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Abstract

Human movements with or without vision exhibit timing (i.e. speed and duration) and vari-

ability characteristics which are not well captured by existing computational models. Here,

we introduce a stochastic optimal feedforward-feedback control (SFFC) model that can pre-

dict the nominal timing and trial-by-trial variability of self-paced arm reaching movements

carried out with or without online visual feedback of the hand. In SFFC, movement timing

results from the minimization of the intrinsic factors of effort and variance due to constant

and signal-dependent motor noise, and movement variability depends on the integration of

visual feedback. Reaching arm movements data are used to examine the effect of online

vision on movement timing and variability, and test the model. This modelling suggests that

the central nervous system predicts the effects of sensorimotor noise to generate an optimal

feedforward motor command, and triggers optimal feedback corrections to task-related

errors based on the available limb state estimate.

Author summary

Stochastic optimal feedback control, which has been extensively used to model human

motor control in the last two decades, proposes to compute an optimal motor command

online based on an estimation of the current system state using sensory feedback. How-

ever, this modelling approach underestimates the role of motor plans to generate appro-

priate feedforward motor command before the movement starts, which is emphasized in

conditions with large uncertainty about current limb state estimates such as when visual

feedback is lacking. Here we propose a model combining stochastic feedforward and

feedback control to address this issue. The new stochastic feedforward-feedback (SFFC)

model considers effort and variance minimization as well as the effects of motor and sen-

sory noise both on planning and execution of arm movements. By combining the feedfor-

ward and feedback aspects of stochastically optimal control in an elegant way, SFFC

can predict the timing and variability of movements carried out with or without visual
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feedback, while previous models would fail in one or another aspect, or have to use ad hoc

fixes.

Introduction

Spatial and temporal regularities in human motion suggest that the neural control of move-

ment involves a planning stage [1, 2]. Evidence for motor planning has been provided in beha-

vioural experiments [3, 4] and through the observation of neural processes prior to movement

generation [5–7]. Among the planned aspects of movement, the timing (i.e. speed and dura-

tion) and trial-by-trial variability are important determinants of successful actions [8]. How-

ever, the principles according to which the central nervous system (CNS) may determine these

critical features is not well explained by existing models.

The currently dominating theory of motor control, stochastic optimal (feedback) control

(SOC) [9–12], can explain the coordination of the degrees-of-freedom of the sensorimotor sys-

tem, the structure of trial-by-trial variability or the reactive behavior to external perturbations

[13–16]. However, SOC does not account well for the timing of self-paced reaching move-

ments. As with deterministic optimal control (DOC) models (e.g. [17, 18]) the costs minimised

in SOC models, effort and error, decrease monotonically with increasing movement duration,

thereby predicting infinitely slow visually-guided movements. Fig 1A illustrates this issue for

the SOC model of [19] where both motor and observation noise are considered. Interestingly,

when SOC is used to model movements without vision by increasing observation noise to

reflect a degraded hand state estimate, a finite optimal duration can be obtained because end-

point variance now increases with duration. Therefore, SOC with large enough observation

noise may determine the timing and variability of movements without vision (Fig 1B), but the

same principle cannot be used directly for visually-guided movements.

Several ad hoc solutions have been proposed to circumvent this issue. In several models

considering sensorimotor noise, duration was selected as the minimum time to match a

desired endpoint variance related to target’s width, based on the speed-accuracy trade-off

underlying visually-guided movements [8, 20–22]. Alternatively, a number of studies have

assumed a “cost of time” (reflecting neuroeconomical processes related to decision-making

and explicitly penalizing duration) to explain the preferred timing of movement [23–30].

However, the preferred movement timing may be predicted without requiring an ad hoc

solution. In particular, the results of [31] suggest that the motor noise, with its constant and

signal dependent components, is a relevant factor to determine this characteristic of motion

planning. Specifically, the preferred duration of movements performed without vision was

found to be longer than the minimum variance duration, thereby suggesting that movement

timing was determined from a neuromechanical principle based on a trade-off between effort

and variance in the presence of signal-dependent and constant motor noise. Such optimality

principle could explain the stereotyped durations and trajectories of saccades [32], but its rele-

vance for arm reaching has not been tested in particular for visually-guided movements.

Because SOC cannot be used for this purpose (see Fig 1A), here we develop a new computa-

tional model to predict the timing and variability of arm pointing movements carried out with

complete or degraded sensory feedback (e.g. when vision of the hand is prevented) from neu-

romechanical factors only. This stochastic feedforward-feedback control (SFFC) model assumes

that the motor command comprises a feedforward and a feedback components. The feedfor-

ward component is computed using the stochastic optimal open-loop control (SOOC) frame-

work, which was initially developed to account for the planning of mechanical impedance via
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muscle co-contraction [33, 34]. This feedforward command yields an expectation about a

timed trajectory. The feedback component is then computed using the linear SOC framework

from a local approximation of the task dynamics, which allows triggering motor corrections in

reaction to deviations from the goal, based on an estimation of the system’s state from the

available sensory information and internal predictions. As a result, the proposed model merges

the main precepts of influential models highlighting either the role of feedforward-only or

feedback-only control [8–10, 13, 17–19].

Predictions from the SFFC model are first tested by simulating arm reaching movements

carried out without visual feedback and comparing the results with the available experimental

results of [31, 35], and [36]. Second, an experiment was conducted to analyse the timing and

variability of movements performed with and without online visual feedback of the hand. The

SFFC predictions for movements in these two conditions are then compared to these new

experimental data.

