image Processing

At least 30 metaphase spreads per individual were analyzed to confirm the 2n, karyotype structure
and CGH results. Images were captured using Olympus BX50 microscope (Olympus Corporation,
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Ishikawa, Japan), with CoolSNAP and the images were processed using Image Pro Plus 4.1 software
(Media Cybernetics, Silver Spring, MD, USA). Chromosomes were classified as metacentric (m);
submetacentric (sm); subtelocentric (st) or acrocentric (a) according to [31]. The maps were created
using the following software′s: QGis 3.4.3 and Adobe Photoshop CC 2020.

3. Results

3.1. Karyotypes, C-banding and Sex Chromosomes

Harttia rondoni has 2n = 54 chromosomes (20m + 26sm + 4st + 4a) in both sexes. In turn,
H. villasboas and H. duriventris have 2n = 56 chromosomes in the female specimens (18m+24sm+6st+8a
in H. villasboas and 16m + 16sm + 16st + 8a in H. duriventris), but 2n = 55 chromosomes in the male
specimens (19m + 24sm + 6st + 6a in H. villasboas and 17m + 16sm + 16st + 6a in H. duriventris).
These specific male karyotypes are due to characteristics X1X1X2X2/X1X2Y multiple sex chromosome
systems, where the Y corresponds to a medium-sized m chromosome (Figure 2).

Figure 2. Karyotypes of H. duriventris (a–c) H. villasboas (d–f) and H. rondoni (g–i) arranged by
sequentially Giemsa-stained (a, d, g) and C-banded chromosomes (b, e, h) and hybridized with 5S
rDNA (red) and 18S rDNA (green) probes after a double-FISH analysis (c, f, i). Boxes depict the male
sex chromosomes. Bar = 5 µm.

In all species, C-positive heterochromatic bands are found in the pericentromeric region of all
chromosomes and in the telomeric region of the acrocentric pairs (Figure 2). In general, C-banding
does not identify any chromosome heteromorphism in H. rondoni females. However, in males, a slight
heteromorphic pattern occurs at the proximal C-positive bands on the long arms of the pair 11 (Figure 2).
This points to a likely XX/XY sex chromosome system in this species. On the other hand, no conspicuous
heterochromatin accumulation is observed in the Y chromosome of H. duriventris and H. villasboas.

3.2. Chromosomal Distribution of rDNAs, Microsatellite Motifs and Telomeric Repeats

Cytogenetic mapping of the 18S and 5S rDNA sequences showed single sites in corresponding
chromosomes of all three analyzed species. Specifically, the 18S rDNA sequences are mapped in the
pericentromeric region of the XY chromosomes of H. rondoni, where a clear polymorphic state occurs
in males (Figure 2). In both H. duriventris and H. villasboas, these sequences are located in both X1

(in females) and in the X1 and Y (in males). The statement that these rDNA loci are located on the
X1 chromosome instead of in the X2 is based on available data showing that these sequences are also
found in the corresponding X chromosome of the sister species, H. rondoni.

The A(30) motif showed hybridization in nine male chromosomes and in ten female chromosomes
in all three species, this difference being due to the absence of signals in the Y chromosomes. Besides,
H. rondoni also presents some small scattered marks in all other chromosomes for this same microsatellite.
For the GA(15) probe, small scattered signals occur in the chromosomes of all species, with accumulation
on telomeric regions. However, the sex chromosomes also present different accumulation patterns for
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this microsatellite: on the telomeric region of the X2 and the Y chromosomes of H. duriventris, on the
telomeric regions of the X1, X2 and Y of H. villasboas, and strongly accumulated in the telomeric region
of both X and Y chromosomes of H. rondoni. Additionally, CA(15) were identified in the telomeric
regions of almost all chromosomes, of H. villasboas, including the sex ones (Figure 3).

Figure 3. Metaphase chromosomes of males H. duriventris, H. villasboas and H. rondoni hybridized with
microsatellite-containing oligonucleotides. Chromosomes were counterstained with DAPI (blue) and
microsatellite probes were directly labeled with Cy3 during synthesis (red signals). The female sex
chromosomes are shown in boxes. Bar = 5 µm.

FISH with telomeric (TTAGGG)n probe applied to male metaphases of H. duriventris, H. villasboas
and H. rondoni revealed hybridization signals on the telomeres of all chromosomes in both species,
with no additional interstitial telomeric sites (ITS) (Figure 4).

Figure 4. Male metaphase plates of H. duriventris (a), H. villasboas (b) and H. rondoni (c) showing
telomeric hybridization signals on both telomeres of all chromosomes. Bar = 5 µm.

