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Abstract

Extrachromosomal genetic elements such as bacterial endosymbionts and plasmids gener-

ally exhibit AT-contents that are increased relative to their hosts’ DNA. The AT-bias of endo-

symbiotic genomes is commonly explained by neutral evolutionary processes such as a

mutational bias towards increased A+T. Here we show experimentally that an increased

AT-content of host-dependent elements can be selectively favoured. Manipulating the

nucleotide composition of bacterial cells by introducing A+T-rich or G+C-rich plasmids, we

demonstrate that cells containing GC-rich plasmids are less fit than cells containing AT-rich

plasmids. Moreover, the cost of GC-rich elements could be compensated by providing pre-

cursors of G+C, but not of A+T, thus linking the observed fitness effects to the cytoplasmic

availability of nucleotides. Accordingly, introducing AT-rich and GC-rich plasmids into other

bacterial species with different genomic GC-contents revealed that the costs of G+C-rich

plasmids decreased with an increasing GC-content of their host’s genomic DNA. Taken

together, our work identifies selection as a strong evolutionary force that drives the genomes

of intracellular genetic elements toward higher A+T contents.

Author summary

Genomes of endosymbiotic bacteria are commonly more AT-rich than the ones of their

free-living relatives. Interestingly, genomes of other intracellular elements like plasmids or

bacteriophages also tend to be richer in AT than the genomes of their hosts. The AT-bias

of endosymbiotic genomes is commonly explained by neutral evolutionary processes.

However, since A+T nucleotides are both more abundant and energetically less expensive

than G+C nucleotides, an alternative explanation is that selective advantages drive the

nucleotide composition of intracellular elements. Here we provide strong experimental evi-

dence that intracellular elements, whose genome is more AT-rich than the genome of the

host, are selectively favoured on the host level. Thus, our results emphasize the importance

of selection for shaping the DNA base composition of extrachromosomal genetic elements.
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Introduction

Bacterial genomes exhibit a considerable amount of variation in their nucleotide composition

(G+C versus A+T), ranging from less than 13% to more than 75% GC [1, 2]. Despite intense

efforts during the past decades, the selective pressures determining the evolution and mainte-

nance of this variation remain elusive [3]. A general pattern that emerged from sequencing the

genomes of numerous taxa is that bacteria, whose survival obligately depends on a eukaryotic

host (i.e. endosymbionts), display genomic AT-contents that are significantly increased in

comparison to the genomes of their free-living relatives as well as their hosts’ genomes [4].

Interestingly, intracellular genetic elements that permanently or transiently exist outside the

bacterial chromosome, such as plasmids, viruses, phages, and insertion sequence (IS) elements,

are also usually characterized by a significantly higher AT-content than the genome of their

host [5, 6]. Finding that the nucleotide composition of these very different elements is consis-

tently biased in the same direction suggests similar evolutionary mechanisms operate to pro-

duce this pattern.

While less attention has been paid to extrachromosomal genetic elements such as plasmids

and bacteriophages, two main hypotheses have been put forward to explain the biased nucleo-

tide composition of obligate intracellular bacteria: First, high AT-contents can result from

increased levels of genetic drift and mutational bias [4, 7, 8]. Genetic drift is particularly strong,

when the bacteria’s effective population sizes are small, which is generally the case in vertically

transmitted, intracellular symbionts [4]. Since the majority of DNA modifications caused by

oxygen radicals (either from the environment or generated by endogenous cellular processes)

lead to mispairing of DNA bases, which mostly results in GC!AT transitions and G/C!T/A

transversions [9], in the long-run genetic drift is expected to increase the elements’ overall AT-

content.

On the other hand, it has been argued that the AT-bias of intracellular elements could be

adaptive, and thus be favoured by natural selection [5]. The reasoning behind this idea is that

both endosymbiotic bacteria and plasmids occupy the same ecological niche, i.e. the intracellu-

lar environment of a larger organism, and thus have access to metabolites in the host’s cyto-

plasm [10]. This includes all nucleotides and their biochemical precursors. For the host cell,

ATP and UTP nucleotides are energetically less expensive to produce than GTP and CTP

nucleotides [5]. Moreover, ATP is the main energy currency used in cells and, thus, the most

abundant nucleotide [11, 12]. Hence, a preferential uptake of A+T nucleotides by the respec-

tive intracellular element may impose a lower metabolic burden on its host than consumption

of the more valuable G+C nucleotides. Strikingly, in both endosymbiotic bacteria and plas-

mids, selection tends to reduce the costs intracellular elements impose on their host (e.g. by

reducing the size and transcriptional activity of the element [10]). The reason for this is that

hosts harbouring metabolically ‘costly’ intracellular elements display a lower fitness than hosts

with metabolically ‘cheaper’ elements [13]. As a consequence, selection acts against less fit

host-symbiont/ bacteria-plasmid combinations, thereby favouring hosts that harbour metabol-

ically cheaper intracellular elements (host-level selection). Accordingly, if AT-rich elements

are metabolically ‘cheaper’ than GC-rich elements, hosts with more AT-rich elements should

be selectively favoured.

Until now, GC-content variation in endosymbiotic bacteria has mainly been studied using

comparative approaches [14, 15]. This is likely due to technical difficulties to experimentally

disentangle and manipulate these complex and often obligate host-endosymbiont systems

[16]. Although understandable from a methodological point of view, sequence comparisons

can only reveal correlative relationships. To identify the underlying mechanistic causes,
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however, manipulative experiments are required that allow to rigorously scrutinize the focal

hypothesis under controlled conditions.

While the GC-content evolution in plasmids has also mainly be studied using comparative

approaches ([6, 17, 18], but see [19]), plasmids and their bacterial hosts are highly tractable sys-

tems, in which a variety of different features can be experimentally manipulated [10]. Here we

take advantage of the experimental tractability of plasmid-host interactions to unravel the evo-

lutionary consequences resulting from a biased nucleotide composition of host-dependent,

intracellular elements. Manipulating the plasmids’ GC-content allowed us to experimentally

test the hypothesis that a higher demand for G+C nucleotides due to the presence of an extra-

chromosomal genetic element (here: plasmid) limits host growth. Our results show indeed

that bacteria that contain a GC-rich plasmid, and thus have an increased demand for G+C

nucleotides, were less fit than bacteria containing an AT-rich plasmid. Supplying cells that

contained a GC-rich plasmid with G+C nucleosides restored the fitness of host cells, while no

such effect was observed for cells with AT-rich plasmids or when A+T nucleotides were sup-

plemented to both types of plasmid-containing cells. These findings suggest that the cyto-

plasmic availability of G+C nucleotides limited the growth of cells with GC-rich plasmids.

Moreover, introducing plasmids into different bacterial species with an increasing genomic

GC-content revealed that fitness costs imposed by GC-rich plasmids decreased with increasing

GC-content of the host genome. Taken together, our results provide strong experimental evi-

dence that the commonly observed increased AT-content of host-dependent elements can be

selectively favoured.