Results

Stochastic feedforward-feedback control model

In the proposed model, the actual motor command is made of a feedforward component (i.e.

determined prior to movement execution) and a feedback component (i.e. determined

throughout movement execution based on an estimation of the current state) to correct task-

related errors as illustrated in Fig 2. This is a classical approach in optimal control theory (e.g.

see [37, 38]). However, feedforward control is usually associated with deterministic systems

and feedback control with stochastic systems. In the approach presented here, the feedforward

command is optimized for the system’s stochasticity (i.e. presence of both signal-dependent

and constant motor noise) as in [8] and [33].

Fig 1. Expected costs and endpoint variance for the SOC model of [19] for simulated movements with (A) and without (B) vision.

A 10-cm long reaching movement of a point mass model of an arm is simulated. These simulations rely on the extended linear-

quadratic-Gaussian framework considering multiplicative (signal-dependent) and additive (constant) motor noise as well as additive

observation noise. A. Simulations with a standard observation noise corresponding to a visually-guided movement, as proposed in the

original model of [19]. The expected costs for different movement durations were estimated using the Monte Carlo method (100,000

samples). This model fails to predict a finite movement duration because the optimal expected effort and total cost (sum of effort and

terminal error costs) monotonically decrease with duration and plateau. The positional endpoint variance (gray trace) can also be seen to

decrease and plateau to a value which mainly corresponds to that of visually-guided movements. B. Simulations with a large observation

noise (noise in A multiplied by 10), corresponding to movements without vision. In this case, an optimal duration can be determined as

the minimum of the total cost (indicated by a black vertical dotted line).

https://doi.org/10.1371/journal.pcbi.1009047.g001
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As we shall see, considering a feedforward command for a stochastic plant allows predicting

an optimal movement duration because this command considers the effects of additive noise

in the temporal evolution of the state covariance. The actual movement timing and variability

may however be affected by sensory-based motor corrections issued online to handle unex-

pected perturbations and critical deviations from the task’s goal. This is the role of the high-

level feedback command. In SFFC, the motor plan is thus primarily composed of a feedfor-

ward motor command (i.e. an optimal open-loop control) and an expectation about the

upcoming state trajectory. It is complemented by a locally-optimal feedback gain that com-

bines with a limb state estimate throughout movement execution to determine a task-relevant

corrective motor command. This estimate is based on both internal predictions and relevant

sensory information (e.g. proprioception or vision). We describe below how the feedforward

and feedback components of the model are computed.

Determining the feedforward motor command via nonlinear stochastic optimal open-

loop control. Here we consider a minimum effort-variance model of motor planning with

Fig 2. Scheme of stochastic optimal feedforward-feedback control (SFFC). A feedforward command u(t) is formed by the CNS based on prior

knowledge about the task dynamics represented by f and G. A representation of the associated expected system’s trajectory mðtÞ ¼ E½xt� is also

established, which allows building a local approximation of the task dynamics and working in terms of state/control deviations (zt and vt respectively)

during movement execution. This is done by setting the matrices AðtÞ ¼ @f
@x ðmðtÞ; uðtÞÞ and BðtÞ ¼ @f

@u ðmðtÞ; uðtÞÞ. An estimate of the current state

deviation ẑ t is computed from multisensory information yt. This allows triggering a feedback command online to correct task-relevant errors caused by

unexpected internal and external perturbations due e.g. to motor noise or external forces. In this scheme, the actual motor command u(t) + vt is the

sum of the feedforward and feedback commands. The matrices L(t) and K(t) denote the optimal filter and feedback gains respectively, g is the output

function and CðtÞ ¼ @g
@x ðmðtÞÞ in the local approximation. The random processes ωt and ηt are implemented here as Brownian. D(t) is an observation

noise matrix, the magnitude of which can be increased to simulate the absence of vision. The vector ht denotes the deviation from the sensory

prediction. The terms Cff and Cfb refer to the cost functions that determine the optimal signature of the feedforward and feedback commands. The

definition and meaning of all the variables are given in the Results section.

https://doi.org/10.1371/journal.pcbi.1009047.g002
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additive and multiplicative motor noise to determine the feedforward motor command.

The expectation and covariance of a nominal state trajectory can be obtained from this sub-

problem.

Let us consider a general rigid body dynamics with n degrees of freedom such as to model

human arm movements:

τ ¼ MðqÞ €q þ Cðq; _qÞ _q þ B _q þ GðqÞ ; ð1Þ

where q 2 Rn is the joint coordinates vector, τ 2 Rn the net joint torque vector produced by

muscles, M the inertia matrix, C _q the Coriolis/centripetal, B _q the viscosity, and G the gravity

terms. This dynamical system is nonlinear due to the mechanical coupling between the differ-

ent body segments and gravity. Let us assume that the torque change is the control variable as

in [18]:

u ¼ _τ : ð2Þ

In a standard SOC model the motor command would be a stochastic variable ut that

depends on the random fluctuations arising from motor and measurement noise as well as

from any environmental perturbations. As stressed before and in Fig 2, here we rather assume

that motor planning primarily builds a feedforward motor command. This enables the feedfor-

ward component of the motor command to consider all the internal and external dynamic

effects that can be learnt (including the consequences of noise, the sensory delays, the instabil-

ity due to the interaction with the environment etc.) during the planning stage. To derive such

a feedforward motor command, we restrict the control to be open-loop (denoted by u(t) to

stress its deterministic nature) while retaining the stochastic aspect of the system’s dynamics.

To this aim, let us assume that the arm movements are affected by multiplicative motor

noise (i.e. with signal-dependent variance) and additive motor noise (i.e. with constant vari-

ance), modeled as a M-dimensional standard Brownian motion, ωt. The corresponding sto-

chastic dynamics of the arm can be described by

dxt ¼ fðxt;uðtÞÞdt þ GðuðtÞÞ dωt ; xt ¼

qt

_qt

τt

2

6
6
6
4

3

7
7
7
5
; ð3Þ

where xt is the stochastic state vector and f 2 RN
and G 2 RN�M

are respectively the drift and

diffusion terms (here N = 3n). The matrix G includes both the constant and the signal-depen-

dent noise terms.

