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Abstract: Grade 91 (9Cr-1Mo) steel was subjected to various heat treatments and then to high-pressure
torsion (HPT) at different temperatures. Its microstructure was studied using transmission electron
microscopy (TEM) and X-ray diffraction (XRD). Effects of the tempering temperature and the HPT
temperature on the microstructural features and microhardness in the ultrafine-grained (UFG)
Grade 91 steel were researched. The study of the UFG structure formation takes into account
two different microstructures observed: before HPT in both samples containing martensite and in
fully ferritic samples.
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1. Introduction

Recently, much attention has been paid to research into the microstructure and properties of
ferritic/martensitic steels and their use at elevate temperatures [1–5]. In particular, various thermal and
thermomechanical treatments were applied to Grade 91 steel to study changes in microstructure [1,2].
For example, the thermomechanical treatment proposed in [5], where the steel was deformed in the
austenitic regime, was aimed at refining the austenite grains and enhancing the effect of impeding
dislocations by carbonitrides [3]. Warm rolling was used to increase the density of dislocations, grain
boundaries, and subgrains as the nucleation sites of stable fine particles. It was demonstrated that
main microstructural features which contribute to the enhancement in strength are reduced width of
martensitic laths, and the presence of thermally stable precipitates [4,5].

At the same time, the strength of martensitic steels can be enhanced by grain refinement, using
severe plastic deformation (SPD) [6,7], which is based on the application of high strains at low
homologous temperatures. For example, equal-channel angular pressing (ECAP) allows the production
of ultrafine-grained (UFG) structure in ferritic/martensitic steels, which increases their strength [8].
Therefore, research into the effect of grain refinement on strength of ferritic/martensitic steels are of
special interest. For example, in [9–11], the formation of an ultrafine microstructure was attributed to
the fine martensite starting microstructure. At the same time, it is recognized that the most significant
grain refinement can be achieved by applying high-pressure torsion (HPT) [12]. The grain refinement
to 130 nm in ferritic/martensitic steels produced by HPT was observed in [13,14]. Application of
HPT to transformation induced plasticity (TRIP) steel leads to a gradual reverse transformation
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from body centre cubic (bcc) α’ phase to the hexagonal close-packed (hcp) ε phase [15]. A strong
grain refinement at the HPT treatment was also noticed in austenitic stainless steels [16–20], which
was accompanied by a deformation-induced martensitic transformation. However, the effect of
pre-processing microstructure (purely ferrite or partially containing martensite) on microstructure
and properties of UFG ferritic/martensitic steels processed by HPT has not been study. Therefore,
the main focus of this work was on the investigation of the impact of pre-processing microstructure on
post-processed microstructure of ferritic/martensitic steel Grade 91 subjected to HPT.

2. Materials and Methods

Hot-rolled steel Grade 91 rods, whose chemical composition is displayed in Table 1, were used as
starting material for investigations. The as-received rods were heated in the austenitic regime at 1050 ◦C
for 1 h and quenched in oil. Then, the quenched samples were tempered at two different temperatures
above and below the martensitic transformation temperature. It is known that the martensitic
transformation temperature in steels with similar chemical composition starts from approximately
600 ◦C [21]. Therefore, two tempering temperatures were chosen in this work: (1) tempering at
800 ◦C leading to complete formation of ferrite, henceforth this treatment is referred to as T800,
and (2) tempering at 500 ◦C where the retention of residual martensite was expected, henceforth this
treatment is referred to as T500.

Table 1. Chemical composition of steel Grade 91, wt %.

