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Background: People with a Fontan circulation usually have moderately impaired

exercise performance, although a subset have high physical performance

(“Super-Fontan”), which may represent a low-risk phenotype.

Methods: People with a “Super-Fontan” phenotype were defined as achieving normal

exercise performance [≥80% predicted peak oxygen uptake (VO2) and work rate] during

cardiopulmonary exercise testing (CPET) and were identified from the Australian and New

Zealand Fontan Registry. A Fontan control group that included people with impaired

exercise performance (<80% predicted VO2 or work rate) was also identified based

on a 1:3 allocation ratio. A subset of participants were prospectively recruited and

completed a series of physical activity, exercise self-efficacy, and health-related quality of

life questionnaires.

Results: Sixty CPETs (“Super-Fontan”, n = 15; control, n = 45) were included. A

subset (“Super-Fontan”, n = 10; control, n = 13) completed a series of questionnaires.

Average age was 29 ± 8 years; 48% were males. Exercise capacity reflected by

percent predicted VO2 was 67 ± 17% in the entire cohort. Compared to the “Super-

Fontan” phenotype, age at Fontan completion was higher in controls (4.0 ± 2.9 vs.

7.2 ± 5.3 years, p = 0.002). Only one (7%) person in the “Super-Fontan” group had

a dominant right ventricle compared to 15 (33%) controls (p = 0.043). None of those

in the “Super-Fontan” group were obese, while almost a quarter (22%) of controls were

obese based on body mass index (p = 0.046). Lung function abnormalities were less

prevalent in the “Super-Fontan” group (20 vs. 70%, p= 0.006). Exercise self-efficacy was

greater in the “Super-Fontan” group (34.2 ± 3.6 vs. 27.9 ± 7.2, p = 0.02). Self-reported

sports participation and physical activity levels during childhood and early adulthoodwere

higher in the “Super-Fontan” group (p < 0.05). The total average time spent participating
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in structured sports and physical activity was 4.3 ± 2.6 h/wk in the “Super-Fontan”

group compared to 2.0 ± 3.0 h/wk in controls, p = 0.003. There were no differences in

self-reported current total physical activity score or health-related quality of life between

groups (p ≥ 0.05).

Conclusions: The “Super-Fontan” phenotype is associated with a healthy weight, lower

age at Fontan completion, better exercise self-efficacy, and higher overall levels of sport

and physical activity participation during physical development.

Keywords: physical activity, congenital heart disease, exercise training, cardiac rehabilitation, exercise capacity

INTRODUCTION

Francis Fontan first described the Fontan procedure in 1971 as
a surgical method to treat babies born with tricuspid atresia
(1). The procedure involves redirecting venous return directly
into the pulmonary arteries resulting in no subpulmonary pump.
The Fontan procedure has evolved with the advancement of
medicine and surgical techniques in an attempt to optimize
long-term outcomes, and although clinical outcomes have
improved significantly, rates of morbidity and premature death
are still high.

Exercise intolerance is common in people living with a Fontan
circulation. Peak oxygen uptake (VO2) is the primary index
of exercise tolerance (i.e., exercise capacity) and has significant
prognostic value in patients with congenital heart disease (2).
People with a Fontan circulation have reduced percent predicted
peak VO2, which on average ranges from 60 to 65% (3, 4).
However, there is extensive variability between patients, and
it is acknowledged that a subgroup—“Super-Fontans”—have
superior exercise performance (exercise and work capacity)
compared to the majority of the Fontan population (5).

Currently, there is limited information about this subset
of people who have superior physical performance. Since we
originally described this unique phenotype (5), other centers have
also characterized a similar subset of Fontan patients with normal
exercise capacity (6, 7). Importantly, higher exercise capacity in
people with a Fontan circulation appears to be associated with
better prognosis and end-organ function (7–9). Understanding
the factors associated with normal exercise capacity in this unique
subset of patients can potentially aid in risk stratification and
the identification of therapeutic targets. The aim of this study
was to characterize factors associated with superior exercise
performance in people with the “Super-Fontan” phenotype.

METHODS

People in the Australian and New Zealand Fontan Registry with
recorded cardiopulmonary exercise testing (CPET) results and a
“Super-Fontan” phenotype were identified and included in this
study. People with impaired exercise capacity were also identified
as controls based on a 1:3 allocation. Exercise and work capacity
was measured by peak VO2 and work rate, respectively. To
account for sex, height, and weight differences, peak VO2 and
work rate are expressed as a percentage of predicted normal

values (10, 11). Participants were categorized into a “Super-
Fontan” (5) or a control group. The “Super-Fontan” group
was defined as achieving normal exercise and work capacity
(≥80% predicted) (5, 6, 12–15). The control group consisted
of Fontan subjects who had reduced exercise or work capacity
(<80% predicted).