For the reaching task under consideration, the control objective is to move the arm from an

initial position x0 to a given target in time T with minimum effort and minimum variance,

that is, by minimizing an expected cost of the form

CffðuðtÞÞ ¼ E r �ðmðTÞ; xTÞ þ

Z T

0

lðmðtÞ; uðtÞÞ dt
� �

; ð4Þ

where ϕ is a quadratic function penalizing the final state of the process (typically related to its

covariance here), and l is a cost depending on mðtÞ ¼ E½xt� and the open-loop control u(t).
The cost l can be thought as a measure of effort but it can also include terms like trajectory

smoothness. The parameter r is a weighting factor to trade-off the variance and effort/trajec-

tory costs.

This stochastic optimal open-loop control problem can be solved using approximate solu-

tions based on stochastic linearization techniques (see [33]).
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Let us denote the covariance of the process xt by

PðtÞ ¼ E½ztz0t� ; zt ¼ xt � mðtÞ : ð5Þ

It can be shown (e.g. [39], Chap. 12) that propagation of the mean m(t) and covariance P(t)
can be approximated using a second order Taylor’s expansion for f by the following ordinary

differential equations:

_mðtÞ ¼ fðmðtÞ; uðtÞÞ þ
1

2

@
2f
@x2
ðmðtÞ; uðtÞÞ � PðtÞ ;

_PðtÞ ¼
@f
@x
ðmðtÞ; uðtÞÞPðtÞ þ PðtÞ

@f
@x
ðmðtÞ; uðtÞÞ0 þ GðuðtÞÞGðuðtÞÞ0;

@
2f
@x2
� P ¼ tr

@
2f1

@x2
P

� �

; tr
@

2f2

@x2
P

� �

; . . . ; tr
@

2fN
@x2

P
� �� �0

ð6Þ

These ordinary differential equations are important to reformulate the initial problem as a

deterministic optimal control problem involving only the mean and covariance of the original

stochastic state process xt.

To do so, it must be noted that the expected cost function can also be rewritten in terms of

the mean and covariance of xt only as

CffðuðtÞÞ ¼ rFðmðTÞ;PðTÞÞ þ
Z T

0

lðmðtÞ; uðtÞÞ dt ð7Þ

where F is a function of the terminal mean and covariance of the random variable xT. Note

that the trajectory cost l can be taken outside of the expectation because the control and mean

are deterministic variables (by hypothesis and definition, respectively).

We thus obtain a deterministic optimal control problem (approximately equivalent to the

stochastic problem defined by Eqs 3 and 4) to solve for the augmented state (m, P). This prob-

lem is summarized as:

min
uð�Þ

rFðmðTÞ;PðTÞÞ þ
Z T

0

lðmðtÞ; uðtÞÞ dt
� �

;

_m ¼ fðm; uÞ þ
1

2

@
2f
@x2
ðm; uÞ � P ; _P ¼

@f
@x
ðm; uÞPþ P

@f
@x
ðm; uÞ0 þ GðuÞGðuÞ0

ð8Þ

Interestingly, the efficient theoretical and numerical tools developed for DOC can be used

to solve the above problem (e.g. [40]). Note that hard constraints for the final mean or covari-

ance of the state can also be added in this formulation. We did so for the final mean state to

ensure that the arm exactly reaches the desired target on average even though we could have

modelled this constraint in the cost itself. The latter choice has the disadvantage of introducing

additional tuning weights in the cost but could allow accounting for a terminal bias. Here we

rather left the final covariance free because it was penalized in the cost function and was

needed to determine an optimal movement duration without having to preset a desired

amount of endpoint variance. The above optimal control problem can be run in free time,

which means that the duration T can be found automatically from the necessary optimality

conditions of Pontryagin’s maximum principle (instead of a laborious trial-and-error search

process as it has been done in previous approaches such as [8] or [41]). The problem can also

be run in fixed time, which means that the duration is preset by the researcher. We did so

when investigating the evolution of optimal costs with respect to various movement durations
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and to adjust noise magnitudes for fast or slow movements performed without vision (see

Materials and methods section).

Determining the feedback motor command via linear stochastic optimal feedback con-

trol. During their execution, movements can be modified with incoming sensory informa-

tion. This information can be exploited to form an optimal estimate of the current limb state,

which can be used online through a linear locally-optimal feedback control scheme. Here, by

linearizing the dynamics around the nominal expected state/control trajectories coming from

SOOC, we will use the standard linear-quadratic-Gaussian framework [19, 37]. We shall also

consider that, besides motor noise, there is some observation noise, the magnitude of which

will depend on the available sensory modalities (e.g. with or without vision).

At this stage, we have access to a nominal open-loop control and an expected state trajec-

tory, denoted by u(t) and m(t) respectively, for t 2 [0, T]. We next extended the time horizon

T0 > T in order to consider that executed movements have a longer duration than initially

planned, assuming that the system is at rest for t� T.

To compute a locally-optimal feedback control, the dynamics is linearized around m(t) and

u(t) using Taylor’s expansions to obtain a linear-quadratic-Gaussian approximation in terms

of state/control deviations (e.g. [42]) as follows:

dzt ¼ ðAðtÞ zt þ BðtÞ vtÞ dt þ GðtÞ dωt ð9Þ

where

AðtÞ ¼
@f
@x
ðmðtÞ; uðtÞÞ ; BðtÞ ¼

@f
@u
ðmðtÞ; uðtÞÞ ; GðtÞ ¼ GðuðtÞÞ ; ð10Þ

and

zt ¼ xt � mðtÞ ; vt ¼ ut � uðtÞ: ð11Þ

We further assume that the noisy sensory feedback yt is obtained during motion execution

from the following output equation:

dyt ¼ gðxtÞ dt þDðtÞ dηt ð12Þ

where yt 2 R
L and gðxtÞ 2 R

L�N is the output function. The matrix DðtÞ 2 RL�L specifies how

observation noise affects sensory feedback, where ηt is a L-dimensional standard Brownian

motion process.

