
b-Catenin Phosphorylated at Serine 45 Is Spatially
Uncoupled from b-Catenin Phosphorylated in the GSK3
Domain: Implications for Signaling
Meghan T. Maher1,2, Rigen Mo1, Annette S. Flozak1, Ofra N. Peled3, Cara J. Gottardi1*

1 Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 2 Integrated Graduate Program in the Life

Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America, 3 Department of Biological Sciences, National Louis University,

Chicago, Illinois, United States of America

Abstract

C. elegans and Drosophila generate distinct signaling and adhesive forms of b-catenin at the level of gene expression.
Whether vertebrates, which rely on a single b-catenin gene, generate unique adhesive and signaling forms at the level of
protein modification remains unresolved. We show that b-catenin unphosphorylated at serine 37 (S37) and threonine 41
(T41), commonly referred to as transcriptionally Active b-Catenin (ABC), is a minor nuclear-enriched monomeric form of b-
catenin in SW480 cells, which express low levels of E-cadherin. Despite earlier indications, the superior signaling activity of
ABC is not due to reduced cadherin binding, as ABC is readily incorporated into cadherin contacts in E-cadherin-restored
cells. b-catenin phosphorylated at serine 45 (S45) or threonine 41 (T41) (T41/S45) or along the GSK3 regulatory cassette S33,
S37 or T41 (S33/37/T41), however, is largely unable to associate with cadherins. b-catenin phosphorylated at T41/S45 and
unphosphorylated at S37 and T41 is predominantly nuclear, while b-catenin phosphorylated at S33/37/T41 is mostly
cytoplasmic, suggesting that b-catenin hypophosphorylated at S37 and T41 may be more active in transcription due to its
enhanced nuclear accumulation. Evidence that phosphorylation at T41/S45 can be spatially separated from
phosphorylations at S33/37/T41 suggests that these phosphorylations may not always be coupled, raising the possibility
that phosphorylation at S45 serves a distinct nuclear function.
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Introduction

b-catenin is a prototypic example of a dual-function adhesion

signaling protein. At the cell surface, b-catenin binds the

cytoplasmic domain of cadherin-type adhesion receptors which,

together with the actin-binding protein, a-catenin, allows cells to

link their cytoskeletal networks through robust intercellular

adhering junctions [1,2,3,4]. In the cytoplasm and nucleus, a

cadherin-independent pool of b-catenin transduces extracellular

Wnt signals by interacting with TCF-type transcription factors to

activate target genes that control cellular differentiation. In C.

elegans, dedicated signaling and adhesive forms of b-catenin are

specified at the level of three distinct genes [5]: HMP-2 interacts

exclusively with the cadherin gene product, HMR-1, while BAR-1

and WRM-1 transduce Wnt signals through the TCF homolog,

POP-1. Moreover, Drosophila make a neural splice form of b-

catenin, which lacks the C-terminus and is used exclusively for

neural cell adhesion [6]. Since vertebrates only rely on a single b-

catenin gene, it has been speculated that vertebrates generate

distinct signaling and adhesive forms of b-catenin through post-

translational modification.

The best-known modifications of b-catenin are a series of

phosphorylations that continually promote degradation of the

cadherin-free pool of b-catenin. Specifically, CK1a phosphor-

ylates b-catenin at S45, which primes this N-terminal region for

subsequent phosphorylations by GSK3 at T41, S37 and S33 [7].

These latter two phosphorylations are recognized by the E3-

ligase component, b-TrCP, for ultimate ubiquitylation and

destruction by the proteosome [8,9]. The scaffold protein, Axin,

enhances the efficiency and tight coupling of these N-terminal

phosphorylations due to its ability to bind b-catenin and both

CK1a and GSK3 kinases [10]. The tumor suppressor protein,

APC, binds b-catenin and shields these phosphorylations from

the protein phosphatase PP2A, thus favoring their recognition

by b-TrCP [11]. Loss-of-function mutations in APC or Axin

essentially mimic Wnt activation by preventing GSK3b-

mediated phosphorylation of b-catenin, which allows b-catenin

to accumulate to high levels in both cytoplasmic and nuclear

compartments [12]. While the accumulation of b-catenin is a

clear hallmark of Wnt signaling, levels alone are insufficient to

explain b-catenin signaling activity, as b-catenin that remains

unphosphorylated at GSK residues 33, 37 and 41 is intrinsically

more active than b-catenin that can be phosphorylated at these

residues [13,14]. A molecular explanation for why N-terminally

unphosphorylated b-catenin is more transcriptionally active has

remained elusive. Other recent studies indicate that b-catenin
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signaling activity can be enhanced by phosphorylations at

Ser552 [15], Ser675 [16,17] and Ser191 [18,19], but whether

these modifications serve to generate a dedicated signaling form

of b-catenin remains unexamined.