We decided to include work capacity as a criterion as obese
patients may have normal exercise capacity but present with
limited work capacity and exercise intolerance. Participants
were excluded if their CPET was conducted on a treadmill
or if results were considered to be submaximal effort defined
as a peak respiratory exchange ratio <1.0 (16). A subset
of participants (study group) completed a series of health-
related quality of life, physical activity, and exercise self-efficacy
questionnaires. Clinical and demographic information, including
dominant ventricular morphology, type of Fontan procedure,
patent fenestration, sex, and age at Fontan completion, were
obtained from the Australian and New Zealand Fontan Registry
database and medical records when available. This study was
approved by the Royal Children’s Hospital Melbourne Human
Research Ethics Committee (38,172).

Exercise Self-Efficacy and Quality of Life
Exercise self-efficacy was assessed using the Exercise Self-Efficacy
Scale (17). The total score was calculated as the sum of all
questions, with a higher score reflecting greater exercise self-
efficacy, which assesses an individual’s beliefs in their ability to
continue exercising regularly.

Health-related quality of life was measured using the PedsQL
Adult Quality of Life Inventory Version 4. The items of each
question were reversed scored, and linearly transformed in
accordance with the scoring guidelines. In addition to the total
score, the physical health summary score and psychosocial
health summary score were also calculated, with higher scores
suggesting better health-related quality of life.

Cardiopulmonary Exercise Testing and
Spirometry
Center specific CPET protocols were performed on an
electronically braked cycle ergometer as part of routine
clinical care. In addition to measures of peak VO2, work rate,
and pre-exercise spirometry, CPET parameters including minute
ventilation (VE), carbon dioxide production (VCO2), blood
pressure, VO2 at the anaerobic threshold, heart rate (HR),
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and arterial oxygen saturation indicated by pulse oximetry
were obtained when available. Predicted maximal oxygen pulse
(ml/beat)—a surrogate for stroke volume—was calculated by
dividing predictedmaximal VO2 by predictedmaximal HR (220–
age) (18). A cardiovascular limitation to exercise performance
was indicated by a chronotropic index (cardiovascular index)
above the upper limit of normal (19) or a reduced peak oxygen
pulse (<80% predicted). Chronotropic index was calculated as
1HR (beats/min)/1VO2 (L/min) (19, 20). Maximal voluntary
ventilation (MVV) was estimated as forced expiratory volume
in 1 s (FEV1) x 40, and breathing reserve was calculated as
MVV–peak VE or (MVV–peak VE)/MVV x 100. A mechanical
ventilatory limitation to exercise was suggested by a breathing
reserve of <15% or <11 L/min (18, 21). Peak circulatory power
was calculated as peak VO2 (mL/kg/min) x peak systolic blood
pressure (mm Hg). Ventilatory inefficiency was suggested by
a peak VE/VCO2 ratio of >40. A significant fall in oxygen
saturation was considered as a decrease of ≥5%.

Spirometry parameters were considered as abnormal if values
were below the lower limit of normal calculated from the Global
Lung Initiative regression equations (22). Lung function was
defined as normal, obstruction, restriction, or mixed defect
in accordance with the American Thoracic Society/European
Respiratory Society algorithm (23). In the absence of total lung
capacity measured by plethysmography, ventilatory restriction
was suggested if forced vital capacity (FVC) was below the lower
limit of normal. Mixed defect was suggested if the FEV1/FVC
ratio and FVC were below the lower limit of normal.

Physical Activity Across the Lifespan
To assess structured sport and physical activity participation
across the lifespan, we used amodified version of the Kriska long-
term recall physical activity questionnaire (24). Participants were
asked to recall the sports and physical activities they participated
in across multiple age ranges. For each sport and physical activity
reported, the years in each age range, duration (hours) per
month, and months per year were recorded. Sports and physical
activities were categorized as childhood (ages 4–12 years), high
school and early adulthood (ages 13–21 years), older adulthood
(ages 22+ years), and physical activity across the lifespan (four to
the age at questionnaire completion). The total hours of sport or
physical activity participation were summated for each category
and indexed as an average per week (h/wk).

Current Level of Physical Activity
Self-reported current levels of physical activity and sedentary
time were assessed using the International Physical Activity
Questionnaire (IPAQ) Long-Form. The IPAQ scores were not
truncated, and metabolic minutes per week (MET-min/week)
were calculated in accordance with the IPAQ Scoring Manual.
Sedentary activity was reflected by sitting time (minutes) per day.

Statistical Analysis
Statistical analysis was performed using IBM SPSS version 26
software (IBM Corp, Armonk, NY, USA). Data are presented
as mean ± standard deviation or number (%) unless specified
otherwise. The Shapiro-Wilk test or visual inspection of

histograms and Q-Q plots were conducted to assess for
normal distribution. An independent t-test or Mann–Whitney
U was used as appropriate to compare differences between the
“Super-Fontan” group and the control group. Proportions were
compared using Pearson Chi-Square. A p-value of <0.05 was
considered as statistically significant.

RESULTS

Participant Demographics
Detailed participant demographics and characteristics are shown
in Table 1. Of the 60 people with a Fontan circulation included in
the CPET analysis, 15 had a “Super-Fontan” phenotype, and 35
had impaired exercise performance. The average age was 28.7 ±
7.6 years, and 48% were males.