Using again a Taylor’s expansion and defining CðtÞ ¼
@g
@x
ðmðtÞÞ, the output equation can

be approximated locally in terms of state deviations zt as

dht ¼ CðtÞ zt dt þDðtÞ dηt ð13Þ

where ht = yt − y(t) with y(t) =
R

g(m(t))dt.
For this sub-problem, a quadratic cost function to ensure task achievement with minimal

effort is defined as follows:

CfbðvtÞ ¼ E
Z T

0

T
z0tR zt dt þ

Z T
0

0

v0t vt dt

" #

ð14Þ

The locally-optimal feedback control law can be written as vt ¼ � KðtÞ ẑt where K(t) is the

feedback gain matrix and ẑt is the optimal estimate of the state deviation zt obtained from the
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Kalman filter equation:

dẑt ¼ ðAðtÞ ẑt þ BðtÞ vtÞ dt þ LðtÞðdht � CðtÞ ẑt dtÞ ð15Þ

where L(t) is the optimal filter gain.

The problem defined by Eqs 9, 13 and 14 is a linear-quadratic-Gaussian problem, which

can be solved using standard algorithms (e.g. [19]).

An overview of the SFFC model is given in Fig 2.

While the cost functions for the feedforward and feedback components both minimize

error and effort terms (see Eqs (4) and (14)), they differ in several fundamental aspects. On the

one hand, the feedforward cost function relies on deterministic variables that can be computed

or estimated prior to the movement start. It aims at determining an optimal feedforward

motor command, from which an expectation about the upcoming trajectory can be obtained.

This cost minimizes effort (and possibly other terms such as smoothness) and endpoint vari-

ance, which in turn allows to specify the shape and characteristics of mean arm trajectories as

well as the state covariance that would result from feedforward control (i.e. without online sen-

sory feedback). Critically, this knowledge allows linearizing the arm’s dynamics in order to

apply the linear SOC framework subsequently. On the other hand, the feedback cost function

depends on the stochastic deviations from the above expected control/state trajectories which

will arise during movement execution. It ensures that the task will be achieved with a minimal

amount of motor correction, in accordance with the minimal intervention principle [13]. This

is done here by minimizing errors at the end of the movement (i.e. for times longer than the

planned movement duration). The R term can be adjusted depending on the task, which will

in turn determine the magnitude of the planned feedback gain K(t). To compute the feedback

component of the motor command, related to online corrections, the system requires sensory

information to update the estimate of the limb state throughout movement execution. Hence,

internal or external perturbations inducing a deviation from the expected trajectory will be

corrected via a task-dependent feedback mechanism. While SFFC assumes that the brain has

some knowledge of the upcoming reach trajectory and feedforward command to reformulate

the task in terms of state/control deviations, it must be noted that the feedback cost does not

assume that a reference trajectory is tracked. If the task does involve trajectory tracking this

can be handled by minimizing errors throughout the whole movement in the feedback cost or

modelled by considering muscle viscoelasticity and mechanical impedance as in [33].

Simulation results and comparison to experimental data

To test the SFFC model we consider a pointing task with a two-link arm moving in the hori-

zontal plane from an initial posture to a target in Cartesian space (e.g. [31, 35, 36]). More

details about the task, model of the arm and choice of parameters can be found in the Materials

and methods section.

Comparison to previous data of reaching movements without vision. We first tested if

SOOC can determine an optimal movement timing from the principle illustrated in Fig 1B. As

SOOC does not consider the influence of online sensory feedback, its prediction would mainly

correspond to the behavior of deafferented patients without vision of the moving hand (e.g.

[43, 44]). It must be noted that SOOC at least requires an estimate of the initial arm’s state to

build the optimal feedforward motor command, in agreement with [43] who showed that

prior vision of the arm improved movement precision in these patients.

Fig 3A illustrates that the evolution of the optimal expected cost with respect to movement

duration. This U-shape cost function yields an optimal duration, which can be thought as the

limit case of Fig 1B when observation noise is infinite. Remarkably, the resulting optimal
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duration is longer than the duration of minimum variance, which is in agreement with the

observation of [31]. Fig 3B and 3C show the corresponding mean hand trajectory, the path of

which is approximately straight with bell-shaped velocity profile. This agrees with typical find-

ings in healthy subjects and also with the overall strategy of deafferented patients without

online vision [44]. Interestingly, SOOC also provides information about the final variability of

the pointing under pure feedforward control (i.e. without feedback component; represented as

a confidence ellipse in Fig 3B). The large final variability (compared to target size) is compati-

ble with the relatively large endpoint variability exhibited by deafferented patients [44].

Next, we focus on previous experimental observations in healthy subjects performing

movements without online visual feedback of the hand [31, 35, 36]. Healthy subjects typically

have a smaller endpoint variability than deafferented patients without vision. In healthy sub-

jects, proprioceptive feedback is indeed available and this sensory information can be used by

the brain to build an estimate of the limb state. However, the absence of vision (and thus of

multisensory integration) may degrade the hand state estimate [45], which can be accounted

for in our model by assuming a relatively large observation noise in this case.

Fig 4A and 4B show the path of trials in the N-W and N-E directions when simulating the

experiment of [31], where parameters were selected to reproduce the data in the N-W direc-

tion. The trajectories predicted by the model are similar to the trajectories experimentally mea-

sured in this task, with relatively straight hand path and bell-shaped velocity profile. The

duration determined by the SFFC model was also in good agreement with the data. Interest-

ingly, as in the experimental data of [31], the predicted duration was slightly longer for move-

ments in the N-W than in the N-E direction, and the variance was also slightly larger in the

N-W direction. It can also be noted that the endpoint variability is smaller with SFFC than

with SOOC, thereby illustrating the improvement with proprioceptive feedback.