The SW480 colon carcinoma cell line expresses low levels of E-

cadherin and harbors a mutation in the tumor suppressor protein

APC, resulting in an inability to properly degrade N-terminally

phosphorylated b-catenin [20,21]. As a result, these cells have

elevated nuclear and cytoplasmic b-catenin. More important,

since the Axin-scaffold complex is fully operational in these cells,

these normally short-lived N-terminal phospho-forms of b-catenin

accumulate to a level that facilitates their detection by phospho-

specific antibodies. Thus APC mutant SW480 cells allow us to

capture what is normally a transient intermediate step in the

phospho-destruction of b-catenin [22]. Given evidence for distinct

signaling and adhesive forms of b-catenin in C. elegans, and

Drosophila [5,6], we sought to characterize molecular properties of

the nuclear and cadherin-binding form of b-catenin using recently

developed antibodies that recognize distinct phospho-forms of b-

catenin.

Results

ABC is a minor subpopulation of total b-catenin
Using a monoclonal antibody that recognizes the transcription-

ally Active form of b-Catenin (ABC, specifically unphosphorylated

at serines 37 and threonine 41; [14,23]), we observe a

predominantly nuclear staining pattern in SW480 cells lacking

E-cadherin (Fig. 1A). Since an antibody that recognizes a C-

terminal epitope of b-catenin stains both cytoplasmic and nuclear

compartments (total b-catenin, Fig. 1A), it appears that ABC

might be a distinct subpopulation of total b-catenin. Indeed, ABC

is approximately 100 times less abundant than the total pool of b-

catenin in SW480 cells, using a standard curve of b-catenin

purified from bacteria and a widely used C-terminal antibody to b-

catenin (Fig. 1B). ABC is similarly less abundant in primary

epithelial cells that exhibit Wnt/b-catenin signaling in freshly

isolated cultures [24]. These data suggest that the signaling form of

b-catenin is a minor, nuclear-enriched population of the total

cytosolic pool of b-catenin.

Cytosolic ABC is primarily monomeric
Two distinct pools of b-catenin accumulate in the cytosol

during Wnt signaling: b-catenin monomers and a-catenin/b-

catenin heterodimers [25]. Given indications that b-catenin

monomers may comprise the signaling form of b-catenin

[25,26], and that a-catenin binding to b-catenin can attenuate

signaling [27,28], we sought to determine the size-fractionation

characteristics of ABC in SW480 cells. Gel filtration chroma-

tography of SW480 cytosol reveals that ABC largely runs as a

single peak fraction (Fig. 2A; #42; albumin at fraction #47, not

shown), while total b-catenin runs as two peak fractions (Fig. 2A;

#36 and 42). Since the chromatographic profile of purified

myc-tagged b-catenin is similar to ABC (Fig. S1), these data

suggest that cytosolic ABC is mostly a monomeric form of b-

catenin. The larger molecular size peak fraction of b-catenin

reflects b-catenin/a-catenin dimers, as this peak perfectly

cofractionates with a-catenin (Fig. 2A), shRNA knock-down of

a-catenin eliminates this size fraction of b-catenin (Fig. 2B & C),

and a-catenin is the major binding partner of b-catenin in these

cells (Fig. 2D). Altogether, these data indicate that cytosolic b-

catenin which remains unphosphorylated at S37 and T41 is less

likely to be in a complex with a-catenin.

ABC is selectively recruited to cell-cell contacts
The prominent nuclear pattern of ABC observed in Fig. 1 was

also previously observed in Wnt-activated HEK293T cells [14]

and within intestinal crypt cells [23], suggesting that ABC might

be used exclusively in nuclear signaling rather than adhesion.

However, ABC can be recruited to sites of cell-cell contact in E-

cadherin-restored SW480 cells (Fig. 3A). Remarkably, the nuclear

pool of ABC appears completely diminished compared with an

antibody that recognizes ‘‘all’’ forms of b-catenin (i.e., ‘‘total b-

catenin’’; Fig. 3A). Restoration of E-cadherin also changes the

chromatographic profile of ABC, reducing the relative fraction of

monomeric ABC (Fig. 3B), and causes an apparent shift in ABC

from cytosol to a crude membrane fraction (Fig. 3C), suggesting

that ABC is selectively targeted by E-cadherin. Membrane

recruitment of ABC is largely due to direct binding to the

cadherin, since SW480 cells expressing an E-cadherin lacking the

b-catenin binding domain (E-cadD35) show little ABC membrane

staining (not shown). Thus contrary to initial indications from

immuno-labeling studies [14,23], b-catenin that remains unpho-

sphorylated at S37 and T41 (ABC) is not refractory to cadherin-

binding, but rather appears to be selectively targeted by cadherins.