3.3. Comparative Genomic Hybridization (CGH)

3.3.1. Intraspecific Genomic Relationships: Detecting Male-Specific Regions

In all species, CGH procedure failed to detect any conspicuous sex-specific region on male
chromosomes (Figure 5). However, a slight binding preference for the male-derived probe to the
pericentromeric region of the Y chromosome of H. villasboas and H. duriventris, and to the Y chromosome
of H. rondoni was evidenced (Figure 5). Female-derived probe produced only a faint hybridization
signal in such regions, while both probes matched equally the large heterochromatic pericentromeric
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segment in the X1 chromosome of H. villasboas and H. duriventris, and in the X chromosome of
H. rondoni (Figure 5).

Figure 5. Mitotic chromosome spreads of males H. duriventris (A–D), H. villasboas (E–H) and H. rondoni
(I–L) after intraspecific CGH procedures. Male- and female-derived genomic probes were hybridized
together for each species. First column (A, E and I): DAPI images (blue); Second column (B, F, and J):
hybridization pattern of the male-derived probe (red); Third column (C, G, and K): hybridization
pattern of the female-derived probe (green). The fourth column (D, H, and L): merged images of both
genomic probes and DAPI staining. The common genomic regions for males and females are depicted
in yellow. Sex chromosomes are indicated. Bar = 10 µm.

3.3.2. Interspecific Genomic Relationships, Focusing on the Multiple X1X2Y Sex System

When the gDNA of H. duriventris, H. villasboas and H. punctata (all X1X2Y-species) was compared,
no species-specific region in the sex-chromosomes were observed, thus pointing to their common
genomic content (Figure 6).

Figure 6. Comparative Genomic Hybridization (CGH) of Harttia species bearing X1X2Y sex chromosome
system. Mitotic male chromosome spreads of H. villasboas (A) hybridized against male-derived genome
probes of H. villasboas (B), H. punctata (C) and H. duriventris (D). Sex chromosomes are indicated and
the common genomic regions for the three species are depicted in yellow on (A). Bar = 10 µm.
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4. Discussion

4.1. Evolutionary Relationships among Harttia Species

Chromosome data have shown that Harttia species, as a whole, presents an extensive variation
in the diploid number, karyotype composition, in addition to multiple sex chromosomes in some
species [5–8,10–12], the latter corresponding to an uncommon condition among fishes. Here we brought
new data for three yet unexplored Amazonian species. If we consider previous available data, it is
noticeable that the chromosome numbers of all species now investigated fit into the range of variation
previously described for the genus, i.e., 2n = 52♀/53♂in H. carvalhoi [8], and 2n = 62♀♂in H. absaberi [9].
In addition, the general trend of single rDNA locus occurring in rearranged chromosomes is maintained
within the genus [13]. However, a striking feature is that they all present new cases of sex chromosomes:
an X1X1X2X2/X1X2Y system in H. duriventris and H. villasboas and a proto or a neo-XY system in
H. rondoni (discussed below).

The karyotype diversification and morphological patterns are often indicators of the lifestyle of a
species [32,33]. Although Harttia have a wide geographic distribution in many South American rivers
and small streams, their low vagility fosters the fixation of chromosomal rearrangements into small
populations, thus promoting chromosomal diversity. Indeed, several other fish species also presenting
the same above characteristics, have been evidenced as carriers of a wide variety of karyotypes:
A. fasciatus, for example, presents karyotypes with 2n = 45, 46, 47, 48 and 50 chromosomes [34–36]
and Hoplias malabaricus, with seven main karyotypes including multiple and simple sex chromosome
systems [23,37–39]. In Late Cretaceous and Cenozoic, large-scale tectonic events led to changes in river
courses and watershed limits, resulting in complex river dynamisms [40], and affecting the distribution
of fish populations. For example, the Serra do Cachimbo region (Pará-Brazil), presents highlands
that reach 740 m of altitude, divided between Xingu and Tapajós river basins [41]. Located at the
northern border of the Brazilian shield, this region has a high number of endemic species such as
Leporinus guttatus [42], three species of Lebiasina genus [43], and Harttia villasboas and H. panara [41].
This high number of endemic species can be attributed by the high number of headwaters of the Xingu
and Tapajós rivers [41]. There, H. rondoni and H. villasboas have a probable geographic barrier due to a
series of waterfalls 40–60 m height, over a 50 m stretch, where H. rondoni and H. villasboas occur below
and above this set of waterfalls, respectively [41,44]. Despite some karyotype similarities that they
share, such as the higher number of m and sm chromosomes, a vicariance event may have facilitated the
fixation of another series of chromosomal rearrangements in both groups, including the origin of two
distinct, but related sex chromosome systems (a proto or- neo-XY system in H. rondoni and a multiple
X1X1X2X2/X1X2Y system in H. villasboas). The generation of multiple sex chromosome systems usually
involves centric fusions or fissions events and may retain vestiges of interstitial telomeric sequences
(ITS) [45]. Our chromosomal mapping of telomeric sequences only reveal the expected terminal signals,
without any ITS in the three species. However, it is also known that Robertsonian rearrangements
can also lead to the loss or reduction of sequences close to the chromosomal breakpoints [45], and it is
likely that this particular condition is responsible for the absence of ITS, as well as of microsatellite
sequences and C-positive heterochromatin that, although identified on the X1 and X2 chromosomes of
H. duriventris and H. villasboas, they are missing in the Y chromosome.

