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Abstract: Rhizoctonia root-rot disease causes severe economic losses in a wide range of crops,
including Vicia faba worldwide. Currently, biosynthesized nanoparticles have become super-growth
promoters as well as antifungal agents. In this study, biosynthesized selenium nanoparticles (Se-NPs)
have been examined as growth promoters as well as antifungal agents against Rhizoctonia solani
RCMB 031001 in vitro and in vivo. Se-NPs were synthesized biologically by Bacillus megaterium
ATCC 55000 and characterized by using UV-Vis spectroscopy, XRD, dynamic light scattering (DLS),
and transmission electron microscopy (TEM) imaging. TEM and DLS images showed that Se-NPs
are mono-dispersed spheres with a mean diameter of 41.2 nm. Se-NPs improved healthy Vicia
faba cv. Giza 716 seed germination, morphological, metabolic indicators, and yield. Furthermore,
Se-NPs exhibited influential antifungal activity against R. solani in vitro as well as in vivo. Results
revealed that minimum inhibition and minimum fungicidal concentrations of Se-NPs were 0.0625 and
1 mM, respectively. Moreover, Se-NPs were able to decrease the pre-and post-emergence of R. solani
damping-off and minimize the severity of root rot disease. The most effective treatment method
is found when soaking and spraying were used with each other followed by spraying and then
soaking individually. Likewise, Se-NPs improve morphological and metabolic indicators and yield
significantly compared with infected control. In conclusion, biosynthesized Se-NPs by B. megaterium
ATCC 55000 are a promising and effective agent against R. solani damping-off and root rot diseases
in Vicia faba as well as plant growth inducer.

Keywords: Vicia faba; plant disease; root rot; R. solani; Se-NPs; nano-biosynthesis; plant promotion

1. Introduction

The global population will increase to about eight billion people in 2025 and nine
billion people in 2050, which requires an increase in agricultural production to feed a
rapidly expanding world population [1]. Unfortunately, food security is threatened by crop
losses due to attacks of pathogens, including fungi [2,3], and it is estimated that around one-
third of the global crop is lost each year due to plant diseases [4]. Phytopathogenic fungi
cause losing crop-yield (20–40%) annually worldwide [5]. Vicia faba is the main important
economic legume over the world that is used as human food, livestock fodder, and silage
production [6]. In Egypt, Vicia faba (Faba Bean) is one of the most important economic
legume crops as a source of protein (18–32%), carbohydrates (55–63%), minerals (2–3.5%),
fat (0.5–5.6%), phosphorus, iron, calcium, and vitamins in food [7]; also, it has an ecological
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role in improving soil quality by the nitrogen fixation and enhances N and P nutrition of
cereals [8]. Generally, Vicia faba plays a vital role in crop rotation and limiting the disease
cycles of various plant pathogens. Unfortunately, Vicia faba suffers from many abiotic and
biotic stresses that have reduced crop production and led to a decrease in the cultivated
area of bean plants around the world from 5 million in 1965 to 2.4 million hectares in
2016. It is susceptible to soilborne fungal pathogens, including Rhizoctonia solani, which
causes serious root rot disease that harms the quality and quantity of crop yield [9–13],
causing a significant gap between production and consumption of Vicia faba in Egypt [6].
Moreover, R. solani has a broad host range including solanaceous crops, cereals, fruits and
vegetables such as potatoes, cucumbers, eggplant, peppers, sugar beet, lettuce, tomatoes,
and melon, cotton, and forest trees for a long time [14,15]. R. solani is an aggressive fungal
plant pathogen with a highly resistant structure called sclerotia, which allows the fungus
to survive under environmental conditions [15]. Although fungicides are effective for
controlling R. solani, they pollute the environment, have a high cost, and also affect other
beneficial organisms in the soil [16]. Fungi are the largest group among microbes, where
are used in different applications as nanotechnology, bioremediation, bio-deinking, food
products, enzyme production, organic acids, and biofuels [17–23]. Dong et al. [24] reported
that the management of plant diseases can be achieved by Gly-Cu(OH)2 NPs by reducing
the phytotoxicity to plants and improving the utilization of copper-based bactericides.
Krutyakov et al. [25] proved that silver nanoparticles are an effective agent for increasing
yields as well as decreasing plant diseases besides having a low harmful effect on humans
and animals. The application of nanoparticles in agriculture is beneficial for improving
the growth and yield of crops as well as inhibiting plant pathogens [26] by facilitating the
uptake of macromolecules needed to increase resistance to plant diseases and promote
growth [27]. The biological synthesis of metal nanoparticles provides an eco-friendly and
cost-effective method. An alternative approach to the synthesis of metal nanoparticles
is to apply biomaterials such as plants, microorganisms encompassing groups such as
bacteria, yeasts, fungi, and actinomycetes as manufactories [28]. Ag-NPs can be utilized
as a management and control agent against various fungal diseases of plants especially
Rhizoctonia solani and have antifungal activity against mycelium as well as sclerotia [29].
Selenium nanoparticles (Se-NPs) synthesized from a biological source has been shown
to have antimicrobial activity against pathogenic microorganisms including fungi [30].
Se-NPs is suggested to be used as a fungicide in agriculture because it has the advantage
of being less toxic to humans and animals than synthetic fungicides [31]. In the same
context, selenium is an essential trace element for plants growth. It is usually involved in
coenzyme activation and physiological facilitation in crop plants, which contributes to food
production and quality [32]. In our understanding, bacteriogenic Se-NPs antifungal action
against Rhizoctonia diseases of faba bean plants is not thoroughly studied. The main aim
of the current research is to (1) biosynthesize Se-NPs by B. megaterium, (2) characterize the
physicochemical properties of the produced nanoparticles by UV-Vis spectroscopy, XRD,
dynamic light scattering (DLS), and transmission electron microscopy (TEM) imaging,
(3) assess and evaluate the antifungal activity of Se-NPs against Rhizoctonia RCMB 031001
root rot of Vicia faba in vitro and in vivo, (4) analyze photosynthetic pigments, metabolic in-
dicators, protein, and phenolics compounds of Vicia faba, and (5) understand the antifungal
mechanisms and the effects of Se-NPs on oxidative enzymes such as polyphenol oxidase
(PPO) and peroxidase (POX) in Vicia faba under pot conditions using assays.