C Mn P S Cu Si Ni Cr Mo V Ti N

0.08 0.53 0.016 0.003 0.09 0.28 0.13 8.43 0.9 0.225 0.01 0.038

After the tempering, discs with the initial thickness of 1.5 mm were cut out of rods and
subjected to HPT. During HPT, the shear strain γ along the radius r is given by γ = 2πrn/h
where h is the thickness of the disk and n is the number of rotations. It should be noted that
in recent publications it was shown that this equation is true only for a certain condition [22,23].
The samples were deformed under the pressure of 6 GPa for 10 rotations, with a rotation rate of
0.2 rpm at 20 and 300 ◦C. The Vickers microhardness (HV) measurements were performed with a
microhardness tester from Buehler (Micromet 5101, Uzwil, Switzerland) with a load of 100 g and a
dwell time of 15 s. Each measurement was carried out at a distance Rn to the disk edge. For each
sample, such measurements were made by at least 6 lines. The microstructure was studied using
a transmission electron microscope (TEM) JEOL JEM 2100 (JEOL Ltd., Tokyo, Japan). The samples
for TEM were cut from half of radius of the HPT disc, and thinned to electron transparency by jet
electropolishing in a solution of perchloric acid in butyl alcohol with a voltage of 56 V. The grain
size was estimated from TEM on the bright and dark field images, where grain boundaries are
clearly visible. The grain size was estimated with the grain-by-grain measurement method, using
manual measurement of approximate minimum and maximum diameter of each grain. Average
values were obtained from 200–300 measurements. X-ray diffraction (XRD) was performed using a
DRON-4M diffractometer (Bourevestnik Inc., S-Peterburg, Russia) with CoKα radiation (35 kV, 30 mA).
The reflected beam was filtered using graphite monochromator. The lattice parameter, size of coherent
scattering domains (CSD), and dislocation density were estimated using the whole pattern approach,
which was implemented in the PM2K software (version 2.10) [24]. The instrumental broadening of
diffraction lines, i.e. the parameters U, V, W, a, b, and c for the Cagliotti function, were determined
by processing a diffraction pattern from LaB6, which was obtained in the same conditions as the
studied samples.
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3. Results

Figure 1 displays TEM images showing the microstructure of the Grade 91 steel after tempering at
two different temperatures. Tempering at 500 ◦C leads to formation of martensite laths with an average
width of ~200 nm at the boundaries of prior austenite grains. After tempering at 800 ◦C, the average
grain size is ~0.5 µm. In addition, carbide precipitates ~0.2 µm in diameter are detected.
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Figure 1. Bright-field transmission electron microscopy (TEM) images of Grade 91 microstructure after
quenching and tempering at: (a) 500 ◦C; (b) 800 ◦C

Figure 2 shows the microstructure of Grade 91 steel after HPT. HPT at room temperature resulted
in dramatic grain refinement. Grains with an average length of ~250 nm and width of ~100 nm which
were stretched along the initial martensite laths, are formed in samples after T500 + HPT20 (Figure 2a).
Equiaxed grains with an average diameter of ~250 nm are observed after T800 + HPT20 (Figure 2d).
The formation of elongated grains along the deformation direction at lower magnification (Figure 2b)
can be seen.

It is known that an increase in HPT temperature activates the processes of dislocation climb and
accelerates the diffusion of carbon and other alloying elements in steels. This makes it possible to
reduce the density of defects in the microstructure, and achieve a more homogeneous distribution of
carbides. The grain length along the martensite laths is ~450 nm, and the width is ~200 nm in steel
after T500 + HPT300 treatment (Figure 3a). Equiaxed grains with an average diameter of ~350 nm are
formed in steel after T800 + HPT300 (Figure 3b).
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carbonitrides. 
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Figure 2. Bright-field TEM images of Grade 91 microstructure: (a,c) after tempering at 500 and HPT
at 20 ◦C, where the arrows show the initial boundaries of martensite laths; (b,d) after tempering
at 800 and HPT at 20 ◦C; dark-field TEM images of the Grade 91 microstructure; (e) TEM after
T500 + HPT300 where the arrows show carbides M23C6; (f) after T800 + HPT200 where the arrows
show MX carbonitrides.

Plate precipitates of carbides up to ~200 nm long were seen in the initial samples after T500
treatment (Figure 4a). After T500 + HPT20, additional precipitation of carbides with an average
diameter of ~10–30 nm was observed too, Figure 4b. The increase in the HPT temperature at T500 +
HPT300 treatment resulted in some spheroidization of carbides and an increase in their sizes up to
~50 nm, Figure 4c.