Blanco [13] discussed the split of H. punctata from a southeast clade with the origin of its multiple
sex chromosome system being a characteristic determinant, probably originated from an ancestor
with 2n = 58 chromosomes without a differentiated sex chromosome system. Now, one specific
chromosomal pair present in H. rondoni shares similar patterns to the X1X2Y sex chromosomes present
in the other closely related species, opening two main scenarios: (i) a proto-XY hypothesis: The X and
Y chromosomes differ only slightly due to the amplification of repetitive sequences (major rDNAs)
on the X chromosome, thus representing an early stage of differentiation. As all its closely related
species until now studied have sex chromosomes (Figure 7, dotted line), we could hypothesize that
this 2n = 58 ancestor have also carried a proto-XY sex system, as is the case of H. rondoni. Afterwards,
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chromosomal fissions on the X chromosomes may have created the X1 and X2 chromosomes present in
H. punctata, H. duriventris and H. villasboas. (ii) A Neo-XY hypothesis: chromosomal fusions involving
the ancestral X and Y chromosomes and a pair of autosomes could create such a neo-XY sex system,
leading to the reduction of the 2n from 56 (present in the sister species) to 54 in H. rondoni. Besides,
the bigger size of the neo-X chromosome in comparison with the Y and the loss of a A(n) rich region
closer to the ribosomal loci in the later support this hypothesis. Among fishes, some cases of neo-XY
sex chromosomes emerging from X and/or Y-autosomal translocations have been also observed [46–48].
Neo-sex chromosomes may not necessarily lead to the emergence of multiple sex chromosomes,
as equal addition of autosomal segments to both sex chromosomes generates neo-XY or neo-ZW
systems. Complementary studies, focusing on whole chromosome painting and in the genomic
organization of these sex chromosomes, are necessary to clarify these two abovementioned hypotheses.

Figure 7. Adapted phylogenetic tree for the genus Harttia, based on the molecular-phylogenetic data
generated by Covain [19]. Previous and now cytogenetic analyzed species are indicated in blue and
red, respectively. The multiple X1X2Y (green boxes) and XY1Y2 (blue box) sex chromosome found in
Harttia is also indicated, together with the putative proto or neo XY system (purple box). Species from
northern Brazilian region are highlighted with the dotted line.

4.2. The Genus Harttia as A Repository of Multiple Sex Chromosome Systems

Teleost fishes represent one of the most diverse groups in terms of sex determination
and differentiation [49,50]. Heteromorphic sex chromosomes are identified in about 5% of so
far analyzed species [51], mostly corresponding to simple systems, the XX/XY being the most
frequent one [52]. Multiple sex chromosomes occurs in a much lower number and, according to
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Pennel [53], 47 of such occurrences had been so far recorded, encompassing five different kinds
of systems, named ♀X1X1X2X2/♂X1X2Y, ♀XX/♂XY1Y2, ♀X1X1X2X2/♂X1Y1X2Y2, ♂ZZ/♀ZW1W2 and
♂Z1Z1Z2Z2/♀Z1W1Z2W2, the first of them being the most prevalent one [54]. Here, a marked feature of
both H. villasboas and H. duriventris karyotypes is an X1X2Y sex chromosome system. Such occurrences,
together with the two previous multiple systems described for H. punctata (X1X2Y) and H. carvalhoi
(XY1Y2), makes Harttia the genus with the most abundant number of multiple sex chromosome systems
up to now identified among fishes [53].