Results

Experimental model system

To determine if differences in the nucleotide composition of an extrachromosomal genetic ele-

ment affect the fitness of the corresponding host cell, plasmids with high or low GC-contents

were introduced into Escherichia coli cells. For this, two plasmids served as a backbone, into

which eight non-coding AT- or GC-rich sequences of 1 kb in size were introduced to alter the

cells’ net GC-content (Fig 1). Sequences originated from eukaryotic DNA and were carefully

selected, such that no genes or regulatory elements were present (see Materials and methods).

In this way, chances of inadvertent gene expression were minimized, which could have

resulted in additional metabolic costs. All AT-rich and GC-rich sequences were individually

introduced into two different plasmid backbones that strongly differ in terms of their genetic

architecture (i.e. origin of replication, copy number, and selectable marker). The resulting

plasmid constructs (i.e. eight AT-rich and eight GC-rich plasmids for each of the two back-

bones) were used as replicates to rule out plasmid- or sequence-specific effects. This system

allowed us to study the fitness consequences resulting from intracellular elements that differed

in their genomic nucleotide composition in otherwise isogenic bacterial cells.

E. coli cells containing AT-rich plasmids are fitter than cells containing

GC-rich plasmids

To determine whether the plasmids’ nucleotide composition affected the host cell’s fitness,

AT-rich (i.e. cells harbouring AT-rich plasmids) and GC-rich (i.e. cells harbouring GC-rich

plasmids) E. coli cells were grown for 24 h in minimal medium and the growth kinetics of

these cultures were determined spectrophotometrically. The results of this experiment revealed

that GC-rich cells harbouring the plasmid pJet1.2/blunt (hereafter: pJet) grew significantly less

well than the corresponding AT-rich cells: GC-rich cells displayed a significantly extended lag-

Selection favours AT-rich intracellular elements
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phase, a decreased maximum growth rate, and reached a lower maximum cell density as com-

pared to AT-rich cells (Fig 2A–2C). Repeating the same experiments with E. coli strains that

harboured the second plasmid backbone (i.e. pBAV1kT5gfp [20] lacking T5gfp; hereafter:

pBAV), corroborated these results. Again, cell populations containing GC-rich plasmids dis-

played a significantly extended lag-phase, a decreased maximum growth rate, and reached a

significantly reduced maximum cell density relative to the cognate AT-rich cells (Fig 2D–2F).

Taken together, GC-rich cells grew significantly less well than AT-rich cells, indicating fitness

costs resulted from the presence of GC-rich plasmids. Due to the design of the experiment,

effects that might have been caused by the inserted sequences or the plasmid backbones used,

could be ruled out as explanation.

Fig 1. Construction of AT-rich and GC-rich plasmids. Eight non-coding AT-rich and GC-rich sequences of 1 kb

in size were amplified from the genomes of Arabidopsis thaliana and Chlamydomonas reinhardtii, respectively.

Sequences were inserted into two different plasmid backbones (pJet and pBAV) to exclude plasmid-specific effects.

Different plasmid-insert combinations were treated as independent replicates. All plasmids contained an origin of

replication (ori), a resistance cassette (R), and one of the inserts (AT-rich DNA: green label, GC-rich DNA: orange

label).

https://doi.org/10.1371/journal.pgen.1007778.g001
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GC-rich plasmids have a lower copy number than AT-rich plasmids

The copy number of plasmids is usually genetically determined by replication-control mecha-

nisms that are encoded by the plasmid itself [21]. Nevertheless, the copy number of a single

plasmid can vary, depending on the extent of metabolic costs it imposes on its host. For exam-

ple, the copy number of a plasmid has been shown to decrease with increasing length or gene

content of the accessory region [13]. Accordingly, if a GC-rich plasmid imposes a higher meta-

bolic cost on its host than an AT-rich plasmid, it should also be present in a lower copy num-

ber than the less costly AT-rich plasmid. This hypothesis was tested by quantifying the copy

numbers of both plasmids harbouring AT-rich or GC-rich inserts via quantitative PCR

(qPCR). Indeed, qPCR analyses revealed that the copy number of both plasmid backbones

analysed were drastically reduced when plasmids contained GC-rich inserts relative to plas-

mids with AT-rich inserts (Fig 3). This pattern was consistently observed over the entire

growth cycle of the focal cells (S1 Fig). Together, these results further corroborate that GC-rich

plasmids likely impose a higher metabolic burden on their host cells than AT-rich plasmids,

thus resulting in a strongly reduced copy number.

The growth difference between AT-rich versus GC-rich cells is not due to a

differential susceptibility to antibiotics

The decreased copy number of GC-rich plasmids relative to AT-rich plasmids could make the

corresponding cells more susceptible to the antibiotic, which has been used in previous

Fig 2. Cells containing GC-rich plasmids are less fit than those with AT-rich plasmids. Growth experiments of E.
coli harbouring AT-rich (green) or GC-rich (orange) pJet (A,B,C) or pBAV plasmids (D,E,F) were performed in

minimal medium. Growth over 24 h measured as optical density at 600 nm was used to calculate fitness-relevant

parameters. (A,D) Duration of lag phase, (B,E) maximum growth rate, and (C,F) maximum optical density reached

(C,F) after 24 h of cells, harbouring either AT-rich or GC-rich plasmids. Asterisks indicate significant differences

between cells containing AT-rich and GC-rich plasmids. Independent-samples t-test: ��� P< 0.001, �� P< 0.01, and
� P< 0.05, n = 16.

https://doi.org/10.1371/journal.pgen.1007778.g002
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experiments to stabilize the focal plasmid. This effect could explain the reduced growth of GC-

rich cells (Fig 2). To rule out this possibility, cells containing the AT-rich or GC-rich pJet or

pBAV plasmids were grown with 100%, 50%, or 0% of the antibiotic concentration that had

been used in the abovementioned growth experiment. Quantifying fitness-relevant growth

parameters of the differentially treated cultures revealed that the previously observed growth

difference between cells harbouring AT-rich and GC-rich plasmids was similarly detectable

for the maximal growth rate (S2A and S2B Fig) and the duration of the lag phase (S2C and

S2D Fig), yet less strongly pronounced for the maximal optical density achieved (S2E and S2F

Fig). Only when cells of the antibiotic-free environment (0%) were compared, no significant

difference between AT-rich or GC-rich cells was detectable for the maximal optical density

reached (Independent-samples t-test, n = 8).

Moreover, we tested whether cells lost their plasmids at the end of the 24 h growth period

and whether this rate of plasmid loss depended on the antibiotic concentration in the growth

medium and/ or the GC-content of their plasmids. The resistance mechanisms that were used

to stabilize both plasmids relied on the degradation of ampicillin and kanamycin, respectively.