N-terminally phosphorylated b-catenin is mostly not
associated with cadherins

Evidence that ABC is a minor form of total cellular b-catenin

(Fig. 1B), which can be selectively sequestered by cadherins (Fig. 3),

implies that most of the b-catenin in SW480 cells is modified at the

S37/T41 epitope and exists in a form that cannot be sequestered

by cadherins. Since the N-terminal phosphorylation of b-catenin is

thought to occur exclusively within the Axin-scaffold complex

[7,29], where APC binds b-catenin and shields these phosphor-

ylations from the protein phosphatase PP2A [11], we reasoned

that N-terminally phosphorylated b-catenin remains captured by

APC and Axin, and is thus unable to bind E-cadherin. To test this

hypothesis, we subjected SW480 whole cell lysate to sequential

affinity precipitations with purified E-cadherin cytoplasmic

domain (GST-E-cad cyto). We find that ABC associates with

GST-E-cad cyto more readily than the phospho-forms of b-

catenin, which largely remain in the non-binding fraction (Figs. 4A

and S2). Consistent with this in vitro binding assay, N-terminal

phospho-forms of b-catenin do not co-fractionate with E-cadherin

compared to ABC by sucrose density ‘‘flotation’’ analysis (Fig. 4B).

Instead, phospho-b-catenins co-sediment with degradation com-

plex components in dense fractions as shown previously [22]. In

agreement with these fractionation data, ABC, but not b-catenin

phosphorylated at S33/37/T41, coimmunoprecipitates with E-

cadherin (Fig. 4C). Curiously, some b-catenin phosphorylated at

T41/S45 co-immunoprecipitates with E-cadherin (Fig. 4C).

Moreover, while E-cadherin appears to be the main surface

protein that associates with phospho-T41/S45 using the mem-

brane-impermeant biotinylation method (Fig. 4D), this association

appears to be minor, since most of the phospho-T41/S45 b-

Figure 1. N-terminally unphoshorylated b-catenin is a minor, nuclear form of b-catenin. A) Immunofluorescence of SW480 cells for total b-
catenin or ABC (active b-catenin). Both monoclonal (mAb) and polyclonal (pAb) antibodies against total b-catenin produce a pan-cellular staining,
while ABC predominantly stains nuclei. B) SW480 lysate (20 or 60 mg) was compared to known quantities of purified GST-b-catenin to estimate the
relative abundance of total b-catenin to ABC. ABC is approximately 100 times less abundant than total b-catenin. Bars, 10 mm.
doi:10.1371/journal.pone.0010184.g001
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Figure 2. Cytosolic N-terminally unphosphorylated b-catenin is primarily monomeric. A detergent-free cytosolic fraction from SW480
control (A) or a-catenin shRNA knock-down (B) cells was subjected to gel filtration chromatography and immunoblot analysis. A) ABC sizes as a
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catenin present in a crude membrane fraction fails to float with E-

cadherin and ABC (Fig. 4B). Altogether, these data indicate that

most of the cadherin-bound b-catenin is unphosphorylated at both

CK1 and GSK sites. b-catenin phosphorylated at GSK sites S33/

37/T41 cannot interact with cadherins, likely due to its association

with phospho-destruction complex components Axin and/or

APC. Evidence that a small proportion of b-catenin phosphory-

lated at T41/S45, but not at S33/37/T41, can associate with the

cadherin by co-immunoprecipitation analysis may be at odds with

the prevailing model that b-catenin N-terminal phosphorylations

occur exclusively within the Axin-scaffold complex.

b-catenin phosphorylated at T41/S45 is spatially
uncoupled from b-catenin phosphorylated at S33/37/T41

The predominant nuclear localization of b-catenin unpho-

sphorylated at S37 and T41 (ABC), compared to the even

distribution of total b-catenin throughout both cytoplasmic and

nuclear compartments (Fig. 1A), suggested that b-catenin

phosphorylated at S33/37/T41 may be largely cytoplasmic. As

predicted, antibodies against phospho-S33/37/T41 b-catenin

recognize the cytoplasm to a greater extent than the nucleus

(Fig. 5) raising the possibility that phosphorylation by GSK3 may

impact b-catenin nuclear/cytosplasmic distributions. Intriguingly,

b-catenin phosphorylated at T41/S45 does not exhibit the same

distribution as b-catenin phosphorylated at S33/37/T41, and

more strongly co-localizes with ABC in the nucleus (Fig. 5).