2. Materials and Methods
2.1. Biosynthesis of Se-NPs

Se-NPs were produced using Bacillus megaterium culture supernatant (as reducing and
stabilizing agents). Bacteria were subcultured on nutrient broth media in conical flasks
and incubated with shaking aerobically at 37 ◦C for 48 h. After an incubation period, the
bacterial cells were removed from the suspension by filtration through a 0.44 µm PVDF
filter; then, they were centrifuged at 10,000 rpm to remove occasional bacterial cells and
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macromolecules [33]. The next step was mixing cell-free supernatant with the selenious acid
suspension (1 mM) by quotient (1:1) v/v. The mixtures were stirred at a controlled room
temperature of about 25 ◦C. The process of selenious acid reduction was monitored by color
change of the cell-free supernatant from colorless to reddish color [22–25]. The suspension
of SeNPs was further centrifuged at 12,000 rpm for 30 min, and the collected precipitate
pellet was dried and weighed. The concentration was calculated as follows: 1 mg of SeNPs
was dissolved in 1 mL of DMSO, where the final concentration was 1000 µg/mL.

2.2. Characterization of Se-NPs

The characterization of Se-NPs was performed by using JASCO V-560, UV-Vis.
spectrophotometer, Tokyo, Japan, at the wavelength range from 200–900 nm and at a
resolution of 1 nm. Cell-free supernatant without SeO2 was used as blank to adjust the
baseline. Toward particle size investigation, the specimens were diluted ten times by
deionized water before being estimated. To determine the morphology and size of the
manufactured Se-NPs, TEM microscopy, model JEOL JEM-100 CX (Peabody, MA, USA)
was used. TEM imaging was carried out by drop covering the Se-NPs upon carbon-coated
TEM layers. Dynamic light scattering (DLS) was used to determine the size distribution,
while the average particle size was determined by PSSNICOMP 380-ZLS particle sizing
system (St. Barbara, CA, USA). For XRD analysis, the adjusted sample was centrifuged,
and the precipitate was dried under vacuum and taken for XRD analysis. X-ray diffraction
patterns were obtained with XRD- 6000 series, including stress analysis, residual austenite
quantitation, crystallite size/lattice strain, crystallinity calculation, and materials analysis
via overlaid X-ray diffraction patterns Shimadzu apparatus using nickel-filter and Cu-Ka
target, Shimadzu Scientific Instruments (SSI), (Kyoto, Japan). The average crystalline size of
the Se-NPs was also determined by using Debye–Scherrer equation: D = kλ/β Cos θ. Here,
D is the average crystalline size (nm), k is the Scherrer constant with the value from 0.9 to 1,
λ is the X-ray wavelength, β is the full width of half maximum, and θ is the Bragg diffrac-
tion angle (degrees). The estimations included stress investigation, remaining austenite
quantitation, crystallite capacity, crystallinity consideration, and materials examination
through overlaid X-ray diffraction models. Finally, Se-NPs concentration assessment was
performed using UNICAM939 Atomic Absorption Spectroscopy, Cambridge, UK, and
implemented with deuterium experience improvement. All suspensions were prepared
using ultra-pure water [34–41]. Furthermore, the morphology size of the manufactured
NPs was read by practicing TEM microscopy, JEOL JEM-100 CX, (Peabody, MA, USA).