Hence, it is conceivable that towards the end of the growth period, antibiotic concentrations

might have fallen below inhibitory levels, thus allowing cells to lose their plasmid. If GC-rich

plasmids are costlier than AT-rich plasmids, the former should be lost more readily than the

latter. To test this, cells from all treatments of the previous experiment were plated after 24 h of

growth on agar plates that did or did not contain the respective antibiotic. Indeed, a lower pro-

portion of cells that initially contained the GC-rich plasmids were able to grow on antibiotic-

containing medium than cells with AT-rich plasmids (S2G and S2H Fig), which clearly shows

Fig 3. GC-rich plasmids have a lower copy number than AT-rich plasmids. Plasmid copy number per bacterial chromosome

equivalent was assessed by quantitative real-time PCR of E. coli cultures after 24 h of growth. Shown are copy numbers of AT-

(green) and GC-rich (orange) (A) pJet plasmids and (B) pBAV plasmids. Independent-samples t-test: ��� P< 0.001, n = 16.

https://doi.org/10.1371/journal.pgen.1007778.g003
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that GC-rich plasmids were lost much faster than AT-rich plasmids. This result can be

explained by the higher costs of GC-rich plasmids, which lowered their copy number (Fig 2),

thus increasing the risk for segregational loss. The preferential loss of GC-rich plasmids likely

takes place during later stages of the exponential growth phase, since both lag phase and

maximum growth rate, which are the first parameters measured over the time course of the

experiment, revealed even in the absence of the antibiotic a significant difference between pop-

ulations of cells containing AT-rich and GC-rich plasmids. In contrast, the maximum optical

density reached under the same conditions did not differ significantly between AT-rich cells

and GC-rich cells, which was most probably due to the loss of the GC-rich plasmids.

Taken together, these results clarify that the reduced growth of GC-rich cells can neither be

explained by the presence of the antibiotic, nor the concentration used.

Effect of H-NS on the growth difference between AT-rich versus GC-rich

cells

Genetic information, which is acquired via horizontal gene transfer, can cause significant fit-

ness defects by interfering with existing regulatory networks [22]. Given that horizontally

acquired genes tend to be more AT-rich than the genome of the new host [23], bacteria use

this deviation to recognize and silence newly acquired alien DNA. This is achieved via so-

called xenogeneic silencing proteins that bind to DNA with a higher AT-content than the

genome of the host and silence transcription emanating from these sequences [22]. The His-

tone-like Nucleoid Structuring (H-NS) protein is the best-characterised xenogeneic silencing

protein, which is present in all γ-proteobacteria including E. coli. Theoretically, action of

H-NS could have affected the observed fitness difference between cells containing AT-rich and

GC-rich plasmids. To rule out this possibility, we deleted hns from the genome of E. coli, intro-

duced all AT-rich and GC-rich pJet plasmids into the newly constructed mutant and repeated

the previous growth experiment using the Δhns strain and E. coli wild type as host cells. The

results of this experiment revealed no statistically significant effect of the presence of hns on

the growth patterns caused by AT-rich and GC-rich plasmids (S3 Fig). However, it is well-

known that deletion of hns results in a severe growth defect that is rapidly recovered by com-

pensatory mutations [24]. The fact that the Δhns strain used in our study did not show this

reduced growth phenotype, suggests additional mutations arose also during our experiments.

Unfortunately, the high rate, with which these mutations occur, impedes a clean evaluation of

the effect of H-NS. As a consequence, the experimental results involving the Δhns strain (S3

Fig) have to be interpreted with caution.

Intracellular nucleotide availabilities limit cellular fitness

To determine whether the decreased growth of GC-rich cells also translates into a decreased

competitive fitness relative to AT-rich cells, coculture experiments were performed with ran-

domly chosen pairs of AT-rich and GC-rich strains. As expected, populations of GC-rich cells

were readily outcompeted by AT-rich strains (Fig 4): In all 32 replicate populations, a strong

decrease in the frequency of GC-rich cells relative to AT-rich cells was observed shortly after

the onset of the experiment. Already after two days, GC-rich strains went extinct in 50% of all

experimental populations. At the end of the experiment (i.e. after eight days), GC-rich strains

were present in only two out of 32 populations (i.e. 6%), suggesting a strongly reduced fitness

of GC-rich cells relative to AT-rich cells.

Two main explanations can account for this pattern. First, the growth of GC-rich cells

could have been limited by the availability of G+C nucleotides within cells, while the cells con-

taining AT-rich plasmids were less strongly affected. This hypothesis would be in line with the

Selection favours AT-rich intracellular elements
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idea that the molecular composition of extrachromosomal genetic elements is strongly affected

by natural selection. Second, other properties of GC-rich DNA in general could limit the

growth of cells containing GC-rich plasmids. For example, an increased stability of GC-rich

DNA could raise the chances for stable secondary structures that might hamper DNA replica-

tion [25] and thus slow down growth. These two effects can be distinguished in a competition

experiment between AT-rich and GC-rich cells, in which cocultures are supplemented with

either A+T or G+C nucleotides. If the observed decrease in fitness of GC-rich cells was truly

due to a lack of G+C nucleotides within cells, then providing GC-rich cells with G+C nucleo-

tides should enhance their growth more than supplementation with A+T. In contrast, if

another mechanism such as e.g. the formation of secondary structures applies, nucleotide sup-

plementation should not differentially affect the growth of AT-rich and GC-rich cells.

For this experiment, nucleosides instead of nucleotides were used, since E. coli can take up

nucleosides, but not nucleotides [26]. When A+T nucleosides were externally provided, the

survival rate of GC-rich cells was not significantly different from the one of the unsupplemen-

ted control group (Fig 4), indicating that these nucleosides do not generally limit cellular

growth. When G+C nucleosides were added to the growing cultures, the decline of GC-rich

Fig 4. GC-supplementation partially rescues fitness of cells with GC-rich plasmids. Eight pairwise cocultures of

cells harbouring AT-rich and GC-rich pJet plasmids were co-inoculated (1:1 ratio) and serially propagated on a daily

basis. Strains were supplied with AT or GC deoxyribonucleosides (100 μM per nucleoside). Survival rates of GC-rich E.
coli strains were calculated by scoring the number of populations, in which GC-rich strains were still present relative to

the total number of populations within each treatment (n = 32). Each of the eight pairwise combination of strains was

replicated four times. Treatment groups comprise the unsupplemented control (triangles), supply with AT-nucleosides

(squares), and supply with GC-nucleosides (circles). Asterisks indicate survival rates that were significantly different

from the unsupplemented control group. False discovery rate-corrected Wilcoxon signed ranks-test: �� P< 0.01,
� P< 0.05, n = 32 per group.

https://doi.org/10.1371/journal.pgen.1007778.g004
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strains observed within the first three days of the experiment was as fast as in the untreated

control group. However, from day three onwards, GC-rich cells continued to survive in ~35%

of the cocultures, which represents a significant increase over both the A+T-supplemented

and the untreated control group (Fig 4). This finding indicates that the low availability of G+C

nucleotides limited the growth of GC-rich cells, thereby corroborating the hypothesis that the

availability of nucleotides in the host cytoplasm plays a key role in shaping the GC-content of

extrachromosomal genetic elements.

