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Somatic mutation-derived neoantigens, expressed only on tumor cells, may elicit
antitumor T-cell responses in cancer immunotherapies with minimal immune tolerance.
Neoantigens can be identified by multiple bioinformatics technologies, mainly based on
whole-exome sequencing. Personalized cancer vaccines and adoptive T cell therapies are
two primary treatment modalities targeting neoantigens, and both of them have shown
promising therapeutic effects. This review, summarizes the history of neoantigen-related
tumor control, introduces recent neoantigen screening and identification methods, and
discusses the role of neoantigen in cancer immunotherapies. Moreover, we propose the
challenges of targeting neoantigens for cancer treatment.
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INTRODUCTION

Immunotherapy has revolutionized the management of cancer treatment. Targeting the immune
inhibitory regulators PD-1, PD-L1 or CTLA-4 is a common way to promote antitumor immune
responses. However, immunotherapy boosting the immune system to destroy cancer cells has
shown durable clinical responses in patients with various malignancies, but only in a subset of
patients (1). Moreover, the non-antigen-specific simulation can activate global T cells and damage
the human body, leading to immune-related adverse events, even fatal events (2). Thus substantial
efforts are needed to explore more specific and powerful immunotherapy approaches, either alone
or in combination.

As a genetic disease, cancer results from the accumulation of DNA damage and genetic
alterations (3). These non-synonymous somatic mutations generate neoepitopes, which can be
recognized by endogenous T cells as non-self-proteins and induce an antitumor immune response
(1, 4). In most cases, neoantigens arise from single nucleotide mutations (SNV), gene fusion,
alternative splicing, intron retention, insertion, and deletions. Other sources of neoantigens
including post-translational modifications and endogenous retrovirus-associated tumors (5). The
presentation of neoantigens is tumor-specific and able to elicit T cell-mediated antitumor immunity
(4). Therefore, neoantigen is an ideal immunotherapy candidate. Two primary neoantigen-based
therapeutic modalities have been explored in clinical practices: personalized vaccines and adoptive
cell therapy (ACT) (6). Here we review the history of neoantigens about tumor control and
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introduce recent neoantigen screening and identification
methods. We also discuss the role of neoantigen in cancer
immunotherapies and its current challenges.
HISTORICAL OVERVIEW OF TUMOR
NEOANTIGENS

The foundation of cancer immunology can date back to the
middle of the twentieth. Gross (7) reported that transplantable
tumors could produce active immunity against syngeneic mice.
Another research showed that carcinogen-induced tumors had
antigenic properties that the immune system could identify (8).
In 1988, De Plaen et al. (9) discovered the first neoantigen
recognized by cytolytic T lymphocytes (CTLs) in a
methylcholanthrene (MCA)-induced mouse tumor model. The
recognized neoantigen also could be identified in a cDNA library.
Then, CD4+ T cells stimulated tumor-specific immunity and
inhibited tumor growth after recognizing neoantigens in mice
(10). In 1996, mutated neoantigens recognized by tumor-
infiltrating lymphocytes (TILs) and CTLs were found in
human melanoma (11) and renal cell carcinoma (12),
respectively. Several years later, Rosenberg and his colleagues
(13) revealed nearly complete regression in a melanoma patient
after receiving autologous tumor-reactive TILs. T cells reactivity
against neoantigen was proved to predominate cellular
antitumor response in a long-term surviving melanoma patient
(14). A detailed analysis in a melanoma patient with complete
tumor regression after adoptive TILs transfer indicated that
tumor-reactive T cells could be persistent and relevant for
tumor regression (15). Collectively, neoantigen has the
potential to be the target of antitumor immunity.