2.3. Control of Rhizoctonia solani by Se-NPs
2.3.1. Source of Pathogen and Culture Conditions

Rhizoctonia solani RCMB 031001 was purchased from the Regional Center for Mycology
and Biotechnology (RCMB), Al-Azhar University, Cairo, Egypt. R. solani was cultured on
potato dextrose agar medium (PDA) plates, incubated for 3–5 days at 28 ± 2 ◦C, and then
kept at 4 ◦C for further use [42–45].

2.3.2. In Vitro Assessment of Antifungal Activity and Growth Inhibition

• Well diffusion method

The well diffusion method was applied to study the antifungal activity of biosynthe-
sized Se-NPs [46] with a few modifications. R. solani was inoculated on PD broth medium
and then incubated at 28 ± 2 ◦C for 3–5 days. Fungal inoculum of R. solani RCMB 031001
was spread thoroughly on the sterilized solidified potato dextrose agar (PDA) medium. At
the same time, eight wells with 5.5 mm diameter were made using a sterile cork-borer on
each agar plate (120 mm). The wells were filled with 50 µl of different concentrations of
Se-NPs individually with triplicates. The culture plates were incubated at 25 ◦C for 7 days,
and the zones of inhibition were observed and measured.
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• Radial growth method

PDA medium was prepared and amended with different concentrations of Se-NPs
(1, 0.5, 0.25, 0.125, and 0.0625 mM) before the pouring stage. After medium solidification,
culturing of R. solani was carried out according to Joshi et al. [47]. The inhibition percentage
of pathogen growth was calculated using the following equation:

Inhibition of pathogen growth (%) =
Growth in the control − Growth in the treatment

Growth in the control
× 100.

2.3.3. In Vivo Assessment Efficacy of Se-NPs on Vicia faba

The inoculum of the pathogenic fungus R. solani was prepared according to Büt-
tner et al. [48] that comprises mixing contents of 5 pure R. solani culture Petri dishes
with 1000 mL of distilled water using electrical blender for two minutes. This experiment
was carried out in the garden of Plant and Microbiology department, Faculty of Science,
Al-Azhar University, Cairo, Egypt. The source of faba bean cv. Giza 716 was obtained
from the Legume Research Department, Field Crop Institute, Agricultural Research Center,
Egypt. The sandy loam soil was autoclaved (1.5 atm, 121 ◦C for 30 min) and distributed
equally in disinfected pottery pots (30 cm in diameter) with 12 sterilized seeds per pot.
The Vicia faba seeds were washed with distilled water then sterilized using 2% sodium
hypochlorite for 2 min before conducting the treatments shown in Table 1.

Table 1. Treatments used in this study.

Treatment Number Treatment

1 (Control healthy) The sterilized Vicia faba seeds submerged in distilled water for
three hours and sowing in sterilized soil.

2 (Control infected) Sowing the sterilized Vicia faba seeds in distilled water for three
hours and sowing in inoculated soil with R. solani.

3 (Healthy + Nano soaking) Soaking the sterilized Vicia faba seeds in Se-NPs (0.0625 mM) for
three hours and sowing in sterilized soil.

4 (Infected + soaking) Soaking the sterilized Vicia faba seeds in Se-NPs (0.0625 mM) for
three hours and sowing in inoculated soil with R. solani.

5 (Healthy + soaking and
spraying with Nano)

Soaking the sterilized Vicia faba seeds in Se-NPs (0.0625 mM) for
three hours and sowing in sterilized soil, then spraying 15 mL
of Se-NPs after emergence.

6 (Infected + soaking and
spraying with Nano)

Soaking the sterilized Vicia faba seeds in Se-NPs (0.0625 mM) for
three hours and sowing in inoculated soil with R. solani, then
spraying 15 mL of Se-NPs after emergence.

7 (Healthy + spraying Nano)
Sowing the sterilized Vicia faba seeds in distilled water for three
hours and sowing in sterilized soil, then spraying 15 mL of
Se-NPs (0.0625 mM) after emergence.

8 (Infected + spraying Nano)
Sowing the sterilized Vicia faba seeds in distilled water for three
hours and sowing in inoculated soil with R. solani, then
spraying 15 mL of Se-NPs (0.0625 mM) after emergence.