The cost of extrachromosomal elements depends on the GC-content of the

host chromosome

The finding that AT-rich plasmids impose a lower metabolic burden on host cells than GC-

rich plasmids was obtained using E. coli as host, whose chromosome has a GC-content of

~ 50%. However, the intracellular availability of nucleotides likely depends on the base compo-

sition of the cell’s chromosome, because the biosynthetic machinery of a cell is expected to

have evolved in a way that it produces the required building block metabolites in optimal

amounts. As a consequence, G+C nucleotides should be more abundant than A+T nucleotides

in species with high genomic GC-contents, thus rendering GC-rich plasmids less costly than

AT-rich plasmids.

In order to test this hypothesis, eight bacterial species with a genomic GC-content ranging

from 40% GC (Acinetobacter baylyi ADP1) to 68% GC (Azospirillum brasilense Tarrand) were

transformed with one randomly chosen pair of AT-rich and GC-rich pBAV plasmids. In this

context, it should be noted that the GC-rich plasmid was characterized by a net GC-content of

51% (AT-plasmid: 33% GC) and was thus enriched in GC-nucleotides when compared to the

chromosomes of species with low to intermediate GC-contents. However, the GC-rich plasmid

displayed a slightly lower GC-content when compared to the genome of GC-rich species such

as Azospirillum brasilense and Xanthomonas campestris. Subsequently, fitness of different host

cells carrying the GC-rich versus AT-rich plasmids was quantified spectrophometrically as

before. Indeed, the results of these experiments revealed that the burden imposed by these two

plasmids depended on the genomic GC-content of the bacterial host: when the host chromo-

some was more AT-rich, the fitness of cells containing the AT-rich plasmid was higher than

the one of cells containing the GC-rich plasmid (Fig 5). In contrast, when host cells with a

more GC-rich chromosome were considered, the fitness of cells containing the GC-rich plas-

mid was increased relative to cells containing the AT-rich plasmid (Fig 5). Thus, the molecular

composition of the host’s genome strongly affected the fitness cost imposed by extrachromo-

somal genetic elements.

In addition, plasmid copy number measurements revealed that AT-rich plasmids were gen-

erally more abundant in species with low and intermediate genomic GC-contents (S4 Fig).

However, in the two species with the highest GC-contents (i.e. Azospirillum brasilense and

Xanthomonas campestris), GC-rich plasmids were present in higher copy numbers than the

AT-rich plasmids.

Taken together, GC-rich plasmids imposed higher fitness costs than AT-rich plasmids on

species with low to intermediate genomic GC-contents, while AT-rich plasmids were more

costly for bacterial species with higher genomic GC-contents.

Discussion

The DNA of intracellular, host-dependent elements such as bacterial endosymbionts and plas-

mids is generally more AT-rich than the DNA of their host’s genome. In the case of bacterial

endosymbionts, this pattern is commonly thought to be due to neutral evolutionary processes,

Selection favours AT-rich intracellular elements
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Fig 5. The fitness cost of plasmids depends on the GC-content of both plasmid and host genome. Growth

experiments of eight bacterial species that differ in their genomic GC-content and which harboured one AT-rich or

GC-rich pBAV plasmid were performed in minimal medium. Fitness parameters of cells with GC-rich plasmids were

calculated relative to the respective strain harbouring the AT-rich plasmid. (A) Lag-phase, (B) maximum growth rate,

and (C) maximum optical density reached after 24 h. Linear Regression analysis, n� 4 in all cases.

https://doi.org/10.1371/journal.pgen.1007778.g005
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such as genetic drift or a mutational bias. However, here we provide strong experimental evi-

dence that selective advantages can contribute to this pattern. By experimentally manipulating

the GC-content of plasmids and quantifying the resulting fitness consequences for the corre-

sponding bacterial host, we show that the fitness cost of plasmids strongly depended on the

nucleotide composition of both the plasmid and the host’s genome. Specifically, when the

genome of the host cell was characterized by intermediate to high A+T contents, GC-rich plas-

mids were more costly (Figs 2 and 5) and present in a lower copy number than AT-rich plas-

mids (Fig 3 and S1 Fig). In contrast, when the host chromosome was enriched in G+C, GC-

rich plasmids were less costly (Fig 5) and present in a higher copy number than AT-rich plas-

mids (S1 Fig). Supplementation experiments confirmed that the observed fitness effects were

indeed due to limiting pools of the corresponding nucleotides and not resulting from the GC-

content of the introduced sequences per-se (Fig 4).

The continuous synthesis of nucleotides is crucial for DNA replication in all dividing cells.

Under optimal conditions, E. coli cells can divide every 20 minutes, while the replication of the

chromosome takes about 40 minutes [27]. To overcome this problem, multiple chromosomal

copies are simultaneously generated, such that replication can keep up with the speed of cell

division [28]. Interestingly, not the activity of the polymerase, but the nucleotide biosynthesis

required for DNA replication seems to be limiting growth, as evidenced by the observation

that the shortage of a single nucleotide drastically decreases growth [29]. Moreover, up-regula-

tion of the ribonucleotide reductase (RNR) in yeast, which is responsible for the synthesis of

dNTPs, increases the speed of the replication fork [30]. Both studies show that nucleotide syn-

thesis is the rate-limiting step for DNA synthesis and hence also growth. By linking the avail-

ability of nucleotides to cellular fitness, these studies support the main findings reported here.

Our results are consistent with an evolutionary scenario, in which the intracellular availabil-

ity of nucleotides (A+T versus G+C) depends on the genomic nucleotide composition of the

bacterial cell. Over evolutionary time, a bacterial cell should establish an equilibrium, in which

the biochemical machinery that produces all four nucleotides is tailored to meet the cell’s

requirements. This includes not only the nucleotides that are required for DNA replication,

but also those that are needed to produce RNA, signalling molecules (e.g. ppGpp, cAMP), or

coenzymes (e.g. ATP). In addition, energetic and stoichiometric parameters are likely to affect

nucleotide production rates. For example, the biosynthetic cost to produce A+T nucleotides is

less than the energy that is required to biosynthesize the same amounts of G+C [5]. An extra-

chromosomal genetic element that enters such a cellular system disturbs this equilibrium by

withdrawing nucleotides from intracellular pools to enable its own replication. By doing so,

plasmids (and likely also intracellular bacterial endosymbionts) incur a cost to the hosting cell

that depends on both the nucleotide availability in the host’s cytoplasm and the amount and

identity of nucleotides it consumes.