The average body mass index (BMI) was 25.9 kg/m2, and
20 people (33%) were overweight or obese. None who had the
“Super-Fontan” phenotype were obese based on BMI compared
to 22% in the control group (p = 0.046). The majority (70%)
had a total cavopulmonary connection, and the average age
at Fontan procedure was 6.4 ± 5.0 years. The age at Fontan
procedure was lower in the “Super-Fontan” group compared to
the control group (4.0 ± 2.9 vs. 7.2 ± 5.3 years, p = 0.002).
Thirty-seven (62%) had a dominant left ventricle, 16 (27%) had a
dominant right ventricle, 3 (5%) had biventricular morphology,
and 4 (7%) had indeterminate ventricles. A dominant right
ventricle was associated with impaired exercise performance
(p = 0.043). One person (7%) in the “Super-Fontan” group had
a Fontan conversion from an atriopulmonary connection to an
extracardiac conduit type circulation. There were no statistically
significant differences in age, sex, BMI, type of Fontan procedure,
or patent fenestration between groups (p ≥ 0.05 for all).

Twenty-three Fontan participants completed the
questionnaires. Of the 23 Fontan study group participants,
10 (43%) were in the “Super-Fontan” group, and 13 (57%) were
in the control group. There were no differences between groups
in baseline demographics for the subset of study participants
who completed the questionnaires (p ≥ 0.05 for all).

Exercise Self-Efficacy and Health-Related
Quality of Life
The average total exercise self-efficacy score was higher in the
“Super-Fontan” group compared to the control group (34.2± 3.6
vs. 27.9± 7.2, p= 0.02).

There was no statistically significant difference in total health-
related quality of life score between the “Super-Fontan” group
and the control group (78.9 ± 13.0 vs. 68.2 ± 18.8, p = 0.14).
There was also no statistically significant difference between
the “Super-Fontan” and control groups in the physical health
summary score (80.3 ± 11.7 vs. 67.1 ± 21.9, p = 0.1) or
psychosocial health summary score (78.2 ± 15.4 vs. 68.8 ± 19.6,
p= 0.23).

Cardiopulmonary Exercise Testing and
Spirometry
Detailed CPET and spirometry results are shown in Tables 2,
3. In the study group, the average time from the CPET to the
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TABLE 1 | Participant demographics.

All Fontan Participants “Super-Fontan” Control p-value

n n n

Sex (males), n (%) 60 29 (48.3%) 15 5 (33.3%) 45 24 (53.3%) 0.18

Age, years 60 28.7 ± 7.6 15 27.9 ± 5.7 45 28.9 ± 8.2 0.53

BMI, kg/m2 60 25.9 ± 4.7 15 24.4 ± 2.7 45 26.3 ± 5.1 0.34

Obese, n (%) 60 10 (16.7%) 15 0 (0%) 45 10 (22.2%) 0.046

Type of Fontan, n (%) 60 15 45 0.75a

APC 18 (30.0%) 4 (26.7%) 14 (31.1%)

LT 23 (38.3%) 8 (53.3%) 15 (33.3%)

ECC 19 (31.7%) 3 (20.0%) 16 (35.6%)

Dominant ventricle, n (%) 60 15 45 0.043b

Left 37 (61.7%) 13 (86.7%) 24 (53.3%)

Biventricular 3 (5%) 1 (6.7%) 2 (4.4%)

Indeterminant 4 (6.7%) 0 (0%) 4 (8.9%)

Right 16 (26.7%) 1 (6.7%) 15 (33.3%)

Age at Fontan palliation, years 60 6.4 ± 5.0 15 4.0 ± 2.9 45 7.2 ± 5.3 0.002

Patent fenestration, n (%) 60 10 (16.7%) 15 1 (6.7%) 45 9 (20%) 0.23

Time since Fontan palliation, years 60 22.2 ± 5.6 15 23.9 ± 4.2 45 21.7 ± 6.0 0.19

APC, atriopulmonary connection; BMI, body mass index; ECC, extra cardiac conduit; LT, lateral tunnel.
aAPC vs. total cavopulmonary connection.
bDominant left ventricle, biventricular, or indeterminant ventricle vs. dominant right ventricle. Bold values denote statistical significance (p < 0.05).

questionnaires was 2.1 ± 1.9 years, and there was no difference
between groups (p= 0.5).

The average percent predicted peak VO2 and work rate for
the entire cohort was 67 ± 17% and 72 ± 22%, respectively.
There was no statistically significant difference in percent
predicted maximum HR between the “Super-Fontan” and
control groups (83 ± 9% vs. 76 ± 15%, p = 0.09). Peak
circulatory power, HR reserve (HRR), peak VE, and VO2 at
anaerobic threshold (percentage of predicted VO2) were higher
in the “Super-Fontan” group (p < 0.05 for all). There was
no difference in exercise-induced desaturation between groups
(p= 0.5).