2.3.4. Disease Symptoms and Disease Index

Pre-emergence damping-off was measured after 15 days from sowing, while post-
emergence damping-off and survival were measured after 30 days from sowing according
to Mousa et al. [49]. In addition, disease symptoms were assessed, and the disease index
was recorded after 45 days from sowing according to Grünwald et al. [50]. The disease
index scale (0–5) based on disease progress developed by the authors was used to measure
the disease severity of Rhizoctonia root rot, in which 0 indicated no visible symptoms; 1, a
few small soft lesions on a part of the root system and hypocotyls; 2, elongated, discolored
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lesions spread on the entire root system and hypocotyls; 3, deep brown necrosis grind the
stem, partial root disintegration, and yellowing of leaves; 4, stem canker, root disintegration,
yellowing of leaves, and stunting; and 5, collapse and death of the plants. Disease index
= (i (rating no. × no. of plants in the rating)/(total no. of plants × highest rating) × 100.
Shoot length, root length, fresh and dry weight, and pigments were also measured (one
gram of fresh leaves was extracted by 100 mL of 80% aqueous acetone (v/v), filtrated,
and then completed the volume to 100 mL using 80% acetone). The optical density of the
plant extract was measured using the spectrophotometer of three wavelengths (470, 649,
and 665 nm). Pigments were calculated using the equations mentioned Mg chlorophyll
(a)/g tissue = 11.63(A665) − 2.39(A649), Mg chlorophyll (b)/g tissue = 20.11(A649) −
5.18(A665), Mg chlorophyll (a + b)/g tissue = 6.45 (A665) + 17.72(A649), and Carotenoids =
1000 × O.D470 − 1.82 Ca − 85.02 Cb/198 = mg/g fresh weight. “A” denotes the reading of
optical density, phenol (one gram dry leaves was extracted with 80% cold methanol (v/v)
three times at 0 ◦C. The extract was filtered; then, the volume of sample was completed
to 25 mL with cold methanol. The total phenol and total soluble protein of plants were
determined in the following manner: one gram of the dried leaves was added to 5 mL of
2% phenol water and 10 mL of distilled water was added; the solution was shaken and
kept overnight, filtered, and completed volume to 50 mL with distilled water; then the
protein content was determined according to Alhaithloul et al. [51].

2.4. Statistical Analysis

Experimental data were subjected to one-way analysis of variance (ANOVA) and
the differences between means were measured using Tukey’s method. The values are
given as means ± SD (standard deviations). Levels of significance were considered at
p ≤ 0.05 unless otherwise stated, and the (L.S.D) at 5% level of probability using Co-state
software [52].

3. Results and Discussion
3.1. Synthesis and Characterization of Se-NPs

In the current study, the supernatant of Bacillus megaterium ATCC 55000 was used
to synthesize Se-NPs. The process of selenious acid reduction was monitored, while the
cell-free extract changed from colorless to reddish color [53,54]. The UV-visible spectrum
of Se-NPs synthesized indicated that it had maximum absorption at (0.860 abs) and 435 nm.
DLS was performed to evaluate the particle size distribution, and the average particle
size was found to be 45.9 nm, as shown in Figure 1B. On the other hand, the TEM result
demonstrated that particles had a spherical shape within a nanoscale range from 29.72 to
74.36 nm with an average of the main diameter of 41.2 nm, as shown in Figure 1C. The XRD
pattern for the Se-NPs was presented in Figure 1D. Several peaks were observed at nine
theta (degree) as 23.2◦, 30.5◦, 41.7◦, 44.3◦, 46.4◦, 52.3◦, 56.7◦, 62.5◦, and 72.6◦ corresponding
to the (100), (101), (110), (102), (111), (201), (113), (202), and (210) planes of the standard
cubic phase of Se, respectively. The XRD pattern indicated that Se-NPs were in the face-
centered cubic (FCC) structure and crystal in nature. The observation of diffraction peaks
for the Se-NPs indicated that they were crystalline, while their refining was related to the
particles in the nanometer size regime. The strong interaction of the Se-NPs with light was
the result of the electrons conducting on the metal surface that were subjected to a collective
oscillation when excited by light at specific wavelengths, which is known as surface plasma
resonance (SPR) [55,56]. In another study, the culture supernatant of A. terreus with SeO2
(100 µg/mL) produced Se-NPs with an average size of 47 nm [57]. Bacillus megaterium
(a halophile strain) strongly reduced selenite (up to 0.25 mM) to Se-NPs after 40 h of
incubation [58]. A microbial source Bacillus cereus-mediated synthesis of Se-NPs showed
an absorption maxima at 590 nm, whereas nanoparticles synthesized from lemon leaf
extract exhibited a maximum absorption at 395 nm [59]. The band gap energy calculated
for chemically formed nano-Se was 2.1 eV, which significantly different from a biological
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source (band gaps for nano-Se from Sulphurospirillum barnessi, Bacillus selenitireducens, and
Selenihalanaerobacter shriftii were 1.62, 1.67, and 1.52 eV, respectively [60].
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Figure 1. Characterization of bacteriogenic Se-NPs produced by B. megaterium (A–D); (A) UV-Visible spectrum; (B) dynamic
light scattering (DLS); (C) TEM image; (D) XRD.