Advances in next-generation sequencing (NGS) technologies
have provided access to compare mutations in the normal and
tumor genome in 2008 (16). Then NGS was used to demonstrate
tumor-specific antigens in an immunogenic mouse model, which
opened a new dimension for antigenic targets of cancer
immunity (17). By using NGS, Castle et al. (18) assessed the
antitumoral activity of the neoantigen vaccine in the B16
melanoma tumor model. Consequently, the vaccine-elicited T-
cell immunogenicity showed protective effects, providing new
insights into immunogenic neoantigen-based vaccine treatment
in human cancers (18). NGS also contributed to identify
neoantigens recognized by TILs in melanoma patients (19, 20)
and suggested the feasibility of neoantigen-specific T cell
reactivity analysis in human cancer immunotherapy (20).
Neoantigen was identified as the target of checkpoint blockade
immunotherapies in a sarcomas mouse model (21).
Concurrently, the adoptive transfer of neoantigen-specific
CD4+ T cells achieved tumor regression in a metastatic
epithelial cancer (22).

Further investigations found that neoantigen burden was
associated with immune checkpoint inhibitors’ therapeutic
responses in melanoma (23) and lung cancer patients (24). In
2015, Beatriz’s team first reported that vaccination with
neoantigen could augment T cell immunity in patients with
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advanced melanoma, demonstrating the efficacy and feasibility of
a personalized dendritic cell (DC)vaccine (25). A subsequent
study revealed that ACT targeting mutant KRAS neoantigen
mediated antitumor immune system, leading to regression in
patients with metastatic colon cancer (26). Furthermore, the
correlation between clonal neoantigen burden and response to
immune checkpoint blockade was defined, rendering it is
possible to target clonal neoantigens in T cell therapies (27).
Ott et al. treated melanoma patients with a peptide vaccine
targeting 20 predicted personal tumor neoantigens (28).
Consistent with the reactive T cells responses, four patients
had no recurrent diseases, and two patients had complete
tumor regression after anti-PD-1 was administrated to
recurrence (28). Then individualized RNA mutanome vaccine
also induced T cell infiltration and killed autologous tumor cells,
resulting in tumor regression and durable survival (29). The
personalized neoantigen vaccine and nivolumab combination
proved safe and immunogenicity in advanced solid tumors (30).
IDENTIFICATION OF TUMOR-SPECIFIC
NEOANTIGENS

With the advances of NGS, it has become feasible to acquire
genomic changes in some kinds of tumors, which provided the
basis of neoantigen identification (31). Thus, the current process
of predicting candidate neoantigens mainly includes three parts:
1) identify tumor-specific mutations using whole-genome
sequencing (WGS), whole-exome sequencing (WES), or RNA-
seq; 2) predict major histocompatibility complex (MHC) types,
which in humans are called human leukocyte antigen (HLA) and
neoantigen presentation; 3) prioritize and select candidate
neoantigens (4, 32).

WES should be performed to map the cancer mutanome from
the tumor and paired normal tissue. Combining RNA-seq can
determine whether the mutation is expressed in tumors and infer
its relative frequency overlapped with exome-based variants (4,
33). The minimum requirements for immunogenic and potential
therapeutic mutations include: 1) the mutant peptide must be
processed and presented by MHCmolecules, and 2) the presented
peptide-MHC complex must be recognized by endogenous T cells
(31). Antigen processing and presentation are complex but
different processes for MHC class I and II molecules (34).
Peptides binding to MHC-I molecules are usually of a small
length of 8-10 residues, while MHC-II molecules could bind to
longer peptides with a length of 11-20 amino acids (34–36).
Several tools depend on NGS data from WES, WGS, or RNA-
seq can be used to predict HLA alleles, including Optitype (37)
and Polysolver (38) for class I alleles, seq2HLA (39), Athlates (40),
HLAScan (41), HLAProfiler (42), PHLAT (43), and ArcasHLA
(44) for both class I and II HLA alleles. Following this,
computational algorithms [for example, NetMHC (45),
NetMHCpan (46, 47), and MHCflurry (48)] have been
developed to predict MHC binding affinity. The criteria of
binding affinities (IC50) are defined as high, intermediate to
weak, and non-binder with IC50 <150, 150-500, or >500 nM,
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respectively (the commonly described binding affinity threshold)
(49). The prioritization of candidate neoantigens can be achieved
by the predicted binding affinities alone or in combination with
the mutant expression level (50). On the other hand, mass
spectrometry (MS) based immunopeptidome has enabled the
discovery of thousands of MHC-associated neoantigens (51),
and the combination of MS and WES is a powerful weapon to
predict immunogenic tumor mutations (52). Compared to MS, T
cell-based assays can directly detect whether an MHC-presented
neoantigen has been recognized by T cells (4, 32). A variety of
methodologies [e.g., fluorescently labeled HLA tetramers or
multimers (53), the enzyme-linked immunosorbent spot
(ELISpot) (54)] that stimulate and test neoantigen-reactive T
cells have been reported. However, these cell-based assays are
currently costly, time-consuming, and technically challenging (4).
CLINICAL APPLICATION OF
NEOANTIGENS