Of the 40 participants (“Super-Fontan,” n = 11; control,
n = 29) where the chronotropic index could be calculated, 7
(18%) participants had values outside the normal range. All
participants in the “Super-Fontan” group had a chronotropic
index within the normal range. In the control group, 4 (14%)
participants had a high chronotropic index, and 3 (10%)
had a low chronotropic index suggesting cardiovascular
limitation and chronotropic insufficiency as inhibitors to
exercise performance, respectively. The “Super-Fontan”
group also had a higher percent predicted oxygen pulse
compared to the control group (109 ± 16% vs. 80 ± 20%,
p < 0.001). When markers of cardiovascular limitation were
combined [low peak oxygen pulse (<80% predicted) or a
high chronotropic index], no patient with the “Super-Fontan”
phenotype had evidence of a cardiovascular limitation to
exercise capacity compared to 62% in the control group
(p < 0.001).

Thirty-seven people with a Fontan circulation (“Super-
Fontan,” n = 10; control, n = 27) had baseline spirometry

recorded, 16 (43%) had normal spirometry function, 20 (54%)
had evidence of ventilatory restriction, and 1 (3%) had a pattern
suggestive of mixed defect. The “Super-Fontan” group tended
to have higher percent predicted FVC compared to the control
group (85 ± 8% vs. 78 ± 10%, p = 0.05). Lung function
abnormalities at rest were associated with impaired exercise
performance; 2 (20%) patients in the “Super-Fontan” group had
ventilatory or mixed defect compared to 19 (70%) in the control
group (p= 0.006).

The average breathing reserve was 36 ± 18%, and five out
of the 37 patients had a mechanical ventilatory limitation to
exercise performance. The majority (80%) who had a mechanical
ventilatory limitation also had evidence of ventilatory restriction
at rest.

Physical Activity Across the Lifespan
One of the participants in the control group had an incomplete
questionnaire and was excluded from the analysis. Results for
the Kriska physical activity questionnaire are shown in Table 4;
Figure 1. Childhood physical activity was higher in the “Super-
Fontan” group compared to the control group (3.9± 3.3 h/wk vs.
2.0± 3.4 h/wk, p= 0.04). The average h/wk of sports and physical
activity participation during high school and early adulthood
was 5.2 ± 4.4 h/wk in the “Super-Fontan” group and 2.1 ± 3.1
h/wk in the control group, p = 0.04. There was no statistically
significant difference in sport and physical activity participation
during older adulthood. The overall average duration of sport and
physical activity participation indexed per week was higher in the
“Super-Fontan” group compared to the control group (4.3 ± 2.6
h/wk vs. 2.0± 3.0 h/wk, p= 0.003).
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TABLE 2 | Lung function and cardiopulmonary exercise testing results.

All Fontan Participants “Super-Fontan” Control p-value

n n n

FEV1, percent predicted 37 80.6 ± 11.7 10 85.7 ± 10.4 27 78.7 ± 11.7 0.11

FVC, percent predicted 37 79.9 ± 9.8 10 85.0 ± 7.8 27 78.0 ± 9.9 0.05

FEV1/FVC ratio 37 0.85 ± 0.06 10 0.85 ± 0.06 27 0.85 ± 0.06 0.93

Peak VO2, percent predicted 60 66.8 ± 17.1 15 89.4 ± 7.1 45 59.3 ± 12.0 <0.001

Peak work rate, percent predicted 60 71.7 ± 21.5 15 98.0 ± 9.7 45 63.0 ± 16.6 <0.001

VO2 at AT, percentage of predicted VO2 58 44.4 ± 14.9 14 60.2 ± 16.2 44 39.4 ± 10.3 <0.001

Oxygen pulse, percent predicted 60 87.0 ± 23.0 15 108.7 ± 15.6 45 79.7 ± 20.4 <0.001

Maximal HR, percent predicted 60 78.1 ± 13.7 15 83.3 ± 9.2 45 76.4 ± 14.6 0.09

HRR, bpm 60 65.7 ± 27 15 83.2 ± 20.4 45 59.9 ± 26.6 0.003

Chronotropic index, percent predicted 40 109.2 ± 36.9 11 99.1 ± 23.1 29 113.0 ± 40.6 0.19

Peak SpO2, percent 56 90.4 ± 7.2 13 91.2 ± 6.9 43 90.2 ± 7.4 0.57

1SpO2, percent 56 3.6 ± 4.6 13 4.3 ± 5.2 43 3.4 ± 4.5 0.56

Peak RER 60 1.21 ± 0.11 15 1.12 ± 0.07 45 1.22 ± 0.11 0.04

Peak circulatory power, mm Hg × mL/kg/min 53 3,425 ± 1,454 13 4,739 ± 1,519 40 2,998 ± 1,161 <0.001

Peak VE, L/min 60 72.1 ± 21.8 15 85.6 ± 21.7 45 67.7 ± 20.1 0.01

Peak VE/VCO2 60 37.3 ± 8.6 15 35.9 ± 8.3 45 37.7 ± 8.7 0.54

Breathing reserve, percent 37 35.5 ± 17.8 10 28.6 ± 23.6 27 38.1 ± 14.8 0.15

AT, anerobic threshold; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HR, heart rate; HRR, heart rate reserve; RER, respiratory exchange ratio; SpO2, arterial oxygen

saturation measured by pulse oximetry; VE, minute ventilation; VO2, oxygen uptake; VCO2, carbon dioxide production. Bold values denote statistical significance (p < 0.05).