3.2. In Vitro Control of R. solani
3.2.1. Antifungal Activity of Se-NPs and Minimum Inhibition Concentration

Metal nanoparticles such as silver nanoparticles [61,62], copper nanoparticles [63], and
zinc nanoparticles [64] are wildly used for controlling fungal plant pathogens. However,
selenium nanoparticles have strong antifungal activity, while they are rarely used for
controlling fungal plant pathogens. Therefore, selenium nanoparticles were biosynthesized
in this study to control R. solani. The antifungal activity of Se-NPs was assessed against
R. solani using the agar well diffusion method; different concentrations of Se-NPs ranging
from 1 to 0.0078 mM were tested as antifungal agent, as shown in Figure 2. Results
illustrated that concentrations of Se-NPs of 1, 0.5, 0.25, 0.125, and 0.0625 mM had antifungal
activity against R. solani. Moreover, 1 mM of Se-NPs had the maximum antifungal activity
and gave an inhibition zone of 45 mm, whereas 0.0625 mM had the lowest antifungal
activity against R. solani and gave an inhibition zone of 12 mm. From these data, 0.0625
was the minimum inhibition concentration for the controlling of R. solani.
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3.2.2. Effect of Se-NPs on Linear Growth of R. solani and Minimum Fungicidal Concentration

The linear growth of R. solani was assessed at different concentrations of Se-NPs with
different incubation periods from 1 to 7 days, as shown in Figure 3A,C. Linear growth was
performed to detect the inhibition percentage for each concentration of Se-NPs against R.
solani. Results illustrated that the inhibition percentage increased with increasing of concen-
tration Se-NPs, while linear growth decreased, as shown in Figure 3B. At concentration 1
mM, R. solani could not grow on a PDA surface, as shown in Figure 3C, inhibition percent-
age was 100%, and this concentration had the minimum fungicidal activity. Additionally,
Se-NPs at 0.5 mM gave a high inhibition percentage but less than at 1 mM, where it was
92.9%; also, inhibition percentage decreased gradually with decreasing the concentration
of Se-NPs [47]. Biosynthesized Se-NPs could suppress the growth and proliferation of
Sclerospora graminicola [65]. Moreover, selenium nanoparticles were used in controlling
the leaf blight of tomato caused by Alternaria alternate, and Se-NPs at a concentration
of 100 ppm gave an inhibition percentage 89.6% [66]. In addition, Se-NPs used against
Alternaria solani caused Early Blight Disease on Potato, and inhibition percentage was 100%
at 800 ppm [67].

3.3. In Vivo Control of R. solani
3.3.1. Efficacy of Se-NPs on Rhizoctonia Root Rot Disease of Vicia faba under Pot Conditions

The results presented in Table 2 and Figure 4 indicated that R. solani RCMB 031001
caused an emergence damping-off disease of 58.33% seeds and 88% Rhizoctonia root
rot disease index of Vicia faba cultivar (treatment 2 infected control). On the other hand,
the healthy control treatment pots resulted in 100% emerged and survived plants. These
results confirmed that the cv. Giza 716 faba bean cultivar is susceptible to R. solani RCMB
031001. Application of the Se-NPs by soaking and/or spraying to Vicia faba infested with
fungus R. solani showed greater potency in controlling the pathogen. The best treatment
for controlling R. solani was treatment 6, which resulted in 83.33% survival as well as
72.27% protection followed by treatment 4 with 66.67% and 59.2%, respectively, and
treatment 8 by 50% and 63.63%. These results are similar to studies by Nandini, Hariprasad,
Prakash, Shetty and Geetha [65], which reported that Se-NPs had a highly effective role in



J. Fungi 2021, 7, 195 8 of 18

controlling plant pathogenic fungus Sclerospora graminicola as a causative agent of downy
mildew disease. However, several reports showed that the application of selenium in
plants activates the defense plant mechanism against abiotic [68] and biotic stresses such
as R. solani [69].
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Table 2. Effect of selenium nanoparticles (Se-NPs) on the disease index of R. solani damping-off and
root rot diseases under pot conditions.

Treatment Pre-Emergence
Damping of %

Post-Emergence
Damping of %

Survival
Plant %

Disease
Index %

Protection
%

H
ea

lt
hy

Control 0 0 100 0 -

Nano soaking 0 0 100 0 -

Nano
spraying 0 0 100 0 -

Nano (soaking
+ spraying) 0 0 100 0 -

In
fe

ct
ed

Control 50 8.33 41.67 88 0

Nano soaking 16.66 16.66 66.67 36 59.2

Nano spraying 50 0 50 32 63.63

Nano (soaking
+ spraying) 16.667 0 83.33 20 77.27
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3.3.2. Growth and Yield Responses of Vicia faba by Se-NPs under Pot Conditions