In cells of Escherichia coli, whose genome is characterized by a mean AT-content of ~ 50%,

ATP is the most abundant nucleotide (3.5 mM ATP, 2.0 mM UTP, 1.9 mM GTP, and 1.2 mM

CTP under exponential growth [11]). This is likely because of the dual function of ATP, which

is not only used for RNA and DNA synthesis, but also plays a key role for transferring energy

within cells. Unfortunately, to the best of our knowledge, no other study exists to date that

quantified cytoplasmic nucleotide concentrations in other bacterial species, especially those

that feature higher genomic GC-contents. Nevertheless, it appears reasonable to assume that

cells with a higher genomic GC-content should also have an increased demand for G+C nucle-

otides including both ribo- and deoxyribonucleotides for RNA- and DNA-biosynthesis,

respectively. This would imply higher cytoplasmic G+C levels and thus render the consump-

tion of G+C nucleotides by GC-rich plasmids potentially less detrimental than in host cells

with high genomic AT-content and thus, low cytoplasmic G+C. The observation that plasmid
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copy numbers of AT-rich plasmids were higher in species with low to intermediate genomic

GC-contents, but decreased in species with more GC-rich genomes (S4 Fig), is in line with this

hypothesis.

Previous work that compared the GC-content of plasmids with the genomes of their corre-

sponding bacterial and archaeal hosts revealed that on average, the GC-content of plasmids

was lower than the GC-content of their host’s genome (i.e. between 3% and 10%; see [5] and

[6]). Moreover, also genes that have been acquired by horizontal gene transfer seem to be gen-

erally characterized by a lower G+C-content relative to the resident genome’s nucleotide com-

position [23]. Two fundamentally different processes could cause the observed increased AT-

content of plasmids and horizontally acquired genes relative to the genome of their bacterial

host. First, plasmids and genes with an increased relative AT-content might be more successful

in establishing in new host cells via routes of horizontal gene transfer (i.e. conjugation, trans-

duction, transformation). In this case, the compositional difference between donor and recipi-

ent cell would act as a barrier that limits the horizontal transfer of genetic material [31].

Second, plasmids or horizontally transferred genes could evolve towards increased AT-con-

tents relative to their host’s chromosome once being present in the new cell [32]. In either way,

the results presented in this study can help to explain the AT-bias of horizontally acquired

genes or plasmids. If A+T nucleotides are more abundant in the cytoplasm of bacterial hosts

and/ or cheaper to produce than G+C nucleotides, a plasmid or a bacteriophage that is more

AT-rich is more likely to successfully establish in the recipient cell, because of the reduced met-

abolic burden it imposes [5].

However, how would selection operate to favour extrachromosomal genetic elements with

an increased AT-content? In principle, selection can operate on two different levels. First, sev-

eral intracellular elements that differ in their genomic composition can compete against each

other. If selective advantages are sufficiently strong, elements with an increased AT-content

should outcompete elements with a lower AT-content, thus resulting in a globally increased

AT-content of the entire population of intracellular elements (i.e. selection acting on the level

of the extrachromosomal genetic element). Alternatively, selection can act on the level of the

host (i.e. host-level selection). In this case, host individuals that contain more AT-rich ele-

ments are evolutionarily fitter than hosts containing more GC-rich intracellular elements. As a

consequence of competition, hosts that contain more AT-rich elements will survive and repro-

duce with a higher chance, thus favouring AT-rich elements on the level of the host population

in the long-run. For the given experimental set-up, our results demonstrate that host-level

selection can be strong and result in an almost complete elimination of GC-rich plasmids

within a few days (Fig 4). Unfortunately, it was not possible to test whether AT-rich plasmids

could outcompete GC-rich plasmids within a given host cell, as plasmids using the same mode

of replication cannot coexist within the same cell (i.e. when they belong to the same plasmid

incompatibility group, see [33]).

Our results do not only help to understand the GC-content variation in extrachromosomal

genetic elements such as plasmids and viruses, but have also significant ramifications for endo-

symbiotic bacteria. Similar to the interaction between bacteria and their plasmids, host-depen-

dent bacterial cells regularly feature genomes with drastically increased AT-contents relative to

the DNA of their host cell. In addition, many bacterial endosymbionts have lost the genes for

an autonomous biosynthesis of all four nucleotides [34, 35]. Hence, to maintain a sufficient

nucleotide-supply, cells require uptake mechanisms that allow them to import nucleotides

from the host’s cytoplasm. Indeed, uptake systems for nucleotide triphosphates in intracellular

bacteria have been previously identified for Rickettsia and Chlamydia [36, 37], which are also

known to lack specific genes essential for nucleotide biosynthesis pathways.
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Bacterial endosymbionts [38], and in fact the majority of prokaryotic and eukaryotic organ-

isms [39, 40], display a characteristic mutational bias that generally increases the genomic AT-

content. In addition, newly established endosymbionts sometimes show an unexpectedly large

number of polymerase slippage events that preferentially eliminate G+C-rich repetitive

sequences, thus also biasing the endosymbiont’s genome towards an increased A+T-content

[41]. Finally, population bottlenecks that occur frequently when populations of bacterial endo-

symbionts are vertically transmitted from parent to offspring host, result in random assort-

ment of bacterial genotypes that can lead to the fixation of AT-rich symbiont populations

within hosts. In the early onset of an endosymbiotic interaction, all of the abovementioned

processes are likely selectively neutral. However, at some point, host individuals that harbour

symbionts with increased AT-contents will display a higher fitness than hosts that contain

more GC-rich symbionts, particularly given the large number of endosymbiont cells in an

individual host that amplify the costs associated with nucleotide requirements of the symbiont

population. Due to this fitness difference, host-level selection should favour hosts with meta-

bolically ‘cheap’ AT-rich symbionts. We thus believe that the evolution of AT-rich endosymbi-

onts is likely a combination of both neutral processes such as mutational bias/ genetic drift

and natural selection.

Taken together, our results provide strong experimental support for the hypothesis that the

availability of nucleotides represents a significant evolutionary force that shapes the base com-

position of host-dependent, extra-chromosomal elements such as plasmids and likely also

endosymbiotic bacteria. This interpretation is at odds with the widely-held view of drift as

being the sole explanation for the AT-bias observed in the genomes of host-restricted bacteria.

While our study adds an important new facet to this on-going discussion, it is most likely a

combination of multiple factors that determines the nucleobase composition of bacterial

genomes.

Materials and methods

Identification of AT-rich and GC-rich sequences

Eight AT-rich and GC-rich stretches of 1 kb in size each were identified from the AT-rich

genome of Arabidopsis thaliana Col-0 (genome version TAIR9 v171 obtained from the Plant

Genomic Database) and GC-rich genome of Chlamydomonas reinhardtii wild type 137 C

(assembly and annotation v4 obtained from DOE Joint Genome Institute). Both annotated

genomes were imported into Geneious (version 6.1.8, Biomatters, New Zealand) [42] that

was used to identify AT-rich and GC-rich DNA stretches, respectively. Sequences containing

simple sequence repeats in a total length of more than 30 bp were excluded to avoid the possi-

ble formation of stem-loop structures. Importantly, sequences were selected such that the

chances for promoters, start codons, ribosome binding sites, or other regulatory elements

were minimized.

Putative prokaryotic promoters were predicted using Softberry BPROM (softberry.com,

[43]), which revealed on average two to three promoter sites within each of the AT-rich

sequences, whereas none was identified for the GC-rich sequences. The chances for putative

promoter regions are higher for AT-rich DNA, since promoter regions are generally enriched

in AT-content. Putative open reading frames (ORFs) were predicted using the Geneious Ver.