We then analyzed how the optimal movement duration depends on its direction and ampli-

tude by using the same model parameters and still focusing on movements carried out without

online visual feedback of the hand. Fig 4C–4F show how movements vary with the direction

and with the distance. As in the experimental results of [35] and [36], movements in directions

requiring more effort are slower. Fig 4F further shows that the predicted movement duration

increases monotonically with the target distance as in experimental data [36].

Fig 3. Expected costs and trajectory predicted by SOOC for a horizontal point-to-point arm movement without feedback. A. Evolution of the

optimal costs with respect to the movement duration. The total cost function exhibits a U-shape, i.e. additive motor noise yields a minimal movement

duration. The minimal duration (minimum of the black solid trace) is larger than the duration of minimum variance (the gray curve). B. Mean hand

path and predicted endpoint variability (here depicted as a 90% confidence ellipse). These data can be computed from m(t) and P(t) respectively

(converted from joint space to Cartesian space). The black circle depicts the target. C. Corresponding mean velocity profile. The dashed horizontal line

indicates the threshold at which velocity profiles are cut in the experimental data. This figure is generated using simulation data of free-time optimal

control computed with SOOC.

https://doi.org/10.1371/journal.pcbi.1009047.g003
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Fig 4. Simulations of horizontal arm pointing movements without online vision of the hand. A-B. Simulation of the data of [31].

Hand paths of 20 trials are shown in panels A and B for the N-W and N-E directions, respectively. 90% confidence ellipses of the end

points are depicted in blue, which were computed from 1,000 samples. Dotted ellipses, corresponding to the endpoint variance of SOOC

solutions, are depicted for comparison. The corresponding mean velocity profiles are also depicted as insets. The target is depicted as a

black circle. Movement duration and endpoint variance are reported for each direction. C-F. Simulation of the data of [35, 36]. Hand

paths of 20 trials are shown in panels C and E for the different directions and different distances for the N-E direction. 90% confidence

ellipses of the end point are depicted (estimated from 1,000 samples). The corresponding durations are reported in panels D and F. In
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These simulations suggest that the model can reproduce the basic characteristics of planar

arm reaching movements without visual feedback, showing typical dependencies on distance

and direction. Next, we compare movements carried out with and without vision. In particu-

lar, movements with vision are known to exhibit a smaller endpoint variability than analog

movements without vision [45, 46].

Comparison to data of reaching movements with and without vision. We asked healthy

participants to perform arm pointing movements to test the impact of online visual feedback

of the hand on the preferred timing and variance of goal-directed movements. We wanted to

estimate the extent to which movements with and without visual feedback differed in terms of

timing and trial-by-trial variability, and whether these data could be replicated by the proposed

SFFC model. Horizontal arm pointing movements of various directions {E, N-E, N-W, W}

and amplitudes {0.06, 0.12, 0.18, 0.24} m both with and without vision of the moving hand

(represented as a cursor on the screen, the actual arm being hidden) were recorded. Details

about the task can be found in the Materials and methods section.

Fig 5A illustrates the experimental hand paths in all the directions and amplitudes in one

participant. As expected, movements without vision were clearly less precise than movements

with vision. This was confirmed by the group analysis reported in Fig 6A where the endpoint

variance was computed for each distance and direction.

Two-way repeated measures ANOVAs confirmed a main effect of the visual condition

(F1,20 = 426.83, p< 0.001) with movements without vision exhibiting much more endpoint

variance. A main effect of distance was also found (F3,60 = 12.55, p< 0.001) and there was a

panel D, the acceleration predicted from the hand mobility matrix is depicted (and calculated as in [36]). The direction-dependent and

distance-dependent modulation of duration can be noticed.

https://doi.org/10.1371/journal.pcbi.1009047.g004

Fig 5. Hand trajectories and velocities for an exemplar subject and for simulations. Movements with vision and without vision are depicted in red

and blue respectively. Panels A and B show experimental trajectories in the N-W and N-E directions respectively. The four distances {0.6, 0.12, 0.18,

0.24} m are represented by shifting the starting point for visibility. The real starting point was the same as described in Fig 8B. Targets are represented as

90% confidence ellipses for the endpoints, which were estimated from the five experiment’s trials. Corresponding mean speed profiles over the five trials

are computed after cutting the start and end using a 1.0 cm/s threshold and a time normalization. The same information is shown in panels C and D for

1,000 simulated movements with SFFC, where only 5 trajectories are depicted for clarity. The blue traces correspond to large observation noise and red

traces to normal observation noise when vision is available. The simulation parameters were chosen to reproduce the average behavior of the

participants, and not the plotted data of a specific participant.

https://doi.org/10.1371/journal.pcbi.1009047.g005
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significant interaction (F3,60 = 46.59, p< 0.001) revealing that, without vision, participants

were less and less precise as movement amplitude increased. A main effect of the direction

was also detected on the variance (F3,60 = 3.73, p< 0.05), and there was no interaction effect

between direction and condition (p = 0.056).

These empirical observations were well replicated by our model (Figs 5B and 6B). In partic-

ular, the increase of endpoint variance with distance is well predicted by the model with large

observation noise and the gain of precision is also clear when vision is present and observation

noise is thus reduced. To quantify the errors between the model predictions and the empirical

data, we computed root mean squared deviations (RMSD). Fig 6C reports RMSD values aver-

aged across all directions and distances for endpoint variance. The average RMSD was 0.40

and 0.28 log(mm2) for the without and with vision conditions respectively, which corre-

sponded to 6.9% and 11.6% of the respective experimental mean values.