Results presented in Tables 3 and 4 indicated that all investigated growth parameters
(shoot and root length, number of leaves, fresh and dry weight plant biomass), as well as
yield (number of bods per plant, number of seeds per plant, the weight of 100 seed and
protein content of yield) of infected Vicia faba cv. Giza 716 plants with R. solani RCMB 031001
were significantly decreased compared with healthy control plants. The most effective
treatment was treatment 6, which increased the yield and growth parameters, especially
shoot dry weight 203%, root fresh weight 178.8%, root dry weight 163%, plant height, and
number of seeds 116.6% compared with infected control (treatment 2). These results are
similar to Abdel-Monaim [70], who reported that R. solani had significantly decreased fresh
and dry weight compared to healthy control. Akladious et al. [71] reported that R. solani
caused a significant decrease in shoot length, root length, number of leaves, and fresh and
dry weight of shoot and root of Vicia faba.

The obtained results revealed that all investigated growth parameters of Vicia faba
cv. Giza 716 plants were significantly increased in response to the application of Se-
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NPs compared with the control. The simulative effects of Se-NPs on plant growth were
explained by many mechanisms—firstly, the increased starch content in chloroplast [72].
Secondly, the plant cell can be protected by selenium from oxidative damage by antioxidant
defenses [73]. Thirdly, selenium is a beneficial element for plants and has a bio-stimulant
effect, as photocatalysis and plant growth increase plant metabolism and crop quality and
stress tolerance [32,52,74]. However, the application of selenium in plants stimulates the
growth and quality of fruits [75]. Our results showed that the most effective treatment was
achieved by soaking and foliar spray followed by soaking and finally spraying.

Table 3. Effect of biogenic Se-NPs on morphological indicators of Vicia faba L. under pot conditions.

Treatments Plant Height
(cm)

Root Length
(cm)

Number of
Leaves

Shoot F. wt.
(g)

Shoot D. wt.
(g)

Root F. wt.
(g)

Root F. wt.
(g)

T1: Control (H.) 32 ± 1.50 b 11.33 ± 0.85 cd 16.33 ± 0.57 bc 10.48 ± 0.72 bc 3.71 ± 0.24 b 1.25 ± 0.04 d 0.37 ± 0.00 bc

T2: Control (Inf.) 19.36 ± 0.70 e 9.73 ± 0.75 d 11.66 ± 0.57 d 7.38 ± 0.33 e 1.31 ± 0.28 d 0.82 ± 0.06 g 0.19 ± 0.02 d

T3: Soaking Nano
(H.) 35.83 ± 1.89 b 13.56 ± 0.51 ab 18.33 ± 1.52 b 13.56 ± 0.40 a 4.6 ± 0.35 a 1.64 ± 0.06 b 0.52 ± 0.04 a

T4: Soaking Nano
(Inf.) 20.5 ± 1.80 de 10.7 ± 0.75 cd 15.33 ± 1.15 c 10.25 ± 0.67 bc 2.48 ± 0.14 c 1.07 ± 0.06 ef 0.22 ± 0.00 d

T5: Soaking + Spray
Nano (H.) 42.66 ± 2.25 a 15.66 ± 1.10 a 22.33 ± 1.52 a 14.76 ± 0.92 a 4.59 ± 0.22 a 1.87± 0.03 a 0.57 ± 0.04 a

T6: Soaking + Spray
Nano (Inf.) 24.5 ± 0.50 cd 10.84 ± 0.74 cd 11.66 ± 0.57 d 8.37± 0.10 de 2.67 ± 0.30 c 0.93 ± 0.06 fg 0.31 ± 0.00 c

T7: Spray Nano (H.) 34.5 ± 1.32 b 12.06 ± 0.62 bc 16.33 ± 0.57 bc 11.16 ± 0.35 b 3.92 ± 0.13 ab 1.45 ± 0.09 c 0.44 ± 0.00 b

T8: Spray Nano (Inf.) 26.66 ± 1.52 c 10.6 ± 0.65 cd 13.66 ± 0.57 cd 9.46 ± 0.47 cd 2.65 ± 0.16 c 1.13 ± 0.01 de 0.35 ± 0.00 c

L.S.D at 0.05 2.667 1.329 1.694 0.963 0.422 0.099 0.041

H. means Healthy and Inf. means infected. Data are expressed as means ± standard deviations of triplicate assays. The different alphabetic
superscripts in the same column are significantly different (p < 0.05) based on Tukey’s multiple comparison test.

Table 4. Effect of Se-NPs on the yield of (Vicia faba L.) plants.