It is known that Y-A fusions are the most common rearrangements related to the origin of X1X2Y
systems [53] and it is likely that this is also true for both H. duriventris and H. villasboas cases. But the
find of the concomitant proto/neo XY-system in the sister species, H. rondoni, adds a relevant question
in this evolutionary puzzle. In such system the sex pair differ only slightly by the accumulation of
repetitive sequences in only one of the chromosomes, i.e., the Y one. This heteromorphism was not
always clearly detected on the pattern of the C-positive heterochromatin, but it was evident after
the 18S rDNA mapping and the intraspecific CGH experiments. This scenario alone could raise
doubts about the existence of such a proto-XY system, reinforcing the probable neo-origin to this
chromosomal sex system. However, when the chromosomal pattern of H. rondoni is compared with
those of H. villasboas and H. duriventris, it is possible to establish the karyological relationships among
these species supporting the real occurrence of the putative sex chromosomes in H. rondoni, and the
origin of the multiple X1X2Y sex chromosome systems in the two latter species. In fact, comparative
genomic hybridization (CGH), plus chromosomal mapping of microsatellites and rDNAs repeats
highlight that these three Harttia species share the same distribution pattern in the sex chromosomes.
Although H. punctata also presents an X1X2Y system, its rDNA distribution includes both 5S and 18S
sequences on the sex chromosomes [11,13], which is different from H. duriventris and H. villasboas where
only 18S motifs occur on them, probably by a translocation of the 5S rDNA motif, present in the X1 of
H. punctata, to autosomal chromosomes during lineage diversification in H. duriventris, H. villasboas
and H. rondoni.

Meaningly, a close association between microsatellites, rDNAs and multiple sex chromosomes
has been reported for many fish taxa [55–59], which highlights the probable role of these sequences in
the genesis of such systems. Despite our CGH data do not reveal any conspicuous Y-specific region,
neither in both Y chromosomes of H. duriventris and H. villasboas, nor in the proto/neo-Y of H. rondoni,
a slight binding preference for the male-derived probe occur at the pericentromeric region of all these
chromosomes (Figure 5). Potential effects of repetitive DNA accumulation on recombination rate
have been considered [60], what could explain their initial accumulation on the sex chromosomes.
When sex chromosomes stop recombination, repetitive sequences are predicted to have a rapid
accumulation on them [61], and microsatellite repeats seem to play a key role as “early colonizers”
in their differentiation [24,62]. Numerous examples in animals and plants document a massive and
differential accumulation of such small motifs in sex-specific chromosomes, particularly in simple
(XY or ZW) systems [24,56,63–67]. However, most X1X2Y systems lack substantial differentiation
in the neo-Y, since the accumulation of repetitive DNAs (=large blocks of heterochromatin) would
impair the proper pairing of the neo-sex chromosomes into a stable trivalent form, thus disturbing the
meiotic process [68]. Here, no significant differences in microsatellites distribution could be identified
concerning autosomes and sex chromosomes of the Harttia species. In general, while (A)30 sequences
presented a strong accumulation pattern in the pericentromeric regions of some chromosomal pairs,
both (CA)15 and (GA)15 displayed a widespread distribution pattern, with preferential accumulation
in some telomeric regions (Figure 3). Besides, as evidenced by C-banding and CGH experiments,
all the X1, X2 and Y chromosomes do not accumulate repetitive sequences, and the Y chromosome of
H. rondoni is even missing (A)30 sequences probably lost after the chromosomal rearrangements related
to its genesis. Thus, the recombination suppression in multiple sex chromosome system is a question
that deserves to be better clarified.
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According to the most updated phylogeny proposed for the genus Harttia [19]. H. duriventris,
H. villasboas, and H. punctata, all harboring multiple X1X2Y sex system, are evolutionary related
and belong to the same major clade. In accordance with, our CGH experiments showed that they
sex chromosomes share genomic content, thus pointing to their relatedness and to a probable
common origin. This is a characteristic that, in general, is not found among teleosts species.
Although some Megaleporinus [69], Parodon [70] and Characidium species [71], as well as the whole
genus Triportheus [66,72], have their sex chromosomes with a common origin and differentiation, this is
an exceptional scenario [73]. In fact, an independent origin is more commonly found, even among
congeneric species [49,52,74–78]. According to Schartl [79], such a situation could be explained by the
emergence of sex-determining genes on different chromosomes which, by mutation, would promote
male or female development and giving rise to new sex chromosomes. Next steps, implying finer-scale
approaches such as Zoo-FISH experiments with whole chromosome painting (WCP), coupled with
recent genome sequencing procedures, will shed more light on this issue, especially in the recent or
ancient origin of the XY system of H. rondoni and its significance to the group.

5. Conclusions

Chromosomal data of the Brazilian northern Harttia species (H. duriventris, H. villaboas, H. rondoni
and H. punctata) support the common origin for their sex chromosome systems. Additionally, the
results also allowed us: (i) to track their evolutionary relationships with other Harttia species, adding
new light on their relatedness inside the genus; (ii) to describe two new multiple sex chromosomes
systems of the X1X2Y type; and (iii) to highlight a proto or neo-XY system in H. rondoni and its close
association with the aforementioned multiple sex systems. The remarkable variation on karyotypic
organization, in addition to the frequency and different types of sex chromosomes systems inside the
genus, makes Harttia an useful model for evolutionary studies among fish focusing on karyotype
differentiation and sex chromosomes evolution.
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