6.1.8. ORF finder. No or few ATG-ORFs were predicted for both AT-rich and GC-rich

sequences (i.e. 0–4 per sequence), a slightly higher number of alternative ORFs starting with

GTG and TGG were found for the GC-rich sequences, which is due to the higher GC-content.

Finally, sequences were tested for the presence of ribosome binding sites (RBS, i.e. Shine

Dalgarno Sequences). No RBS sequences were present in the AT-rich sequences and only
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three out of the eight GC-rich sequences contained one or two putative RBS (i.e. GC04, 06,

and 08). The RBS identified, however, were not in close proximity of any of the ATG start

codons, thus rendering translational activities unlikely. In addition, neighbouring regions of

the insert position on both plasmid backbones used (i.e. a modified pJet and pBAV plasmid,

see below) were analysed for the same features. For pJet, no putative promoters, ATG, GTG,

or TGG ORFs or RBS were found in close proximity of the AT-rich/ GC-rich inserts (i.e. 600

bp up- and downstream). For pBAV, a single ~200 bp GTG ORF was detected ~350 bp

upstream of the insert position (within the aminoglycoside-3’-phosphotransferase resistance

cassette). However, due to its small size, it did not overlap with the insert sequences.

Taken together, only a small number of insert sequences contain DNA-elements required

for transcription or translation. However, the chances for gene expression are minimal,

since i) not all required elements are present, ii) they are in the wrong order, and iii) eight

completely different sequences were used per treatment group (AT/GC).

PCR primers (S1 Table) were designed using the software Primer 3 [44] and synthesized by

Metabion International AG (Martinsried, Germany).

Amplification of AT-rich and GC-rich sequences

Genomic DNA of A. thaliana Col-0 was extracted following the method of Allen et al. [45]

and of C. reinhardtii wild type 137 C using the protocol described by [46]. AT-rich DNA was

amplified by PCR using Phusion HiFi Polymerase (Fermentas/ Thermo Fisher Scientific, Wal-

tham, Massachusetts, US) following the manufacturer’s protocol. PCR program: 98 ˚C 1 min,

30x: 98 ˚C 15 s, Tm primer 15 s, 68 ˚C 40 s. Elongation temperatures were decreased to 68 ˚C

according to Su et al. [47], since no PCR product was observed at 72 ˚C. GC-rich DNA was

amplified from C. reinhardtii using Kapa2G Robust Polymerase (Peqlab; Erlangen, Germany)

following the manufacturer’s recommendations for GC-rich DNA. PCR program: 95 ˚C 5

min, 30x: 95 ˚C 15 s, Tm primer 5 s, 72 ˚C 40 s. PCR products were purified by gel electropho-

resis (1% agarose) using the NucleoSpin Extract II gel and PCR clean-up Kit (Macherey-Nagel

GmbH & Co. KG, Düren, Germany).

Construction of AT-rich and GC-rich plasmids

Two plasmid backbones were used for the insertion of AT-rich and GC-rich DNA. The first

backbone was pJet1.2/blunt (Thermo Fisher Scientific), a commercially available, high copy

number plasmid of small size. The plasmid carries a pMBI� origin of replication and encodes a

beta-lactamase (bla) that confers resistance to ampicillin, which was used to select for plasmid-

containing cells. AT-rich and GC-rich sequences were inserted into the blunt-end multiple

cloning site of pJet using the pJet1.2/blunt Cloning Kit (Thermo Fisher Scientific) lacking the

PlacUV5 promoter. Plasmids were transformed into chemically competent E. coli TOP10 cells

(Invitrogen, Thermo Fisher Scientific) using the heat shock method [48]. Transformed colo-

nies were screened for the respective insert using the Colony Fast-Screen Kit (Epicentre;

Madison, Wisconsin, USA) following the manufacturer’s instructions. Plasmids of selected

transformants were sequenced at MWG Eurofins (Ebersberg, Germany).

To validate the experimental results and exclude plasmid-specific effects, all AT-rich and

GC-rich sequences were additionally inserted into a second, high copy number plasmid, a

modified pBAV1kT5-gfp [20] (ordered from Addgene https://www.addgene.org/; Cambridge,

Massachusetts, US). This plasmid uses a different replication system (i.e. repA-mediated repli-

cation) and encodes a different selectable marker, aminoglycoside-3’-phosphotransferase (aph
(3’)), which confers resistance to the antibiotic kanamycin. The gene encoding the green fluo-

rescent protein present on the plasmid was not needed for this study and hence removed by
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digesting the plasmid with NotI (Thermo Fisher Scientific). Blunt ends were generated and

clean-up was carried out as described above. AT-rich and GC-rich sequences were inserted

into the same position. The resulting plasmids were transformed into chemically competent

E. coli TOP10 cells. Transformants were sequenced in order to validate loss of the T5-gfp cas-

sette and successful insertion of the AT-rich and GC-rich sequences. In the main text, the

modified plasmid lacking T5-gfp is denoted as pBAV instead of pBAV1Kt5-gfp.

Bacterial strains

All AT-rich plasmids were transformed into E. coli BW25113 Ara- [49], whereas GC-rich plas-

mids were transformed into E. coli BW25113 Ara+ [50], respectively, that were made chemi-

cally competent using the rubidium chloride method [48]. The Δara mutation renders the

strain unable to catabolize arabinose. Both strains can be phenotypically distinguished when

plated on tetrazolium arabinose indicator plates, on which E. coli BW25113 (Ara+) forms

white and BW25113 Δara (Ara-) red colonies [51, 52]. The arabinose marker is selectively neu-

tral under the cultivation conditions used in this study (independent-samples t-test: P > 0.05,

n = 8). This phenotypic marker was used to distinguish both strains when grown in coculture.

E. coli BW25113 Δhns was derived from the Keio collection (strain JW1225, [49]) and cured

from the kanamycin-resistance cassette as described [53]. Subsequently, cells were made

chemically competent as above and used to transform all AT- and GC-rich pJet plasmids.

Culture conditions and growth kinetics

All experiments were performed in M9 minimal medium [54], which was complemented with

2 mM MgSO4, 0.1 mM CaCl2, and 5 g l-1 Glucose (Sigma, St. Louis, Missouri, USA). For

pBAV-containing strains, 0.25% Casamino acids (Sigma) were added to promote growth. Pre-

cultures were prepared by streaking genotypes from glycerol stocks on Lysogeny Broth (LB,

Sigma) agar plates (Thermo Fisher Scientific), which were incubated overnight (16 h) at 37 ˚C.