After the T800 treatment, coarse particles of carbides of ~100–300 nm were observed in the
microstructure. The carbides were located mainly at grain boundaries, and dispersed particles of
fine secondary MX (M—V, Nb, Ti, Mo; X—C, N) carbonitrides with an average size of ~50 nm were
found at grain boundaries and at prior austenite boundaries (Figure 3b). The T800 + HPT20 treatment
resulted in additional precipitation of carbonitrides from the solid solution, and the particles with
sizes of ~5–10 nm precipitated mainly inside grains (Figure 5b). The sizes of coarse carbides were
not changed during HPT, and other carbides with sizes <100 nm were probably cut by dislocations
(Figure 5a). It is known that the smaller particles can be easily cut by dislocations, in comparison with
coarse particles [25]. The increase in the HPT temperature to 300 ◦C at the T800 + HPT300 treatment
resulted in the same sizes of carbides ~100–300 nm.
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Figure 4. Diffraction patterns and dark-field TEM images showing carbides after various treatments:
(a) T500, dark field in the spot (121) M3C; (b) T500 + HPT20, dark field in the spot (420) M23C6; (c) T500
+ HPT300, dark field in the spot (420) M23C6.
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Figure 5. Diffraction patterns and dark-field TEM images showing particles after various treatments:
(a) cutting of carbides by dislocations in steel subjected to T800 + HPT20; (b) MX carbonitrides after
T800 + HPT20, dark field in the spot (111); (c) MX carbonitrides after T800 + HPT300 dark field in the
spot (200).

Figure 6 displays the X-ray diffraction patterns of the samples subjected to various treatments.
In all samples studied, the X-ray diffraction patterns are characterized by the set of intensive maxima
with Miller indexes (110), (200), (211), and (220) that correspond to the α-Fe phase. After tempering at
500 ◦C, the martensite phase with the volume fraction of 6.6% was noticed, whereas after tempering at
800 ◦C, this phase was not observed. The HPT processing of the samples after tempering at 500 ◦C
resulted in further increase in the volume fraction of the martensite phase. In particular, after T500 +
HPT20, the volume fraction of the martensite phase was 8.3%, and after T500 + HPT300, it was 10.2%.
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The X-ray diffraction studies showed that the increase in HPT temperature up to 300 ◦C led to
reduction in the lattice parameter. In particular, the most significant reduction in the lattice parameter
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was seen in the samples subjected to the T800 + HPT300 treatment. The lattice parameter value after
this treatment (Table 2) is significantly higher compared to that typical of pure ferrite (0.28660 nm [26]).
Additionally, it is smaller in comparison with the value for other researched samples. The tendency for
the reduction in the lattice parameter in the sample after T800 + HPT300 may suggest that after HPT
processing at 300 ◦C, the ferrite matrix is depleted in solutes, and precipitates with a higher volume
fraction are formed. Precipitates were observed during the TEM studies.

Table 2. Microstructural parameters from X-ray diffraction.

State Lattice Parameter (nm) Size of CSD (nm) Dislocation Density
(10−15 m−2)

500C +HPT 20C 0.287957(2) 34(3) 22.4(2)
500C + HPT 300C 0.287869(11) 57(4) 11.9(3)
800C + HPT 20C 0.287802(10) 36(3) 10.5(4)

800C + HPT 300C 0.287436(7) 61(4) 3.5(2)

Additionally, the increase in HPT temperature from 20 ◦C to 300 ◦C results in an increase in CSD
size by more than 1.5 times and decrease in dislocation density by more than two times, independent
of tempering temperature (Table 2).