Evidence that phospho-b-catenin is the major antigen recognized

by these antibodies in SW480 cells was previously demonstrated

[22] and is also shown in Fig. S3. Together, these data suggest that

the nuclear form of b-catenin may be largely phosphorylated at

S45 and unphosphorylated at S33, S37 and T41. Unfortunately,

an antibody that exclusively recognizes b-catenin phosphorylated

at S45 appears unsuitable for immunofluorescence analysis, but

detects b-catenin in a nuclear-enriched fraction (not shown).

Nonetheless, evidence that b-catenin phosphorylated at S33/37/

T41 incompletely overlaps with b-catenin phosphorylated at T41/

S45 raises the possibility that phosphorylation of b-catenin at the

CK1a site may be spatially uncoupled from phosphorylations

within the GSK-3b cassette.

Molecular characterization of b-catenin phosphorylated
at S552 and S675

Phosphorylation of b-catenin at S552 or S675 (corresponding to

the C-terminal armadillo repeat region of b-catenin) has been each

associated with increased signaling activity [15,16,17], but precise

mechanisms for the enhanced nuclear signaling remain unclear.

Using Liquid Chromatography tandem Mass Spectrometry (LC-

MS/MS), we find that a cadherin-free pool of b-catenin

precipitated from SW480 cell lysates can be phosphorylated at

serines 552 and 675 (Fig. 6A). Nonetheless, b-catenin phosphor-

ylated at each of these sites can localize readily to cell-cell contacts

(Fig. 6B), co-fractionate with cadherins by sucrose equilibrium

density flotation analysis (Fig. 6 C & D) and associate with a cell

surface protein that perfectly co-migrates with E-cadherin (Fig. 6E).

Thus, although b-catenin phosphorylated at S552 or S675 has

been associated with increased transcriptional activity [15,16,17],

this is not apparently due to an inability to associate with

cadherins. Of interest, b-catenin phosphorylated at S552 or S675

reveal very different cell contact staining patterns. While

antibodies that recognize phospho-S675 uniformly label cell

contacts, antibodies to phospho-S552 reveal a punctate pattern

that decorates only a subdomain of the cell contact (Fig. 6B). The

localization of these phospho-b-catenins at cell contacts raises the

possibility that these phosphorylations may also contribute to

membrane proximal signaling events.

Discussion

While the accumulation of cytosolic b-catenin is an established

hallmark of Wnt signaling, it is also appreciated that b-catenin

transcriptional activity can be observed in the absence of robust

nuclear accumulation. In addition, small changes in b-catenin

protein levels can correspond to dramatic tissue phenotypes known

to rely on b-catenin signaling [30,31]. These observations can be

explained, at least in part, by evidence that b-catenin protein levels

alone are insufficient to explain its signaling activity (13). Indeed,

b-catenin that remains unphosphorylated at GSK residues 33, 37

and 41 is intrinsically more active than b-catenin that can be

phosphorylated at these residues [13,14]. Why an N-terminally

unphosphorylated b-catenin is more transcriptionally active,

however, has remained elusive. The present study offers a

molecular explanation for these observations. We show that the

cadherin-free form of b-catenin unphosphorylated at S37 and

T41, typically referred to as transcriptionally active b-catenin

(ABC), is a minor nuclear-enriched monomeric form of b-catenin.

The low abundance of ABC either in APC mutant SW480 cells

(1–10% of the total pool of b-catenin, Fig. 1), or Wnt-activated

primary epithelial cells [24], may explain why this form of b-

catenin can be difficult to detect in the nuclei of cells activated by

Wnt. These data further imply that the inhibitory phosphorylation

of b-catenin at GSK3 residues S33/37/41 is robust, even in cells

that exhibit constitutive activation of b-catenin signaling through

loss of APC function.

Our data also show that b-catenin unphosphorylated at S37 and

T41 is almost exclusively nuclear, while b-catenin phosphorylated

at GSK3 residues S33/37/T41 is more cytoplasmic than nuclear

in SW480 cells lacking E-cadherin (Fig. 5). These data may

explain why ABC is intrinsically more active in b-catenin signaling

assays [13,14]. Whether phosphorylation of b-catenin at S33/37/

T41 promotes cytoplasmic retention or nuclear export is not clear.