We next analyzed the timing of movements performed with and without vision (Fig 6D). A

visual inspection reveals that the durations of movements with and without visual feedback of

the hand exhibit similar trends, although movements with vision may tend to have slightly lon-

ger durations.

Fig 6. Comparison of experimental and simulated data. A. Mean experimental endpoint variance (across participants) for each direction and

distance. Error bars indicate standard deviations across the 16 conditions (distance-direction pairs). Movement with and without vision are reported in

red and blue, respectively. Circles, diamonds, squares and triangles represent the E, N-E, N-W and W directions, respectively. B. Same information for

simulated movements. C. Root mean squared deviation (RMSD) between the real and simulated endpoint variance, (in log(mm2)). D-I. Same by

reporting duration (in s) and peak velocity (in cm/s) instead of endpoint variance.

https://doi.org/10.1371/journal.pcbi.1009047.g006

PLOS COMPUTATIONAL BIOLOGY Stochastic optimal feedforward-feedback control for arm movement planning and execution

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009047 June 11, 2021 12 / 24

https://doi.org/10.1371/journal.pcbi.1009047.g006
https://doi.org/10.1371/journal.pcbi.1009047


A two-way repeated measures ANOVA revealed no main effect of the visual condition on

movement duration (p = 0.055). We found a main effect of distance (F3,60 = 242.40, p< 0.001)

on movement duration (i.e. duration clearly increases with distance). A significant interaction

effect between the visual condition and the distance was found (F3,60 = 10.06, p< 0.001). Post-

hoc analyses revealed that only the 24 cm distance had significantly longer duration with vision

compared to without vision (p = 0.014). Regarding the effect of direction on duration, a signifi-

cant interaction effect between the visual condition and direction was found (F3,60 = 5.66,

p = 0.002). Post-hoc analyses mainly revealed that N-W movements with vision lasted longer

than the other directions of movement (p< 0.001). The model replicated the increase of move-

ment duration with distance relatively well, although some variations with respect to direction

were less clear in these data (see Fig 6E). Quantitative comparisons are reported in Fig 6F and

reveal that, on average across distance and direction conditions, RMSD for duration was 70

and 113 ms for the without and with vision conditions respectively, which corresponded to 7.1

and 11.8% of the respective experimental mean values.

To analyze the differences in movement timing with a variable less sensitive to terminal

adjustments, we repeated the above analyses using peak velocity instead of duration (Fig

6G). We found neither a main effect of the visual condition (p = 0.052) nor an interaction

effect (p = 0.262) with distance. Although there was a trend to have slightly lower peak veloci-

ties with vision, no statistical difference was observed on peak velocity for movements with

and without vision (even for the largest distance, 24 cm, in contrast to the results found for

duration). A main effect of distance on peak velocity was found as expected since peak veloc-

ity clearly increases with movement distance (F3,60 = 253.72, p< 0.001). Regarding the effect

of direction, we found a significant interaction (F3,60 = 2.83, p< 0.05). Post-hoc tests mainly

indicated that N-W movements were slower than those in other directions with and without

vision (p< 0.01). The model replicated well the increase of peak velocity with distance (Fig

6H) and the dependence of peak velocity on direction was again less clear in these data.

RMSD for peak velocity was on average 3.8 and 2.7 cm/s for the without and with vision con-

ditions respectively, which corresponded to 13.4 and 10.0% of the respective experimental

values (Fig 6I).

Finally, a correlation analysis was carried out to analyse the extent to which the timing

properties of movements performed with and without vision were related (Fig 7A for dura-

tions and Fig 7B for peak velocities). We found strong correlations in experimental data (R2 >

0.96), thereby confirming the consistency of movement timing with and without visual feed-

back. Similarly strong correlations were found in simulated data based on the proposed model.

The main reason is that, in the model, movements with or without vision are both based on

the same feedforward motor command and just differ here in the magnitude of observation

noise (which was assumed to be ×10 larger for movements without vision than for movements

with vision).

Discussion

This paper introduced the stochastic optimal feedforward-feedback control model (SFFC) of

learned goal-directed arm movements unifying previous optimal control models that focused

either on deterministic or stochastic aspects of movement. The SFFC suggests how the nervous

system may cope with noise and delays by combining feedforward and feedback motor com-

mand components. It can be used to predict the nominal timing and variability of reaching

movements with degraded sensory feedback, as was illustrated on movements carried out

without visual feedback. We discuss below the main aspects of this new model in perspective

with experimental results and previous models from the literature.
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How existing models predict movement timing and variability

The development of SFFC was prompted by the difficulty to predict movement timing inde-

pendently of endpoint variability with existing optimal control models. Optimal control being

a versatile framework to model human motor control [47, 48], several classes of models have

been proposed with prediction of movement timing and variability summarized in Table 1.

Seminal deterministic optimal control (DOC) models can predict the shape of average arm tra-

jectories corresponding to a given movement duration [17, 18, 49, 50]. The movement dura-

tion can be determined in ad hoc ways such as by setting the task’s effort [51–53] but DOC

does not account for the trial-by-trial variability of human movement. Assuming signal-

dependent motor noise, SOOC models have been proposed to extend deterministic models

and predict a movement duration corresponding to a fixed level of endpoint variance (e.g. the

width of the target) [8, 20], but these models will follow Fitts’ law [54], which does not hold for

Fig 7. Correlations of duration or peak velocity between movements with and without vision. A. Correlations for durations. Each data point

represents one condition of distance and direction (averaged across participants). Experimental and simulated data are plotted respectively in black and

grey. B. Correlations for peak velocities. Regression lines are plotted for the illustration.

https://doi.org/10.1371/journal.pcbi.1009047.g007

Table 1. Predictions of movement timing (duration or speed) and endpoint variance (variability across trials) with different types of optimal control models. Some

ad hoc fixes have been introduced in some models to predict timing and/or variability, unlike the SFFC model.