Treatments No. of Pods/Plant No. of Seeds/Plant wt. of 100 Seeds(g) Protein Yield mg/g (g)

T1: Control (H.) 20.33 ± 0.57 a 51 ± 1.0 bc 101.33 ± 0.57 c 116.94 ± 0.09 c

T2: Control (Inf.) 17.66 ± 0.57 b 47 ± 2.0 c 99 ± 1.0 d 96.1 ± 0.28 f

T3: Soaking Nano (H.) 21.33 ± 0.57 a 54.66 ± 1.52 ab 105 ± 1.0 b 120.6 ± 0.46 b

T4: Soaking Nano (Inf.) 18.33 ± 0.57 b 49 ± 1.73 c 101.66 ± 0.57 c 99.02 ± 0.14 e

T5: Soaking + Spray Nano (H.) 21.66 ± 0.57 a 57.66 ± 1.15 a 107.03 ± 0.45 a 123.21 ± 0.38 a

T6: Soaking + Spray Nano (Inf.) 17.33 ± 0.57 b 49 ± 1.73 c 101.16 ± 0.28 c 101.28 ± 0.51 d

T7: Spray Nano (H.) 20.33 ± 0.57 a 54.33 ± 1.15 ab 103.5 ± 0.05 b 118.17 ± 0.32 c

T8: Spray Nano (Inf.) 18 ± 1.0 b 51 ± 1.0 bc 101.30 ± 0.02 c 100.21 ± 1.05 de

L.S.D at 0.05 1.125 2.523 1.095 0.856

Data are expressed as means ± standard deviations of triplicate assays. The different alphabetic superscripts in the same column are
significantly different (p < 0.05) based on Tukey’s multiple comparison test. LSD (p < 0.05) values are indicated in the data differing
significantly are indicated with different letters.

3.3.3. Effect of Se-NPs on Photosynthetic Pigments of Vicia faba under Pot Conditions

The observed results in Figure 5 showed that chlorophyll content and carotenoids had
significantly decreased by R. solani RCMB 031001. These results are explained with [76],
which stated that phytopathogenic fungi inhibit the photosynthetic activity of plants. These
reductions in chlorophyll a may be due to the more selective destruction of chlorophyll
biosynthesis or degradation of chlorophyll precursors according to Saha et al. [77] or may
be due to a decrease in the uptake of minerals (e.g., magnesium) that are required for
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chlorophyll synthesis and interfere with the photosynthesis reactions [78]. Data presented
in Figure 5 indicated that the application of Se-NPs caused a significant increase in total
chlorophyll content and carotenoids compared with controlled plants and the best result
was achieved by soaking and foliar spraying. Several reports show that the application of
selenium in plants improves photosynthesis [79].
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3.3.4. Effect of Se-NPs on the Metabolic Indicators of (Vicia faba L.)
Effect of Se-NPs on Phenol Contents of Vicia faba under Pot Conditions

Results revealed that the contents of total phenols were significantly increased in
shoots and roots of cv. Giza 716 plants in response to the infection with R. solani RCMB
031001, as shown in Figure 6. Moreover, results demonstrated that application of Se-NPs
induced responses regarding the total contents of phenols compared with healthy control.
In contrast, total phenols contents in shoots and roots-infected plants were significantly
decreased in response to the treatments with Se-NPs. These results are similar to those
in [80,81]; they demonstrated that the treatment of plants with NPs resulted in increasing
phenolic content. This increasing in phenolic contents resulted in antifungal activity by
several mechanisms including (i) cell rupture and release of intracellular proteins and
carbohydrates that prevent fungal growth; (ii) inhibition of mitochondrial respiration
causing reduction of ATP production, and (iii) oxidative lesions and chelation of iron
ions [82,83]. Correspondingly, total phenols play a vital role in the regulation of plant
metabolic process and overall plant growth as well as lignin synthesis [84]. Phenols act as
free radical scavengers as well as substrates for many antioxidant enzymes [85]. Finally,
Mellersh et al. [86] reported that reactive oxygen species (ROS), especially phenolic com-
pounds, prevent penetration, restrict fungal growth, and provoke cell death and tissue
necrosis, which would prevent further fungal development toward plant tissue.
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Effect of Se-NPs on a Total Soluble Protein of Vicia faba under Pot Conditions

The presented data in Table 5 showed that the total soluble protein in shoot and
root were significantly decreased in cv. Giza 716 plants in response to the infection with
R. solani RCMB 031001. Weintraub and Jones [87] recorded that pathogen attack resulted in
a reduction of several thylakoid membrane proteins and decreasing leaf soluble protein.
These results are explained by several different mechanisms; firstly, the stresses may affect
the process of protein synthesis, Secondly, it is also possible that the pathogens consume
nitrogen, which could have been utilized for synthesizing proteins [88]. In addition, the
application of Se-NPs resulted in an increase of total soluble protein compared with control.
Also, the best treatment was soaking and foliar spraying, which agree with Hajiboland [89],
who illustrated that the application of Se-NPs resulted in a significant increase in total
soluble protein. Increasing protein content could be due to the activation of the host defense
mechanisms as an indicator of resistance [88].

Table 5. Effect of Se-NPs on the total soluble protein of (Vicia faba L.).