b-catenin is thought to directly engage the nuclear pore complex

due to structural similarities between its central armadillo domain

and the HEAT-repeats of the nuclear transport factor, importin-b
[32]. While the distribution of b-catenin can be dictated by the

availability of nuclear versus cytoplasmic binding partners [33,34],

it has also been shown that first 49 amino acids of b-catenin

contain nuclear export information in a Xenopus oocyte export

assay [35]. b-TrCP (beta-Transducin repeat Containing Protein) is

currently the only known factor that recognizes b-catenin

phosphorylated at pS33 and pS37. b-TrCP is an F-box protein

that is part of the SCF-ubiquitin-ligase complex, where it targets

numerous phosphorylated substrates for ubiquitylation and

degradation (e.g., b-catenin, IkB, Cdc25A) [36]. As it is the

monomer (compared to calibration standards (not shown) and purified b-catenin (Fig. S1); peak fraction #42), while total b-catenin sizes evenly
between monomer- and b-catenin/a-catenin dimer fractions (peak fraction #36). Peak fractions are marked with arrows. B–D) b-catenin dimer
fraction is due to association with a-catenin. B) Size fractionation of cytosol from SW480 cells depleted of a-catenin by shRNA. C) Immunoblot of
SW480 control and a-catenin knock down lysates. D) [35S]-methionine/cysteine-labeling of SW480 cells and immunoprecipitation of a-catenin and b-
catenin (1:100, lanes 3 and 5; 1:300, lanes 4 and 6). Autoradiogram reveals the major binding partner of b-catenin in this cell type is a-catenin. No
antibody (lane 1) or non-immune control (lane 2) are also shown.
doi:10.1371/journal.pone.0010184.g002
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WD40-repeat domain in b-TrCP that recognizes phospho-b-

catenin, and WD40 repeats are found in many proteins with

different functions (some of which are involved in nuclear export

events, [37]), it is possible that b-catenin phosphorylated at S33,

S37 and T41 recognizes a WD40 repeat-containing protein that

prevents nuclear import or promotes export.

Evidence that cytosolic ABC runs mostly monomeric by sizing

chromatography (Fig. 2) may also explain why b-catenin unpho-

sphorylated at S37 and T41 is more active in b-catenin signaling

assays [13,14]. a-catenin is a major stoichiometric binding partner

of cytosolic b-catenin [25], and its over-expression can antagonize

b-catenin nuclear signaling activity through an incompletely

defined mechanism [27,28,38]. It is not presently obvious how

these N-terminal phosphorylations could promote, or hypo-

phosphorylation at these sites could restrict, b-catenin binding to

a-catenin. More likely, ABC may be less associated with a-catenin

as a consequence of its low cellular concentration.

The prominent nuclear pattern of ABC originally observed in

Wnt-activated HEK293T cells [14], together with an absence of

junctional staining within intestinal crypt cells [23], raised the

possibility that ABC might be used exclusively in nuclear signaling

rather than adhesion, as in C. elegans [5]. However, the nuclear

enrichment of ABC observed in cadherin-negative SW480 cells

(Fig. 1) is not apparently due to any reduced capacity to associate

with cadherins, since ABC can be readily incorporated into cell

contacts in E-cadherin-restored SW480 cells (Fig. 3), as well as

other cell types [22,24,39]. Thus taken altogether, our data suggest

that N-terminally unphospho-b-catenin (ABC) is better at nuclear

signaling not because it is a cadherin-free form of b-catenin, but

rather because of its enhanced nuclear accumulation when present

in the cytosol. Although the enhanced nuclear accumulation of

ABC is only clearly observed in cells lacking a cadherin (Fig. 3), we

reason that this phenomenon also holds true in normal cadherin-

expressing cells activated by Wnt, where the cytosolic pool of ABC

is below the level of robust immunofluorescence detection. In

other words, the analysis of ABC localization in the absence of

cadherin provides a condition that permits detection of a nuclear/

cytoplasmic distribution phenomenon that is more difficult to

detect in the presence of cadherins.

Evidence that ABC can associate with cadherins is not

surprising, given that the N-terminal GSK3 regulatory domain

lies well outside the binding interface between b-catenin and the

cadherin [40]. More curious is why the entire cadherin-bound

pool of b-catenin is not unmodified at S37 and T41, given that b-

catenin becomes rapidly associated with a cadherin during

biosynthesis [41]. However, evidence that monoclonal antibody

8E7 (which recognizes ABC) can detect Wnt-induced changes in

the cytosolic pool of b-catenin, without needing to remove the

more abundant cadherin-bound b-catenin by fractionation

methods [14], implies that b-catenin unmodified at S37 and

T41 may not be the major form of b-catenin associated with

cadherins. Since b-catenin phosphorylated at S33/37/T41 does

not associate with E-cadherin by co-immunoprecipitation and

fractionation analyses (Fig. 4), it is formally possible that the b-

catenin associated with cadherins may be modified at the S37 and

T41 epitope by something other than phosphorylation (e.g., O-

glycosylation, [42,43]; Fig. S4).