The predicted tumor-specific neoantigens are relevant targets for
clinical personalized immunotherapies, either as a vaccine or a
cellular therapy product.

Vaccines
Personalized vaccines can be formulated as synthetic long
peptide (SLP), DNA, RNA, DC, and viral and bacteria (55).
Results from several clinical trials using neoantigen vaccines in
patients with melanoma or glioblastoma are encouraging (25, 28,
29, 56, 57). Carreno et al. (25) first found that the DC vaccine
augmented pre-existing neoantigen-specific immunity and
induced previously undetected neoantigen induced T cell
responses in three advanced melanoma patients. Neoantigens
are processed and presented by HLA-A*02:01 molecules. Two
subsequent clinical studies published in 2017 confirmed the
potential of personalized neoantigen vaccine in treating
patients with melanoma (28, 29). Ott et al. vaccinated six
patients with SLP targeting up to 20 predicted tumor
neoantigens (NCT01970358). Four of the six patients
experienced no tumor recurrence in the following 25 months
after vaccination, and another two patients with recurrence
achieved complete tumor regression after received anti-PD-1
therapy (28).

Further analysis indicated that eight high-risk patients had
durable neoantigens-induced T cell responses. It is encouraging
that almost four years after being treated with vaccines, all are
alive, and six have no active disease (58). Sahin et al. generated
the first individualized RNA mutanome vaccines in 13 patients
with stage melanoma (NCT02035956). Eight patients remained
tumor-free within the follow-up period. Two offive patients with
metastatic disease achieved objective responses, while one
presented a complete response to RNA vaccine combined with
PD-1 inhibitor (29).

Notably, two recent clinical trials emphasized the significance
of the tailored vaccines in treating glioblastoma (56, 57). First,
Keskin et al. treated glioblastoma patients with an individualized
Frontiers in Oncology | www.frontiersin.org 3
multi-epitope vaccine (NCT02287428), leading to increased
neoantigen-specific CD4+ and CD8+ T cells responses in
peripheral blood (56). Second, in another clinical trial, Hilf
et al. reported that the combination of personalized vaccine
and standard of care (NCT02149225) could induce sustained
CD8+ T cells responses and predominantly CD4+ Th1 cell
responses in glioblastoma patients (57).

Those encouraging results indicated that the personalized
neoantigen vaccine approach is feasible for immunologically
“cold” tumors with a low tumor mutation burden (56).
Another early DC-based vaccine study in ovarian cancer has
shown promising clinical outcomes without serious adverse
events (59). Vaccination upregulated T cells responses against
neoantigens, therefore elicited a broad antitumor immunity. In
line with previous studies, the neoantigen-based EpiGVAX
vaccine improved antitumor immunity in colorectal cancer
(60). Recently, Ott et al. conducted a clinical trial that
combined personalized neoantigen-based vaccine (NEO-PV-
01) with nivolumab in patients with advanced melanoma, non-
small cell lung cancer, and urothelial cancer (NCT02897765)
(30). T cells responsive to neoantigens were detected in all
vaccinated patients, while no serious adverse events were
observed. The increasing T cells induced by this approach
could control tumor growth and kill tumor cells, leading to
potential clinical benefits (30).