Treatments Protein Shoot mg/g d. wt. (g) Protein Root mg/g d. wt. (g)

T1: Control (H.) 20.22 ± 0.15 c 18.27 ± 0.17 c

T2: Control (Inf.) 16.8 ± 0.24 f 16.63 ± 0.35 f

T3: Soaking Nano (H.) 21.83 ± 0.06 b 19.14 ± 0.17 b

T4: Soaking Nano (Inf.) 18.06 ± 0.48 e 17.39 ± 0.07 e

T5: Soaking + Spray Nano (H.) 22.93 ± 0.05 a 21.03 ± 0.07 a

T6: Soaking+ Spray Nano (Inf.) 19.09 ± 0.08 d 17.59 ± 0.07 de

T7: Spray Nano (H.) 21.62 ± 0.04 b 20.9 ± 0.09 a

T8: Spray Nano (Inf.) 18.08 ± 0.31 e 18 ± 0.17 cd

LSD at 0.05 0.412 0.283
Data are expressed as means ± standard deviations of triplicate assays. The different alphabetic superscripts in
the same column are significantly different (p < 0.05) based on Tukey’s multiple comparison test.

Effect of Se-NPs on Oxidative Enzymes of Vicia faba under Pot Conditions

Vicia faba showed variation in relative mobility and density polypeptide bands as
pathogenicity indicators and or treatment with Se-NPs, where healthy control (treatment 1)
gave three isozyme bands with a low density of isozymes but soaking infected (treatment 4)
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and soaking + foliar spray Se-NPs (treatment 6) gave the same number of bands, three
isozymes with moderate density. While infected control (treatment 2), as well as Se-NPs as
a foliar spray on infected (treatment 8), gave three isozymes bands with a high density of
isozymes, as shown in Figure 7, these results demonstrated that infected control recorded
high activity as a high density of bands. Our results are similar to those of [90], who
reported that the minimum activities of peroxidase enzymes were observed in healthy
control. In this regard, Hasanuzzaman and Fujita [91] found that spraying with selenium
increased the activity of many enzymes. In addition, [92] reported that nano selenium acts
as a promoter and/or stressor, enhancing the antioxidant defense systems of plants, which
leads to the improvement of plant tolerance under sandy soil conditions.
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(H.). 8: Spray Nano (Inf.).

In addition to the lowest polyphenol oxidase (PPO) activity recorded in healthy control,
Se nanoparticles and R. solani infection application showed variation in number, relative
mobility, and density polypeptide bands more than healthy ones, infected control, as well
as treatment with Se-NPs as a foliar spray on infected plants (four isozyme bands) with a
high density of isozymes (Figure 8). Meanwhile, plants treated with soaking or foliar spray
Se-NPs (either individual or combination) gave the same number of bands (four isozymes)
with moderate and high density. Variation in isozyme shows knowledge of resistant genes
in the biological system to physiological changes, genetic traits, and growth in various
species _ENREF_ [90]. Finally, anti-oxidative enzymes such as polyphenol oxidase (PPO)
and peroxidase (POX) are most importantly involved in the scavenging system of excess
reactive oxygen species (ROS) [90].
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4. Conclusions

In the current study, Se-NPs were bio-synthesized by the culture supernatant of B.
megaterium ATCC 55000, which was characterized by mono-dispersed spheres with a mean
diameter of 41.2 nm. The green Se-NPs have promising antifungal activity against R. solani
in vitro and in vivo; hence, it could use as a promising agent for the controlling of R. solani
diseases in faba bean. Se-NPs effects on faba bean plant growth and development at the
working concentration were determined. Vicia faba plant growth promoters in Se-NPs
were the enhancement of Vicia faba’s morphological, metabolic and genetic parameters.
Photosynthetic pigments, metabolic indicators, and phenolics compounds of Vicia faba were
analyzed; Se-NPs caused a significant increase in total chlorophyll content and carotenoids
compared with controlled plants, and the best results were achieved by soaking and
foliar spraying. Moreover, results demonstrated that the application of Se-NPs induced
responses regarding the total contents of phenols and total soluble protein compared with
healthy control. In contrast, total phenols contents in shoots and roots-infected plants
were significantly decreased in response to the treatments with Se-NPs. The effects of
Se-NPs on oxidative enzymes such as polyphenol oxidase (PPO) and peroxidase (POX) in
Vicia faba under pot conditions were assayed. Se-NPs act as a promoter and/or stressor,
enhancing the antioxidant defense systems of plants, which leads to the improvement of
plant tolerance. It is widely demanded that biogenic selenium NPs may be effective and
economical alternatives for treating fungal plant pathogens. In the future, the adverse
effects of these biogenic NPs on agriculture and ecosystems should be ascertained before
their commercial use in plant disease control in the field.
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