Recent studies show that b-catenin phosphorylated at S552 or

S675 exhibits enhanced b-catenin signaling activities [15,16,17],

however, this is not apparently through generating cadherin-free

forms of b-catenin, as both phospho-forms can associate with E-

cadherin contacts (Fig. 6). In fact, the abundant and distinct

localization of these phospho-forms at cell contacts suggests the

possibility for phosphorylation-dependent recruitment of factors

that mediate junctional maturation and/or signaling.

The spatial uncoupling of b-catenin phosphorylated at T41/45

from that phosphorylated at S33/37/T41 is particularly interest-

ing, because it suggests that phosphorylation at S45 serves a

function beyond simply priming b-catenin for subsequent

phosphorylations by GSK3. We speculate that the prominent

nuclear accumulation of b-catenin phosphorylated at T41/S45

(Fig. 5), together with evidence that it is largely a cadherin-free

form of b-catenin (Fig. 4), raises the possibility that phospho-S45

may be a dedicated signaling form of b-catenin. Specifically,

phosphorylation by CK1 could both positively and negatively

impact b-catenin signaling, such that phosphorylation at S45

promotes transcription, but also primes b-catenin for phosphor-

ylation-dependent degradation by GSK3. Such tight coupling of

phospho-activation with degradation could allow for strict

temporal control of b-catenin signaling, as observed in other

systems (reviewed in [44]). Unfortunately, efforts to tease out a

specific contribution of S45 phosphorylation using luciferase

reporter assays was confounded by the pleiotropic effects of

overexpressing CK1 isoforms. Perhaps generation of an antibody

that recognizes b-catenin specifically unphosphorylated at S45,

together with current antibodies that recognize phospho-S45 in

chromatin immunoprecipitation analysis of b-catenin/TCF target

genes would enable the field to answer this question.

Materials and Methods

Cell culture and antibodies
SW480 cells were obtained from American Type Culture

Collection (ATCC). SW480 mock and E-cadherin transfected cells

were described in [22,45]. An shRNA for a-catenin (GATCCGC-

CAGTCCAGGTGGTGAATTTTTTCAAGA GAAAAATTC-

ACCAC/GCTGGACTGGTTTTTTACG) and a single mutant

control sequence (bolded in the previous sequence) was ligated

into the pSIREN vector (Invitrogen), transfected into SW480

cells using Lipofectamine (Invitrogen) and stably selected using

2.5 mg/mL puromycin. Antibodies used in this study are as

follows: total b-catenin (monoclonal) and a-catenin (BD

Biosciences/Transduction labs); total b-catenin (polyclonal)

and GAPDH (Santa Cruz); active b-catenin (ABC, clone 8E7

Upstate/Millipore); a-catenin polyclonal (Barry Gumbiner,

University of Virginia); Axin (Roel Nusse, Stanford and Zymed);

P33/37/41, P41/45, P45, GSK-3b, LRP6, P552, P675 (Cell

Signaling); mouse and rabbit IgGs (Chemicon); b-tubulin

(Sigma); E-cadherin (HECD-1, Zymed); Alexa Fluor 488 and

568-conjugated goat IgGs, streptavidin-HRP (Horseradish

Figure 3. N-terminally unphosphorylated b-catenin appears highly sensitive to cadherin expression. A) Control (i. and iii.) and E-
cadherin-restored SW480 cells (ii. and iv.) were stained with antibodies against total b-catenin or ABC. Note that ABC appears selectively recruited to
sites of cell-cell contact upon cadherin expression relative to the total pool of b-catenin. B) A detergent-free cytosolic fraction from SW480/E-cadherin
cells was subjected to gel filtration chromatography. Peak fractions are marked with arrows. The presence of E-cadherin reduces the abundance of
monomeric ABC relative to control cells (compare to Fig. 2A). C) Detergent-free preparations of membrane and cytosolic fractions isolated from
control and E-cadherin-restored SW480 cells. Note that E-cadherin appears to selectively recruit ABC to the membrane, leaving a portion of total b-
catenin in the cytosol. A non-specific band (*) recognized by ABC [47] serves as a loading control. Bars, 10 mm.
doi:10.1371/journal.pone.0010184.g003
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Figure 4. N-terminally phosphorylated b-catenin is largely not associated with E-cadherin. A) SW480 cell lysates were sequentially
incubated with GST-cadherin cytoplasmic domain coupled-glutathione sepharose beads. Non-binding lane reflects 5% of the total unbound
fraction. Note that while ABC can be affinity precipitated by GST-cadherin, b-catenin phosphorylated at S45, T41/S45, and S33/37/T41 bind to a
lesser extent. B) Sucrose gradient density centrifugation of the detergent-free membrane preparation from SW480/E-cadherin cells reveals that
N-terminally phosphorylated b-catenin does not appreciably co-fractionate (i.e., float) with cadherins. C) Immunoprecipitation of Axin or E-
cadherin from SW480/E-cadherin lysates reveals that b-catenin phosphorylated at S33/37/T41 does not associate with E-cadherin. D) Cell
surface biotinylation of SW480/E-cadherin cells followed by immunoprecipitation with the indicated antibodies and detection by streptavidin-
HRP reveals that ABC coimmunoprecipitates with a cell surface protein the same size as E-cadherin, while b-catenin phosphorylated at S33/37/
T41 does not. Western blot analysis for total b-catenin confirms that the same amount of b-catenin was immunopreciptated with antibodies
against T41/S45 and S33/37/T41. Mouse IgG (mIgG) and rabbit IgG (rIgG) controls are shown, as well as a positive control for E-cadherin (IP:
E-cad).
doi:10.1371/journal.pone.0010184.g004
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Peroxidase) conjugate (Invitrogen); goat anti-mouse and anti-