TABLE 3 | Lung function and cardiopulmonary exercise testing result categories.

All Fontan Participants “Super-Fontan” Control p-value

n n n

Lung function, n (%) 37 10 27 0.006a

Normal 16 (43.2%) 8 (80%) 8 (29.6%)

Restriction 20 (54.1%) 2 (20%) 18 (66.7%)

Obstruction 0 (0%) 0 (0%) 0 (0%)

Mixed defect 1 (2.7%) 0 (0%) 1 (3.7%)

Mechanical ventilatory limitation (yes), n (%) 37 5 (13.5%) 10 2 (20%) 27 3 (11.1%) 0.48

Peak VE/VCO2 ratio, n (%) 60 15 45 0.53

≤40 40 (66.7%) 11 (73.3%) 29 (64.4%)

>40 20 (33.3%) 4 (26.7%) 16 (35.6%)

Chronotropic index, n (%) 40 11 29 0.073b

Low 3 (7.5%) 0 (0%) 3 (10.3%)

Low-normal 3 (7.5%) 0 (0%) 3 (10.3%)

Normal 22 (55%) 10 (90.9%) 12 (41.4%)

High-normal 8 (20%) 1 (9.1%) 7 (24.1%)

High 4 (10%) 0 (0%) 4 (13.8%)

Oxygen pulse, n (%) 60 15 45 <0.001

≥80% predicted 32 (53.3%) 15 (100%) 17 (37.8%)

<80% predicted 28 (46.7%) 0 (0%) 28 (62.2%)

Cardiovascular limitation (yes), n (%) 60 28 (46.7%) 15 0 (0%) 45 28 (62.2%) <0.001

1SpO2 >5% (yes), n (%) 56 17 (30.4%) 13 5 (38.5%) 43 12 (27.9%) 0.47

SpO2, arterial oxygen saturation measured by pulse oximetry; VCO2, carbon dioxide production; VE, minute ventilation.
aNormal lung function vs. restriction, obstruction or mixed defect.
bNormal range chronotropic index vs. low or high chronotropic index. A mechanical ventilatory limitation to exercise performance was suggested by a breathing reserve of <15% or

<11 L/min. A cardiovascular limitation to exercise performance was suggested by a peak oxygen pulse <80% of predicted or a high chronotropic index. Bold values denote statistical

significance (p < 0.05).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 5 December 2021 | Volume 8 | Article 764273

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Tran et al. The “Super-Fontan” Phenotype

Current Physical Activity Levels
The detailed IPAQ results are shown in Table 4. The average
self-reported MET-min/wk was higher at all physical activity
intensities and sub-domains, except for the transport domain
in the “Super-Fontan” group, although this did not achieve
statistical significance (Figure 2). Sitting time tended to be lower
in the “Super-Fontan” group compared to the control group (308
± 123 vs. 453± 175 min/day, p= 0.07).

DISCUSSION

Despite an absent subpulmonary ventricle in the Fontan
circulation, a subset of the population (“Super-Fontans”) can still
achieve normal exercise performance, which is associated with
increased levels of physical activity early in life, a healthy weight,
and earlier age at Fontan completion.

Factors Associated With Superior Physical
Performance
In this study, the age at Fontan completion was lower in those
with a “Super-Fontan” phenotype, and the absence of obesity or
a dominant right ventricle were associated with normal exercise
performance. This contrasts with previous findings that showed
no differences between exercise performance Fontan phenotypes
with these factors (6, 7). Our study describes an older Fontan
cohort compared to previous series, and the conflicting findings
might be attributed to an era effect. Alternatively, later age
at Fontan completion, dominant right ventricular morphology,
and obesity may manifest as important factors that impair the
ability to achieve “normal” exercise performance later in life
when circulatory function is more susceptible to compromise
and maladaptation.

Similar to our findings, a review by Daley et al. found that
earlier age at Fontan completion is associated with preserved
long-term exercise capacity (25). A large multi-center series
in a contemporary Fontan cohort also corroborates this;
each year Fontan completion was delayed, percent predicted
VO2 and HRR decreased by 1.5 percentage points and 4.1
beats/min, respectively (26). This association may be explained
by enhanced reversal of adverse cardiac remodeling and offsetting
volume overload with earlier age at Fontan completion (27,
28). Indeed, patients with a later age at Fontan completion
present with evidence of greater ventricular dysfunction and
atrioventricular valve insufficiency (29). Conversely, one study
found a positive correlation between age at Fontan completion,
and percent predicted peak VO2 (30). Although later age at
Fontan completion is accompanied by an extended period of
volume overload and cyanosis, it may allow for pulmonary artery
catch-up growth and a larger conduit to optimize flow (31, 32);
however, this theory requires verification.