Type Timing Variability Models

vision no vision vision no vision

DOC N N N N [17, 18, 49]

DOC with cost of time or other fixes Y Y N N [24, 25, 51–53, 56]

SOOC Y Y N Y [8, 20, 34]

SOC N Y Y Y [14, 19]

SOC with cost of time or other fixes Y Y Y Y [22, 41]

SFFC Y Y Y Y introduced in this paper

https://doi.org/10.1371/journal.pcbi.1009047.t001
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self-paced arm movements [55]. Here we showed that SOOC can explain the timing and vari-

ability of self-paced movements carried out without sensory feedback by considering the

effects of motor noise together with a minimum effort-variance cost. However, SOOC will not

account for the drastic reduction of variability exhibited by movements executed with proprio-

ceptive and/or visual feedback. Muscle co-contraction and mechanical impedance that could

be modelled as in [34] may contribute to reduce this variability but not to the level of move-

ments with online multi sensory feedback.

SOC emphasized the role of high-level feedback to reliably execute a motor task despite rel-

atively large variability in repeated movements. In SOC, the motor command is a function of a

limb state estimate built from internal dynamic predictions and delayed sensory information.

By considering sensorimotor noise, and minimizing error and effort [13, 14, 19], these models

correct task-relevant errors according to the minimal intervention principle. However, as the

expected cost typically plateaus for visually-guided movements of long duration (see Fig 1A),

SOC cannot predict a finite movement duration without ad hoc criterion. For instance, [22]

determined duration in an infinite-horizon SOC formulation by comparing the magnitude of

endpoint variance to the target’s width, which allowed to predict the speed-accuracy trade-off.

To model the variability of movements without vision, SOC models will normally assume a

large observation noise. This will degrade limb state estimates and make the controller more

dependent on internal predictions corresponding to a feedforward mechanism. The fact that

movements carried out with and without vision had a highly correlated timing in our experi-

mental data is supporting the hypothesis that these two types of movement have a common

origin, which can be captured by a feedforward motor command. The same conclusion was

drawn by [45] who found a reduction of feedback gains in a reaching task when visual feed-

back was removed. The authors suggested that a feedforward motor command is needed to

explain that movements with lower feedback gains had well preserved kinematics and timing.

Note however that visually-guided movements have a tendency to be slower likely due to the

integration of visual corrections at the end of the movement, to adjust more accurately the

final cursor’s location. This is consistent with the observation that in our experiment the peak

velocities with and without vision were even more similar than movement durations. Overall,

SFFC appears as the first model that can explain timing and variability of arm movement tra-

jectories carried out with or without visual feedback from neuromechanic considerations only.

Is movement timing due to neuromechanic or neuroeconomic factors?

Previous arm movement models [24, 25, 56] used a cost of time to limit the movement dura-

tion. In these DOC models, the cost-of-time parameters to accurately reproduce the move-

ment timing observed experimentally can be determined using inverse optimal control

techniques [25, 27]. By extension, SOC with a cost of time has been used to model saccades

[41] and, in principle, SOC with a cost of time may be able to reproduce the above experimen-

tal results. However, it is not straightforward to find an optimal duration in SOC from com-

puting the cost for all possible durations, and to adapt such models to the nonlinear dynamics

of the human arm. In contrast, it would be straightforward to include a cost of time in SFFC

(in the term l(x,u)) and to use it to determine the optimal movement duration from necessary

optimality conditions. However our objective here was to understand if neuromechanical fac-

tors could explain the timing and variability of self-paced arm movements, which led us to

develop the SFFC model. While above simulations and experimental results showed that SFFC

could explain the timing of simple pointing movements toward targets without ad hoc hypoth-

esis, further investigations would be required to determine whether it could also account for

individual differences [27, 57–59] and sensitivity to reward [60–62], e.g. by varying the factor r
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to trade-off variance and effort for instance. Experiments may also be developed to test the

model’s prediction that movement timing should increase with larger constant motor noise

and decrease with larger signal-dependent motor noise.

The role of motion planning and feedforward control

Overall, this study suggests the importance of motion planning in the generation of goal-

directed arm movements. A large body of experimental evidence has shown the critical role of

motion planning to select a suitable motor solution for carrying out a task (see [4] for a

review). The picture suggested by previous studies and above modeling is that the CNS exe-

cutes well-learned, unperturbed movements using an important feedforward component to

the motor command, given the intrinsic noise, delays and task dynamics. The sensorimotor

plans required for such control strategy may be learned by gradually minimizing reflexes and

integrating voluntary (e.g. visual) corrections after movement [63–65]. This learning will mini-

mize the reliance on high-level feedback corrections to achieve the task and thus gradually

incorporate in the feedforward motor command any feature that can be identified over trials.

The behaviour after learning could be captured by the SFFC model that integrates feedfor-

ward and feedback control. The simulation results illustrated how SFFC combines the advan-

tages of SOOC [8, 33, 34] and SOC [10–12] to explain the timing and the variability of arm

movements performed with or without visual feedback of the moving limb, by minimizing the

consequences of signal-dependent and constant motor noise on endpoint variance as well as

effort or kinematic costs such as smoothness. One important aspect of SFFC is that the feedfor-

ward motor command already considers uncertainty about the task dynamics (e.g. motor

noise or unknown perturbations, like in [8]) and can incorporate this knowledge in the plan to

adjust the mechanical impedance to the task’s uncertainty [34, 66, 67]. This feedforward motor

command is complemented by a high-level feedback motor command that corrects task-rele-

vant deviations resulting from perturbations not handled by the feedforward motor command,

such as accumulation of positional errors due to constant noise [31, 68], visually elicited cor-

rections [64, 69] or long-latency proprioceptive feedback responses to large mechanical pertur-

bations [70, 71]. The state-feedback gain is also part of the motor plan, the magnitude of which

can be adapted depending on the task (by tuning the weights in the feedback cost function in

SFFC). This general planning scheme highlights how feedforward motor commands (which

determine the nominal shape, timing and variability of unperturbed trajectories) and feedback

motor commands (which handle the corrections of task-related errors using current limb state

estimates) could yield a skillful motor control strategy.