rabbit IgG-HRP conjugates (Bio-Rad); anti-flag M2 (Sigma).

Immunofluorescence
Cells were fixed in ice-cold anhydrous methanol and processed

using standard procedures. Coverslips were mounted with Aqua

Poly/Mount (Polysciences). Images were captured with the

Axioplan 2 microscope (Zeiss) equipped with a 636 Plan-

Neofluar, NA 1.25 objective, the AxioCam HRm camera,

AxioVision4.6 software (Zeiss).

Affinity precipitation and Western blotting
Cells were lysed in buffer containing 50 mM Tris, pH 7.5,

5 mM EDTA, 150 mM NaCl, 5% glycerol and 1% Triton-X100

with protease inhibitor cocktail (Roche) and 1 mM microcystin

(Calbiochem). For cad-GST binding experiment, lysate was

incubated with 1 mg of cadherin-GST precoupled to glutathione

sepharose (GE Healthcare). For immunoprecipitations, lysates

were incubated with indicated antibodies and ImmunoPure

Immobilized Protein G or Protein A (Pierce). Precipitated proteins

were washed and subjected to SDS-PAGE and Western blot

analysis using standard procedures. Densitometry was performed

using the CanoScan software (Canon) and analyzed using Image J

(National Institutes of Health).

Cellular fractionation and sucrose equilibrium density
gradient centrifugation

Detergent-free lysis was performed as previously described [22]

to generate cytosolic and membrane fractions. Cytosolic fractions

were TCA precipitated prior to Western blot analysis. Membrane

fractions were either resuspended in PBS and analyzed by Western

blot, or were subjected to sucrose density gradient centrifugation,

performed according to [22].

[35S]-methionine/cysteine metabolic labeling
Steady state metabolic labeling of proteins with [35S]-methionine/

cysteine was done according to [25]. Briefly, cells were labeled

overnight with 1–2 mCi/10-cm dish Redivue PRO-MIX [35S] cell

labeling mix (Amersham). Cells were lysed in 1% Triton-X100

buffer described above prior to immunoprecipitation, and proteins

were separated by SDS-PAGE on Criterion gels (Bio-Rad).

Gel filtration chromatography
Gel filtration chromatography was performed according to

[25]. Briefly, the cytosolic fraction was separated on a Hi Prep

16/60 Sephacryl S-300 sizing column (Amersham Biosciences;

High Resolution Code 17-1167-01, 10–1500 kD inclusion range)

equilibrated with buffer containing 30 mM Hepes, pH 7.5, and

150 mM KCl and developed at 0.3 ml/min. 1.5-ml fractions

were collected and TCA precipitated prior to Western blot

analysis.

Surface biotinylation
Surface biotinylation was performed as described elsewhere

[46]. In brief, cells were rinsed in PBS supplemented with 0.1 mM

CaCl2 and 1 mM MgCl2 (PBS++), labeled in the dark on ice for 20

minutes with 1 mg/mL EZ-link Sulfo-NHS-LC-biotin (Pierce) in a

solution of 10 mM triethanolamine, pH 8, 2 mM CaCl2, and

150 mM NaCl. The reaction was quenched with 100 mM glycine

in PBS++, and cells were rinsed in PBS++ prior to lysis with 1%

Triton buffer described above. Lysates were immunoprecipitated

with antibodies as indicated, and Western blots were performed

using streptavidin-HRP (Invitrogen).

Phospho-peptide mapping
Cytosolic b-catenin was affinity precipitated with 100 mg GST-

ICAT from SW480 controls cell lysate (approximately 50 mg total

protein) and subjected to SDS-PAGE. Purity of protein prepara-

tion was confirmed by Coomassie stain, and the band corre-

sponding to b-catenin was excised and sent to the Taplin Facility

for Mass Spectrometry (Harvard). Trypsin digested peptides were

identified by LC-MS/MS.