Subsequently, single colonies were picked and inoculated into 0.8 ml of M9 medium in a

96-deepwell plate (Eppendorf, Hamburg, Germany), which was then incubated overnight at

37 ˚C under shaking conditions. To ensure plasmid maintenance, 100 μg ml-1 ampicillin or

50 μg ml-1 kanamycin (Sigma) were always added to the culture media for pJet- and pBAV-

harbouring strains, respectively. Next, optical densities (OD determined at a wavelength of 600

nm) of all precultures were measured in a microwell platereader (Spectramax 250, Molecular

Devices; Sunnyvale, USA) using a 96-well plate (Nunc, Fisher Scientific GmbH; Schwerte, Ger-

many) with a culture volume of 200 μl. The OD600nm of each culture was adjusted to 0.001.

Growth kinetic assays were performed in the same instrument. Using a culture volume of

200 μl, growth was measured as absorbance at 600 nm every 5 min at 37 ˚C for 24 h. Cultures

were shaken for 3 min after each and 15 s prior to each measurement. Fitness-related growth

parameters (i.e. lag phase, maximum growth rate, and maximal OD600nm) were calculated

using Magellan 7.1 SP 1 software (Magellan Software GmbH; Dortmund, Germany). Growth

experiments using E. coli BW25113 Δhns harbouring AT-rich (i.e. pJet AT01-08) or GC-rich

(i.e. pJet GC01-08) plasmids were performed and analysed as described above.

For 24 h-copy number experiments, four E. coli strains harbouring AT-rich (i.e. AT01-04)

and GC-rich plasmids (i.e. GC01-04) were chosen. Cells were precultured as stated above and

then inoculated in 200 ml Erlenmeyer flasks containing 20 ml M9 medium supplemented with

100 μg ml-1 ampicillin (initial inoculum: OD600nm = 0.001). Subsequently, the OD600nm was

monitored in regular intervals. Samples for plasmid copy number determination were taken

every 6 h and stored by adding the same volume of 40% w/v glycerol at -80˚C until real time

PCR measurements were performed.
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Plasmid copy number determination

Plasmid copy numbers were determined using quantitative real-time PCR (qPCR) following a

previously described method [55]. For this, monocultures of cells were harvested after 24 h of

growth. Plasmid copy numbers were determined by calculating both the total number of chro-

mosomal and plasmid copies in each sample. Chromosome copy numbers were determined

using a primer pair targeting the single copy gene dxs (1-deoxy-D-xylulose-5-phosphate

synthase). For total plasmid numbers per sample, primer pairs targeting the respective antibi-

otic resistance gene were used (i.e. either bla on pJet or aph(3’) on pBAV; genes and primer

details see S2 Table). Bacterial cultures from both monocultures were diluted ~1:100 and used

for qPCR. QPCR was performed using the Brilliant III Ultra-Fast SYBR Green QPCR Master

Mix (Agilent Technologies; Santa Clara, US) in a BioRad CFX96 thermocycler (Hercules, Cali-

fornia, USA) according to the manufacturer’s instructions. PCR program: 10 min 95 ˚C, 40x:

30 s 95 ˚C, 20 s 61 ˚C, 30 s 72 ˚C. Standard curves were prepared by 10-fold dilutions of both

isolated plasmids and bacterial cells (R2 of all standard curves:> 0.99). Plasmid numbers per

ng plasmid DNA template were calculated using an online calculator (http://cels.uri.edu/gsc/

cndna.html, Andrew Staroscik, Genomics & Sequencing Center, University of Rhode Island,

Kingston, Rhode Island, USA). Cell numbers of each standard curve sample were measured

using a CyFlow Space flow cytometer (Partec, Görlitz, Germany), for which cells were stained

with SYBR Green (Sigma) following the manufacturer’s protocol. Average plasmid copy

numbers per cell were calculated from the respective standard curves (R2 of all standard

curves> 0.99) by dividing total plasmid numbers by the total number of cells.

Growth experiments and plasmid loss in the absence of selection

In order to test whether the reduced growth of cells harbouring the GC-rich plasmids was due

a higher susceptibility to the supplemented antibiotic, additional growth experiments were

performed in the absence of the antibiotic. For this, all AT-rich and GC-rich plasmid-contain-

ing strains (i.e. both pJet and pBAV) were precultured in M9 medium containing the respec-

tive antibiotic as described above. After that, cultures were centrifuged at 9.000 rpm for 1 min.

Supernatants were discarded and cells were washed twice with fresh M9 medium in order to

ensure that cultures are free of any residual antibiotic. Next, cultures were diluted as described

above and subjected to one of three treatments: M9 medium containing 100%, 50%, or 0% of

the antibiotic (i.e. 100 μg ml-1, 50 μg ml-1, and 0 μg ml-1 ampicillin, and 50 μg ml-1, 25 μg ml-1,

and 0 μg ml-1 kanamycin, respectively). The standard concentration of antibiotics used (i.e.

100%) was chosen according to the provider’s recommendation (i.e. pJet: Thermo Fisher Sci-

entific, pBAV: [20]). Growth kinetics were performed and measured as described above. In

order to test whether plasmids were still present in the antibiotic-free cultures after the experi-

ment has been terminated, cells were plated on agar plates that did (i.e. 50% of the standard

concentration) or did not contain antibiotics. By comparing the number of CFUs (colony

forming units) on the antibiotic-containing plates relative to antibiotic-free plates, the rate of

plasmid loss was determined.

Competitive fitness and nucleoside feeding experiments

For coculture experiments, one AT-rich strain was paired with a GC-rich strain, respectively

(all harbouring pJet plasmids). Eight combinations were randomly chosen (i.e. Fig 1: AT1-

GC1, AT2-GC2, etc.) and each combination was replicated 4 times (n = 32). To test if the

decrease in growth of GC-rich cells can be explained by their increased demand for G+C nucle-

otides, cocultures were grown in one of three different media: (1) pure M9 minimal medium,

(2) M9 medium supplemented with A+T-nucleosides, or (3) M9 medium supplemented with
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G+C-nucleosides. In this experiment, deoxyribonucleosides have been used instead of deoxyri-

bonucleotides, because no nucleotide transport systems are known for E. coli, while two nucle-

oside transport systems (i.e. NupG and NupC,) have been described [26]. Either 2’-deoxy-

adenosine and thymidine or 2’-deoxyguanosine and 2’-deoxycytidine (Sigma) were added to

the growth medium at a final concentration of 100 μM per nucleoside. The OD600nm of all pre-

cultures was adjusted to 0.0005, resulting in a final OD600nm of 0.001 after mixing of cocultures.

Fitness experiments were performed in a 96-deepwell plate (Nunc) with a culture volume of 0.8

ml. Cocultures were incubated at 37 ˚C under shaking conditions (220 rpm). 0.8 μl (1:1,000

dilution) of all cocultures were transferred daily into fresh medium for a total of eight days.

Every day, serial dilutions of all cultures were plated on TA agar plates to distinguish Ara+

(AT-rich) and Ara- - strains (GC-rich) of E. coli BW25113 using the arabinose utilization

marker as described above.