To date, dozens of clinical trials investigating personalized
neoantigen-based vaccines alone or in combination with
checkpoint inhibitors are underway in various cancers (Table 1).

Adoptive Cell Therapies
Another neoantigen-targeted treatment approach is adoptive cell
therapy (ACT). Natural or modified T cells are expanded ex vivo
and infused into patients to enhance T cell responses and kill
tumor cells. Adoptive T cell therapies include the adoptive
transfer of TILs, or of T cells genetically engineered to express
a T cell receptor (TCR), or a chimeric antigen receptor (CAR), as
well as other immune cells like natural killer cells (61).

Personal TILs could recognize neoepitopes derived from
somatic mutations were identified in gastrointestinal cancers
(62). Several studies have shown that the adoptive transfer of T
cells specific against oncogenic mutations could mediate tumor
regression in metastatic cholangiocarcinoma (22), colorectal
cancer (26), cervical cancer (63), and breast cancer (64). In
2014, Rosenberg et al. administrated neoantigen-reactive CD4+
TILs in a patient with metastatic cholangiocarcinoma
(NCT01174121), resulting in complete tumor regression (22).
This finding evidenced that CD4+ T cells against neoantigens
can be used to mediate epithelial cancer regression. Then a
patient with metastatic colorectal cancer was found to have
CD8+ T cells in TILs which could specifically target mutant
KRAS G12D (NCT01174121) (26). After infusion of the
HLA-C*08:02–restricted TILs, all lung metastases’ objective
regression was observed. One lesion that progressed nine
months later was proven to have the loss of chromosome 6
encoding the HLA-C*08:02 MHC class I molecule (26).
Additionally, therapeutic TILs against mutant neoantigens
induced immunodominant antitumor T cell responses instead
August 2021 | Volume 11 | Article 682325
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of against human papillomavirus (HPV) antigens, resulting in
complete tumor regression in virally associated cervical cancer
(63). Successful adoptive therapy was also found in patients with
metastatic breast cancer (NCT01174121) (64). After received
TILs against four neoantigens (SLC3A2, KIAA0368, CADPS2,
and CTSB), the patient achieved durable tumor regression over
22 months (64). All these works supported that the adoptive
transfer of neoantigen-based TILs played a vital role
in immunotherapies.

Table 2 showed selected ongoing adoptive T cell therapy studies.
CHALLENGES

Despite recent advances, many challenges remain for the
application of personalized neoantigen-based vaccine or
adoptive cell transfer.

A critical issue that needs to be addressed is the expensive and
time-consuming manufacturing. Although the cost of genome
sequencing has decreased (65), it remains costly to identify
neoantigens and process good manufacturing practices. The
overall timeline from acquiring the patient’s sample to vaccine
administration was about 3 to 5 months (34). Reducing production
turnaround time is urgent, especially for patients with metastatic
disease. These cell-based experiments also are difficult to
standardize and require significant numbers of cells. Thus high-
throughput and unbiased computational strategies may need to
select neoantigens (4). An additional obstacle could be neoantigens
prediction and validation. Despite the current computational
neoantigen prediction algorithms and experimental validation
Frontiers in Oncology | www.frontiersin.org 4
approaches (tetramers or multimers, ELISpot) used to prioritize
neoantigens, some efforts are still needed to pursue further
optimization. Strategies include better predict MHC-peptide
binding and develop big datasets and new algorithms (4).
In addition, tumor heterogeneity is common and can be caused
by several factors, including 1) spontaneous mutations during
tumor progression, 2) tumor microenvironments regulation or
neoantigen loss (66), and 3) multiple lesions or even an individual
tumor originated from different subclones (61). Tumor
heterogeneity can reduce the accuracy of antigen clone
prediction in heterogeneous tumor masses. Therefore, it is vital
to analyze beneficial mutations carefully. In addition, fully
personalized immunotherapy targeting multiple clonal
neoantigens may also need to overcome the obstacle of tumor
heterogeneity (4, 61). Another challenge is to define the reliable
immune biomarkers to predict antitumor immunity and even
survival benefit. Although immune-related response criteria
(irRC) attempt to evaluate immunotherapeutic effects in clinical
practice, they may still not fully reflect all the characteristics of
clinical responses (67). Furthermore, the T cell responses induced
by neoantigens-based therapies may not directly be translated into
durable clinical responses. Thus, it is plausible to identify immune
response biomarkers in a systematic pattern.
CONCLUSIONS