Phosphatase experiment
Immunoprecipitated complexes were treated with lambda

protein phosphatase (New England BioLabs) according to

Figure 5. b-catenin phosphorylated at T41/S45 is spatially uncoupled from b-catenin phosphorylated at S33/37/T41. SW480 cells were
co-stained with antibodies against b-catenin phosphorylated at S33/37/T41 or T41/S45 and ABC. Merged images reveal that phospho-S33/37/T41
appears excluded from the nucleus, while phospho-T41/S45 is largely nuclear, as is ABC. Bars, 10 mm.
doi:10.1371/journal.pone.0010184.g005
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manufacturer’s instructions. Samples were also incubated with

phosphatase inhibitors: 10mM sodium vanadate (tyrosine, Sigma)

and 50 mM sodium fluoride (serine/threonine, Sigma), if

indicated. Reaction was performed at 30uC for 30 minutes and

quenched with Laemmli sample buffer prior to Western analysis.

Supporting Information

Figure S1 Recombinant b-catenin runs as a monomer by gel

filtration chromatography. Histidine and 6-myc tagged b-catenin

(,2 mg) was purified from baculovirus, diluted in column

equilibration buffer and injected onto a sizing column. 1.5-ml

fractions were collected and TriChloroacetic Acid (TCA) precip-

itated prior to Western blot analysis with anti-myc antibodies.

Peak fraction (#38) is denoted by an arrow and reveals that the

peak corresponding to monomeric b-catenin seen in Figures 2 and

3 is likely due to uncomplexed b-catenin. Note that the purified 6-

myc b-catenin sizes larger than monomeric b-catenin from SW480

cytosol due to the presence of histidine and myc epitope tags,

which retard b-catenin mobility in SDS-PAGE by ,20 kDa.

Found at: doi:10.1371/journal.pone.0010184.s001 (0.43 MB TIF)

Figure S2 N-terminally phosphorylated b-catenin does not

associate with a GST-cadherin cytoplasmic domain by affinity

precipitation. A detergent-free cytosolic fraction from SW480 cells

was sequentially incubated with GST-cadherin cytoplasmic

domain coupled-glutathione sepharose beads. Non-binding lane

contains the total unbound fraction precipitated with Trichlor-

oacetic Acid. Note that while a significant fraction of total b-

catenin can be affinity precipitated by GST-cadherin, b-catenin

phosphorylated at S33/37/T41 does not associate.

Found at: doi:10.1371/journal.pone.0010184.s002 (0.38 MB TIF)

Figure S3 Specificity of phospho-b-catenin antibodies in SW480

cells. SW480 cells were transfected with siRNAs against human b-

catenin (L-003482-00-0005) ON-TARGETplus SMARTpool

siRNA (Thermo Scientific Dharmacon) or non-targeting control

sequences (D-001810-10-05) using DharmaFECT reagent

(Thermo). After 48 hours, cells were solubilized and subjected to

SDS-PAGE immunoblot analysis with the antibodies specified.

GAPDH protein levels (control) do not change upon b-catenin

silencing (not shown). Note that the phospho-b-catenin antibodies

almost exclusively recognize a single band over a 15–200 kDa

range, and this band disappears upon b-catenin silencing. The

,120 kDa band detected with the P33/37/41 antibody is

typically much less abundant than phospho-b-catenin [22]. We

have previously determined that the ,160 kDa band detected

with the ABC antibody (*) does not account for the nuclear

staining in SW480s, although may be an issue in other cell types

[47]. Staining patterns observed for all phospho-b-catenin

antibodies are diminished by b-catenin silencing by siRNA (not

shown) or genetic ablation [22].

Found at: doi:10.1371/journal.pone.0010184.s003 (2.33 MB TIF)

Figure S4 Phosphatase treatment of total b-catenin removes N-

terminal phosphorylations but does not unmask the ABC epitope.

SW480 cells were solubilized in 1% TX-100 lysis buffer and total

b-catenin was immunoprecipitated. Reactions were divided and

treated with and without lambda phosphatase or phosphatase

inhibitors for 30 minutes. Reaction was quenched with sample

buffer prior to SDS-PAGE. Phosphatase treatment does not

appear to unmask the ABC epitope, but does remove N-terminal

phosphates. Note that longer incubation times (up to 18 hours)

were still unable to unmask the ABC epitope, despite evidence to

the contrary by Hendriksen et al [39].

Found at: doi:10.1371/journal.pone.0010184.s004 (0.72 MB TIF)
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