Transformation of bacterial species with different GC-contents

One AT-rich and one GC-rich pBAV plasmid, i.e. pBAV-AT01 and pBAV-GC02, were ran-

domly chosen to be introduced into other bacterial species differing in their genomic GC-con-

tents. PJet could not be used for this purpose as it does not replicate in species other than E.

coli. In contrast, pBAV has been shown to be a broad host range plasmid replicating in many

other bacterial species [20]. The following species were used: Acinetobacter baylyi ADP1 (40%

GC), Serratia entomophila (DSM 12358) (58% GC), Pseudomonas protegens (61% GC), Pseu-
domonas putida (62% GC), Arthrobacter aurescens (DSM 20116) (61.5% GC), Xanthomonas
campestris (DSM 3586) (65% GC), and Azospirillum brasilense (DSM 1690) (68% GC). All

strains were tested to be Kanamycin (50 μg/ml) -sensitive. Both plasmids were introduced in

electrocompetent cells of the above-listed species using a MicroPulser Electroporator (Bio-

Rad, Hercules, California, US) with the following settings: 25 μF, 200 mA, and 2.5 kV using

70 μl of electrocompetent cells and 100–150 ng plasmid DNA. Colonies obtained were grown

in LB medium supplemented with 50 μg ml-1 kanamycin. Plasmid isolation was performed as

described previously and plasmids were sequenced using plasmid-specific primers targeting

the AT/GC-rich insert.

Growth experiments and plasmid copy number determination using

bacterial species with different GC-contents

All strains were grown in M9 minimal medium containing glucose, sucrose, and malate (glu-

cose and sucrose: 5 g l-1 each, malate: 2 g l-1) as carbon source, as well as 2 mM MgSO4, 0.1

mM CaCl2, 45 μM FeSO4, 0.5 mg ml-1 NaMO4, and 0.01 mg ml-1 Biotin (Sigma) at 28˚C and

220 rpm for 24 h. Growth experiments were performed as mentioned above using a Spectra-

max plate reader. Plasmid copy numbers of different bacterial species were determined by

measuring plasmid numbers via quantitative Real-Time PCR as described earlier. However, all

cell numbers were quantified by Flow Cytometry instead of qPCR, since using dxs-specific

primers did not result in DNA amplification in most of the species, either due to an altered

sequence or absence of the corresponding gene. Thus, plasmid copy numbers were calculated

as plasmid number per cell count (see above).

Data analysis

Experiments were performed using plasmids that contained one of eight different AT- or GC-

rich inserts. To reduce the impact of sequence-specific effects, data were analysed by treating

AT-rich and GC-rich strains as replicates. In monoculture experiments, fitness-relevant

parameters of AT-rich and GC-rich cells were statistically compared by two-sample
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independent t-tests. In coculture experiments, survival rates of strains harbouring GC-rich

plasmids were calculated by scoring the number of populations, in which the strains were pres-

ent relative to the total number of populations within each treatment (n = 32). Strains were

considered to be extinct, if the number of colony forming units decreased below 2% of the

total CFU counts. Survival rates between treatments were compared by performing Wilcoxon

signed ranks tests. False discovery rate (FDR) was applied to P-values to correct for multiple

testing [56]. Linear regression analyses were performed to correlate growth parameters of spe-

cies harbouring AT/GC-rich plasmids with the species’ GC-content. All statistical analyses

were performed using SPSS Software (version 17.0, SPSS Inc., Chicago, IL, USA) and R Studio

(Boston, USA) [57].

Supporting information

S1 Fig. Plasmid copy number of GC-rich plasmids is decreased over the entire growth

cycle of E. coli. Plasmid copy number per bacterial chromosome equivalent was assessed by

quantitative real-time PCR of E. coli cultures at four time points during a 24 h growth period.

Shown are copy numbers of pJet plasmids harbouring four randomly chosen AT-rich or GC-

rich inserts, respectively. The first two sampling points (i.e. 6 h, 12 h) correspond to the begin-

ning and mid-exponential growth phase, the third sampling point (i.e. 18 h) to the end of

exponential growth phase, and the fourth sampling point (i.e. 24 h) to the beginning of station-

ary growth. Asterisks indicate significant differences between E. coli cells containing AT-rich

and GC-rich plasmids within the same time point. Independent-samples t-test: ��� P< 0.001,
� P < 0.05, n = 4.

(TIF)

S2 Fig. In the absence of selection, cells harbouring GC-rich plasmids are less fit and lose

their plasmids faster than cells harbouring AT-rich plasmids. Growth experiments of E. coli
harbouring AT-rich (green) or GC-rich (orange) pJet (A, C, E, G) or pBAV plasmids (B, D, F,

H) were performed in minimal medium supplemented with either 100%, 50%, or 0% of the

respective antibiotic. (A, B) Duration of lag phase, (C, D) maximum growth rate achieved, and

maximum optical density reached (E, F) during 24 h of growth. (G, H) The proportion of anti-

biotic-resistant cells (i.e. a measure for plasmid loss) was determined by dividing the number

of colonies formed on antibiotic-containing plates with the number of colonies formed on

antibiotic-free agar plates after 24 h of growth under the respective conditions. Asterisks

indicate significant differences between cells containing AT-rich and GC-rich plasmids

within the same treatment. Independent-samples t-test: ��� P< 0.001, �� P< 0.01, � P< 0.05,

# P = 0.071, § P = 0.054, n = 8.

(TIF)

S3 Fig. The fitness of AT-rich and GC-rich cells is independent of H-NS. Growth experi-

ments of E. coli Δhns harbouring AT-rich (green) or GC-rich (orange) pJet plasmids were per-

formed in minimal medium. Growth over 24 h measured as optical density at 600 nm was

used to calculate fitness-relevant parameters. (A) Duration of lag phase, (B) maximum growth

rate. Asterisks indicate significant differences between cells containing AT-rich and GC-rich

plasmids. Independent-samples t-test: �� P < 0.01, n = 16.

(TIF)

S4 Fig. Plasmid copy number of GC-rich plasmids is increased in bacterial species with

GC-rich genomes relative to AT-rich plasmids. Copy number of GC-rich plasmids relative

to AT-rich plasmids in the same bacterial species are displayed. Plasmid copy number

per cell equivalent was assessed by quantitative real-time PCR and flow cytometry of all

Selection favours AT-rich intracellular elements

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007778 April 29, 2019 18 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007778.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007778.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007778.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1007778.s004
https://doi.org/10.1371/journal.pgen.1007778


bacterial species after 24 h of growth. Asterisks denote significant deviations from equal

copy numbers of AT-rich and GC-rich plasmids in the same host environment. One sample

t-test: ��� P < 0.001, �� P < 0.01, � P < 0.05, n = 5.

(TIF)

S1 Table. Non-coding AT-rich and GC-rich sequences used in this study. AT-rich

sequences (AT01-08) were amplified from the genome of Arabidopsis thaliana (chromosome

4), whereas GC-rich sequences (GC01-GC08) were amplified from Chlamydomonas reinhard-
tii (+chromosome 1, �chromosome 2).

(DOCX)

S2 Table. Primer pairs used for quantitative real-time PCR to determine the copy number

of pJet and pBAV plasmids relative to the copy number of the chromosome.

(DOCX)
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