We have previously reported increased adiposity is associated
with a higher risk of adverse outcomes in people with a
Fontan circulation (33). None of the people with the “Super-
Fontan” phenotype were obese based on BMI compared to 22%
in the comparator group with impaired exercise performance.
The latest Pediatric Heart Network results also support this

finding (34). This may be related to the impact of excess
adiposity on respiratory muscle pump function and increased
mechanical loading, which may impair exercise performance. In
addition, the importance of maintaining a healthy body weight
to preserve low pulmonary vascular resistance is increasingly
recognized (32). Importantly, higher BMI often co-exists with
increased visceral adiposity (epicardial and intra-abdominal fat),
which may be particularly pathological—visceral adiposity is
positively associated with pulmonary vascular resistance and
inversely associated with ejection fraction and cardiac index in
the Fontan circulation (35, 36). Of course, BMI may not be a
robust measure of adiposity in the setting of complex congenital
heart disease, where myopenia is common (33, 37, 38). The
association between adiposity and pulmonary vascular resistance
may be attributed to the adverse effects of pro-inflammatory
adipokines (39), co-existing obstructive sleep apnea (40, 41),
or decreased adiponectin (39, 42). The mechanisms underlying
the association between adiposity and Fontan hemodynamics
warrant further investigation.

We showed that an absence of a dominant right ventricle
was associated with the “Super-Fontan” phenotype. A linear
association between ventricular morphology and exercise
capacity has previously been reported (43, 44). However, when
categorized into exercise performance phenotypes (i.e., normal
exercise performance vs. impaired exercise performance),
series from Cincinnati Children’s Hospital and the Children’s
Hospital in Philadelphia (a younger population than ours)
found no association between ventricular morphology and
a superior exercise performance phenotype (6, 7). It would
seem plausible that a systemic right ventricle (compared to
a systemic left ventricle) would be less likely to adapt to
progressive hemodynamic perturbations over time and become
more susceptible to circulatory demise and exercise intolerance.
Long-term follow-up studies show dominant right ventricular
morphology to be associated with worse clinical outcomes
(45, 46).

We did not find any differences with regard to type of
Fontan circulation, fenestration patency, or sex between
the “Super-Fontan” phenotype and those with impaired
exercise performance. However, although not statistically
significant, there was a higher percentage of females
in the “Super-Fontan” group compared to those with
impaired exercise performance. Previous studies have also
shown that a higher proportion of females are able to
achieve better exercise performance (6, 7, 34), and have
superior long term-outcomes (47, 48). The mechanisms
underlying these sex differences are unclear and warrant
further investigation.

Of note, while not statistically significant, and there were no
differences in oxygen saturation, 20% of people with impaired
exercise performance had a patent fenestration. It is unknown if
this is associated with institutional bias toward fenestration or if
these patients reflect a higher risk cohort requiring a fenestration
at Fontan completion.

There were also no statistically significant differences in
health-related quality of life measures between the “Super-
Fontan” and control group in this study. However, the
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TABLE 4 | The international physical activity questionnaire (IPAQ) and modified Kirska questionnaire results.

“Super-Fontan” Control p-value

n n

IPAQ

Work, MET-min/wk 10 2,002 ± 2,399 13 372 ± 889 0.06

Transport, MET-min/wk 10 306 ± 488 13 592 ± 721 0.10

Domestic and garden, MET-min/wk 10 1,519 ± 1,285 13 999 ± 1,483 0.23

Leisure time, MET-min/wk 10 1,214 ± 1,456 13 966 ± 1,141 0.83

Walking, MET-min/wk 10 2,015 ± 2,320 13 1,161 ± 1,419 0.78

Moderate activity, MET-min/wk 10 2,393 ± 1,794 13 1,294 ± 1,485 0.13

Vigorous activity, MET-min/wk 10 632 ± 584 13 474 ± 1,043 0.21

Total physical activity score, MET-min/wk 10 5,040 ± 2,209 13 2,929 ± 2,186 0.10

Sitting time, min/day 10 308 ± 123 13 453 ± 175 0.07

Modified Kriska physical activity questionnaire

Childhood activity (ages 4–12), h/wk 10 3.9 ± 3.3 12 2.0 ± 3.4 0.04

High school and early adulthood (ages 13–21), h/wk 10 5.2 ± 4.4 12 2.1 ± 3.1 0.04

Older adulthood (22+), h/wk 10 4.6 ± 3.8 10 2.4 ± 3.5 0.11

Physical activity across the lifespan, h/wk 10 4.3 ± 2.6 12 2.0 ± 3.0 0.003

Hours per week, h/wk; Metabolic minutes per week, MET-min/wk; Minutes per day, min/day. Bold values denote statistical significance (p < 0.05).

FIGURE 1 | Hours per week (h/wk) spent participating in sports and physical activity.

associations between quality of life and exercise performance
are inconsistent across studies and warrant further investigation
(49–51). This may be related to adults with a Fontan
circulation accommodating to exercise intolerance over
time. Supporting this notion, even asymptomatic people
with congenital heart disease (New York Heart Association
Functional Class I) have objectively impaired exercise
capacity (2). Furthermore, the benefits of physical activity
and exercise training on quality of life (particularly in the
psychosocial domains) are potentially related to the social

engagement that accompanies participation rather than better
physical function.