Emerging evidence reveals that tumor neoantigens play an
essential role in antitumor immunity and successful cancer
immunotherapies. Both personalized neoantigen-based
TABLE 1 | Clinical trials of neoantigen vaccines.

ClinicalTrial.gov
identifier

Phases Enrollment status Cancer type Vaccine format Additional intervention Patient
accrual target

NCT03558945 Phase 1 Recruiting Pancreatic tumor peptide None 60
NCT04487093 Phase 1 Recruiting Non small cell lung cancer peptide EGFR-TKI/anti-angioge 20
NCT04397926 Phase 1 Recruiting Non small cell lung cancer peptide None 20
NCT02950766 Phase 1 Recruiting Renal cell carcinoma peptide Ipilimumab 19
NCT03359239 Phase 1 Recruiting Urothelial cancer peptide Atezolizumab 15
NCT02287428 Phase 1 Recruiting Glioblastoma peptide Pembrolizumab 56
NCT03956056 Phase 1 Recruiting Pancreatic cancer peptide None 15
NCT04117087 Phase 1 Recruiting Colorectal cancer, pancreatic

cancer
peptide Nivolumab, ipilimumab 30

NCT04248569 Phase 1 Recruiting Hepatocellular carcinoma peptide Nivolumab, ipilimumab 12
NCT04072900 Phase 1 Recruiting Melanoma peptide Toripalimab 30
NCT03953235 Phase 1/2 Recruiting Solid tumors peptide Nivolumab, ipilimumab 144
NCT03639714 Phase 1/2 Recruiting Solid tumors peptide Nivolumab, ipilimumab 214
NCT04161755 Phase 1 Recruiting Pancreatic cancer peptide Atezolizumab,

mFOLFIRINOX
20

NCT04024878 Phase 1 Recruiting Ovarian cancer peptide Nivolumab 30
NCT03552718 Phase 1 Recruiting Solid tumors peptide None 16
NCT04251117 Phase 1/2 Recruiting Hepatocellular carcinoma DNA Pembrolizumab 24
NCT03199040 Phase 1 Recruiting Triple negative breast cancer DNA Durvalumab 24
NCT04015700 Phase 1 Recruiting Glioblastoma DNA None 6
NCT03674073 Phase 1 Recruiting Hepatocellular carcinoma DC None 24
NCT04105582 Phase 1 Recruiting Triple negative breast cancer DC None 5
NCT04078269 Phase 1 Recruiting Non small cell lung cancer DC None 6
NCT04147078 Phase 1 Recruiting Solid tumors DC None 80
August 2021 | Volume 11
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vaccines and ACT approaches have shown encouraging
antitumor results. Decreased production turnaround time,
reduced manufacturing cost, better detection of immunogenic
neoantigens, improved computational algorithms, and effective
treatment biomarkers are expected to add the feasibility,
affordability, and momentum of neoantigen targeting therapies.
Neoantigen-based therapies have the potential to turn “cold”
tumors into “hot” ones. Therefore, it’s warranted to explore the
combinatorial approaches with other immunotherapies,
including checkpoint blockade therapies or conventional
treatments, including chemoradiotherapies, kinase inhibitors,
anti-angiogenesis therapies, et al. (68). Thus, it’s plausible to
think that neoantigen-based tailored therapies can be widely
performed in various cancers soon.
Frontiers in Oncology | www.frontiersin.org 5
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