Figure 7 displays graphs of the microhardness values as a function of the distance to the center
of the samples. The average microhardness of the sample after the T800 treatment is 250 HV and
increases up to 650 HV after the T800 + HPT20 treatment. The difference between the minimum
value in the disc center and the maximum value at the edge, does not exceed 100 HV. The increase
in the HPT temperature to 300 ◦C leads to a gradient in microhardness along the sample radius up
to 200 HV. At the same time, the average microhardness decreases to 490 HV. The microhardness
after T500 treatment is 420 HV. After the additional HPT20 the average microhardness achieves
840 HV. The inhomogeneity along the radius remains at the level of 100 HV. The increase in the HPT
temperature to 300 ◦C reduces the average value of microhardness to 630 HV. The heterogeneity along
the sample radius increases up to 200 HV.
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4. Discussion

It is well known that martensite is an oversaturated solid solution of carbon in α-Fe and is
characterized by a complex structure [27]. The high strength of martensite is due to several hardening
mechanisms: solid solution, dislocations and grain boundaries. Short-term tempering is required to
reduce internal stresses prior to deformation of the martensitic steel by HPT [28]. The T500 + HPT20
treatment resulted in striking grain refinement in the structure. There are high dislocation densities
in the samples owing to the imposed high plastic strain (Table 2). It is known that dislocations play
a significant role in the process of carbides dissolution in martensitic steels during deformation [29].
Such dislocation density in Grade 91 steel induces the formation of the metastable carbides in tempered
samples (Figure 4a) and leads to the formation of nanoparticles after T500 + HPT20 (Figure 4b).

The samples after T500 + HPT20 treatment have the average microhardness of 8.4 GPa, which
is two times higher than microhardness in the tempered samples. High microhardness is evidently
caused by dramatic grain refinement (Figure 3), dispersion hardening (Figure 4), and high dislocation
density (Table 2). During HPT processing at 300 ◦C, the diffusion process was enhanced in UFG steel.
Formation of UFG structure during T500 + HPT300 is influenced by the two known processes: grain
refinement by severe plastic deformation, and dynamic recovery in the martensite structure [23–32].
The increase in HPT temperature to 300 ◦C led to reduced dislocation density (Table 2) and increased
grain size, compared to samples processed by HPT at 20 ◦C. The observed carbides had a globular shape
and grew to 50 nm. In this case, the average microhardness after HPT300 is reduced by 25% compared
to HPT20, due to multiple factors, including increased grain size and reduced dislocation density.

The dislocation density in the samples processed with T800 + HPT300 is reduced three times to
3.5 × 10−15 m−2, compared to the samples after T800 + HPT20. The average grain size of the samples
after T800 + HPT300 is ~350 nm, and reduction in the sizes of coarse carbides to 200 nm is observed.
The size of carbonitrides for T800 + HPT300 does not change compared to that of T800, and their
redistribution at grain boundaries takes place. This suggests that deformation-induced migration
of grain boundaries in HPT samples may be hindered by carbonitrides which are located at grain
boundaries. Such distribution of particles is favorable for achieving enhanced creep resistance at
temperatures up to 650 ◦C.

5. Conclusions

The grain refinement, microstructural evolution, and precipitation of secondary phases in the
Grade 91 steel subjected by HPT were studied using transmission electron microscopy (TEM) and XRD
methods. It was shown that the initial microstructure and deformation temperature is important for
grain refinement and forming the properties of steel under study. The main results can be summarized
as follows:

1. After HPT of the samples containing martensite (tempered at 500 ◦C before HPT), the microhardness
increases by two times to 8.4 GPa. Such microhardness is attributed to several factors: localization
of plastic deformation inside martensitic plates inducing the formation of grains of 100–200 nm
in size, the high degree of solid solution saturation, and high dislocation density. This may be due
to the fact that the alloying elements necessary for the precipitations of carbonitrides remained in
the solid solution.

2. The increase in the microhardness after HPT processing of the ferritic samples (tempered at
800 ◦C before HPT) occurs mainly due to grain boundary strengthening. The microhardness
increases by three times up to 6.4 GPa compared to the samples before HPT.

3. The increase in HPT processing temperature from room temperature to 300 ◦C results in enhanced
carbon diffusion, recovery, and significant reduction in the dislocation density.

4. Severe plastic deformation has practically no significant effect on the refinement of coarse M23C6

carbides. Their fragmentation is possible if the carbide size does not exceed 100 nm. The increase
in the temperature of the deformation leads only to a smaller scatter in size.
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