Exercise Response and Lung Function
HRR was greater in those with the “Super-Fontan” phenotype
compared to the control group. Importantly, diminished HRR
may be associated with arrhythmia-related mortality (9). This
may explain why the combination of peak VO2 and HRR has a
more substantial prognostic value for 5-year survival (52), with
peak VO2 likely associated with heart-failure-related mortality.
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FIGURE 2 | International physical activity questionnaire (IPAQ) scores. (A)

IPAQ intensity and sub-domain scores, (B) IPAQ total physical activity score,

(C) Sitting time. Metabolic minutes per week (MET-min/wk); minutes per day

(min/day).

We also found higher peak circulatory power on average in
people with the “Super-Fontan” phenotype, which is associated
with better outcomes (53, 54). Collectively, the “Super-Fontan”
exercise response reflects a low-risk Fontan phenotype.

Overall, most of our Fontan cohort had normal range
chronotropic index implying an appropriate HR response relative
to the metabolic load. Only three patients had a low chronotropic
index with impaired exercise capacity indicating chronotropic
insufficiency—It has been postulated that an inappropriate
HR response is not a primary limiting factor to exercise
performance unless severe chronotropic incompetence is present
(55, 56). Exercise performance in the Fontan circulation appears
predominately limited by preload deprivation that inhibits stroke
volume augmentation. Over half of our Fontan patients with
impaired peak VO2 show evidence of a cardiovascular (stroke
volume) limitation to exercise performance denoted by an
elevated chronotropic response or low peak oxygen pulse. Of
course, the reduced oxygen pulse and elevated chronotropic

index can also reflect impaired peripheral muscle oxygen
extraction, which is also present in the Fontan circulation (57).

Lung function is commonly impaired in people with a
Fontan circulation and is associated with prognosis and exercise
capacity (58–60). The majority of our Fontan cohort with
baseline spirometry results recorded had evidence of ventilatory
restriction or mixed defect. Baseline spirometry abnormalities
were less prevalent in the “Super-Fontan” phenotype compared
to those with impaired exercise performance. However, despite
abnormal lung function at rest, most patients in this study
had ample breathing reserve, potentially because exercise
performance in Fontan patients is predominantly impaired by
cardiovascular limitations prior to encroaching upon ventilatory
constraints. Only five people had evidence of mechanical
ventilatory limitation during exercise, with no difference
between the “Super-Fontan” and control groups. Of note,
it is likely ventilatory limitations to exercise performance is
underappreciated using breathing reserve in isolation as a
surrogate. The addition of exercise flow-volume loops will
perhaps reveal more Fontan patients with ventilatory limitations
to exercise performance.

Exercise Self-Efficacy and Physical Activity
Although self-reported physical activity levels were higher
and sedentary (sitting) time was lower in the “Super-Fontan”
group compared to the controls, this did not achieve statistical
significance. This may be attributed to the duration between
CPET and the administration of the questionnaires (∼2 years),
which likely does not truly reflect their current levels of physical
activity. Furthermore, while the IPAQ shows moderate validity
compared to accelerometers (61), in the setting of congenital
heart disease, patients often overestimate their physical activity
levels using the IPAQ long-form (62).

Indeed, Powell et al. reported that 77% of patients with
the “Super-Fontan” phenotype participated in regular physical
activity compared to 10% in those with impaired exercise
performance (6). This is in accordance with our previous reports
that show many of those with a “Super-Fontan” phenotype
or positive exercise capacity trajectory regularly participate
in moderate-to-vigorous sports and physical activity (5, 63).
Importantly, increased physical activity levels could be attributed
to higher exercise self-efficacy in the “Super-Fontan” cohort.
Preceding studies have shown an association between physical
activity levels and exercise self-efficacy (64).

We found that participation in regular structured sports
and physical activity from childhood to early adulthood was
significantly higher in those with a “Super-Fontan” phenotype
compared to those with impaired exercise performance. Total
overall participation in sports and physical activity was also
higher in the “Super-Fontan” group. While exercise training
interventions can increase peak VO2 (65, 66), it appears that
participation in regular sports and physical activity from a
younger age lays the foundation to achieve a low-risk “Super-
Fontan” phenotype. This is consistent with the findings of
Ohuchi et al. who showed that increased physical activity
levels during childhood—reflected by a positive exercise capacity
trajectory—were associated with better adult Fontan physiology,
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hepatic function, and prognosis (67). In another series, children
and adolescents with a Fontan circulation who participated in
sports during middle and high school had better lung function
and exercise capacity (68). Regular sports, exercise training, or
physical activity may be particularly crucial during childhood
when organs, and especially the pulmonary vasculature, are likely
more sensitive to adaptation in this period of rapid growth and
development (67).

The association with regular moderate-to-vigorous physical
activity participation and the “Super-Fontan”—superior exercise
performance and low-risk—phenotypical expression may be
attributed to multiple mechanisms. Regular participation in
moderate-to-vigorous intensity sports and physical activity is
important for the development of skeletal muscle mass and
prevention of Fontan-associated myopenia (37). Deficiencies in
skeletal muscle mass have important implications for ventricular
function (37), and exercise capacity (57, 69). Higher appendicular
muscle mass provides structural support to reduce venous
compliance and enhances skeletal muscle pump function,
facilitating preload and ventricular filling (70, 71). Indeed,
increasing skeletal muscle mass through resistance exercise
training improves ventricular filling, cardiac output, peak VO2,

and reduces respiratory dependence in people with a Fontan
circulation (72).

A primary constraint to ventricular filling appears to
be elevated pulmonary vascular resistance. To maintain low
pulmonary vascular resistance, there must be an adequately
developed pulmonary circulation. However, pulmonary artery
growth essentially ceases after Fontan completion (73), likely
due to the combination of reduced pulsatility and pulmonary
flow. We have previously shown that lower limb exercise
can transiently increase (pulsatile) pulmonary flow (74). It
is likely that engaging in regular long-term physical activity
or exercise training (particularly during childhood), which
transiently increases pulmonary flow (and may also alter
the flow profile), facilitates pulmonary vascular development.
Furthermore, periodic increases in ventricular filling associated
with exercise may augment volume load to the chronically
preload deprived ventricle and attenuate progressive “disuse
hypofunction”. This phenomenon is observed when volume
load is restored following atrial septal defect closure in adults,
reversing diastolic dysfunction (31).

Of course, the association between the “Super-Fontan”
phenotype and physical activity during childhood, and early
adulthood, may simply reflect that those with superior exercise
performance are more capable of participating in regular sports
and physical activity, especially from an earlier age.

CLINICAL IMPLICATIONS AND FUTURE
DIRECTIONS

While there appear to be common characteristics associated
with the “Super-Fontan” phenotype, some patients in this
subset still have features—such as a dominant right ventricle,
atriopulmonary connection, or patent fenestration—that are

expected to impede exercise performance. This suggests that
extracardiac and potentially modifiable factors contribute to the
expression of the “Super-Fontan” phenotype.

A key finding of our study is that exercise-self efficacy and
regular participation in structured sports and physical activity
from a young age is significantly higher in those with the “Super-
Fontan” phenotype. This highlights the need to promote exercise
training, sports, and physical activity in people with a Fontan
circulation from early in life. Those who participated in sports
from a young age probably also have higher exercise self-efficacy,
which establishes a foundation for life-long physical activity
habits. To date, exercise training is the most effective therapy for
improving peak VO2 in people who have a Fontan circulation
(70). While exercise training recommendations are now available
for people with a Fontan circulation (65, 66, 75), they are
predominantly based on clinical experience and expert opinion.

The forthcoming multi-center randomized controlled Fontan
Fitness Intervention Trial (F-FIT) will hopefully provide
more conclusive evidence to aid the development of future
exercise training recommendations for people living with a
Fontan circulation.

LIMITATIONS

It is important to note that the retrospective design of this
study can only show association and not causation. A key
limitation in this study is the reliability of long-term physical
activity questionnaires, which is subject to recall error. However,
the reliability of long-term physical activity recall appears to
be reasonable, with a previous study reporting an intraclass
correlation coefficient of∼0.4 (76).

CPET is a specialized assessment that requires a high degree of
clinical expertise to perform and interpret. This may restrict the
results of this study to patients in the care of expert centers, which
are predominately located in major cities. Indeed, we previously
reported that <8% of people in the Australian and New Zealand
Fontan Registry had recorded serial CPET documented (63).
Therefore, our sample may be subjected to selection bias. The
spirometry and CPET data were also derived from the tabulated
reports available, and we had limited access to the flow-volume
curves or primary CPET data. This restricted our ability to
visually inspect the acceptability and repeatability of spirometry
maneuvers, verify anaerobic threshold selection, or standardize
the processing of CPET parameters. However, the spirometry
and CPET studies were predominantly performed in “expert”
experienced centers, and our results reflect the available reports
used in clinical practice.

Our study is also limited in sample size, which increases the
risk of a type II error, and we may not be able to detect some
important associations.

Ideally, the function of the single ventricle and “Super-
Fontan” status should be evaluated during upright exercise
with invasive haemodynamic measures, but this is technically
challenging. Currently, we and others have defined the
“Super-Fontan” phenotype as achieving ≥80% predicted VO2
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and/or work rate (5–7, 15), which can be influenced by
the regression prediction equation selected and remains an
arbitrary threshold.

CONCLUSIONS

The “Super-Fontan” phenotype is associated with a healthy
weight, younger age of Fontan completion (around 4 years), and
higher overall levels of sport and physical activity participation
during childhood and early adulthood. The “Super-Fontan”
phenotype exercise response was accompanied by a higher HRR,
oxygen pulse, peak circulatory power, and a later anaerobic
threshold onset.
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