Materials and methods

Ethics statement

The experimental protocol was approved by the Université Paris-Saclay local Ethics Commit-

tee (CER-Paris-Saclay-2019–031). Written informed consent was obtained from each partici-

pant prior to starting with the experiment.

Experimental task and procedures

Participants and experimental setup. 21 young adults (24.5 ± 2.0 years old [mean±std],

height 1.74 ± 0.09 m, with 11 females and 4 left-handed) participated in this study. All partici-

pants had normal or corrected to normal vision, and no known neurological impairment or

mental health issue. Each participant was seated, and had to move a stylus on a Wacom tablet
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(Wacom Intuos 4 XL) laid on horizontal table. The location of the stylus on the tablet was dis-

played on a monitor placed in front of the participant (i.e. on a vertical screen).

Pointing task in two conditions: With and without online visual feedback. When a par-

ticipant was ready, a 5 mm diameter disk appeared on the screen indicating the start position,

on which they was instructed to move the cursor. Once the center of the cursor was within the

start disk for 1 second, this was replaced by a 3 cm diameter target disk placed at 6, 12, 18 or 24

cm from the start position. Reaching movements were carried out in four directions as indi-

cated in Fig 8A and 8B. If the start position was at the bottom of the screen (x-y coordinates

with respect to the shoulder [-15, 30] cm), the target was placed in the N-E or N-W direction.

If the start was on the left of the screen (coordinates [-29, 34.5] cm, it was in the E direction,

and if it was on the right of the screen (coordinates [5, 34.5] cm) in the W direction. This

resulted in 16 different possible movement types.

The participants were instructed to move the cursor at comfortable pace in order to reach

the target, without leaning the arm on the tablet. Note that their arm was hidden by a card-

board box so that they could not see it. They had to perform reaching movements either with-

out or with the cursor displaying their hand position on the screen during the movement. In

the non-visual condition, the cursor disappeared at the beginning of the movement and reap-

peared 1 s after the end of the movement, to indicate the pointing error and thus avoid the

endpoint to gradually drift trial after trial.

Each participant started with a familiarization phase of 32 pointing movements including

16 consecutive trials per condition (with and then without visual feedback). Then they had to

perform 160 trials, with 80 per visual feedback modality. The different movement types and

the visual modalities were presented in pseudo-random order. This resulted in 5 trials of each

amplitude and direction for each starting position. Every 10 trials a break of approximately 1

minute was scheduled, during which they could place the forearm on the tablet or the desk.

Data acquisition and parameters of interest. The stylus position was recorded at 125 Hz

with MATLAB (The MathWorks, Inc.), and the Psychtoolbox [76] was used to display the

Fig 8. Arm reaching task in our experiments and simulations. A: Two-link model of the arm and planar movement used to set the model parameters.

B: Horizontal arm movements carried out with and without online vision of the hand (4 directions, W, N-E, N-W and E, and 4 distances, 6, 12, 18 and

24 cm) in our experiment. C: Arm parameters used in the simulations.

https://doi.org/10.1371/journal.pcbi.1009047.g008
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stimuli on the screen. The system was calibrated so that a movement of the stylus on the tablet

corresponded to a movement of the same length of the cursor on screen. The raw data were

smoothened for further analysis using a 5th-order Butterworth low-pass filter with 12.5 Hz

cutoff frequency and without delay. Velocity was computed via numerical differentiation.

Among the parameters of interest, we computed the movement duration using a velocity

threshold of 1 cm/s, the peak velocity of the maximal value of velocity profiles (in cm/s), and

the endpoint variance (in log(mm2)). In every trial, the movement’s endpoint was determined

by the last recorded position at the end of the movement time. Endpoint variance was then

estimated from the trace of the covariance matrix of final positions and the logarithm of this

value was computed as in [31].

Statistical analysis. Two-way repeated measures ANOVAs with condition (with vision

and without vision) and amplitude (from 6 to 24 cm) or direction (from E to W) as within-

subjects factors were carried out to assess the variation of movement timing (i.e. duration and

peak velocity) and variance across conditions. Moreover, a correlation analysis was performed

to assess the relationships between the timing of movements carried out with and without

vision.

Numerical simulations

Arm reaching movements were simulated using a 2-link arm model with joint configuration

vector

q ¼
q1

q2

" #

ð16Þ

where q1 is the shoulder and q2 the elbow angles. The skeletal dynamics of the arm was

described by the rigid body model of Eq (1) with:

M11ðqÞ ¼ I1 þ I2 þM2L2
1
þ 2M2L1Lg2 cos ðq2Þ ; M12ðqÞ ¼ I2 þM2L1Lg2 cos ðq2Þ ;

M21ðqÞ ¼M12ðqÞ ; M22ðqÞ ¼ I2 ; C11ðq; _qÞ ¼ � 2M2L1Lg2 sin ðq2Þ _q2 ;

C12ðq; _qÞ ¼ � M2L1Lg2 sin ðq2Þ _q2 ; C21ðq; _qÞ ¼ M2L1Lg2 sin ðq2Þ _q1 ; C22ðq; _qÞ ¼ 0 :

For the planar movements considered in this paper the gravity term G is set as zero. {Ii, Li,

Lgi} and {Mi} are the moments of inertia, lengths of segments, lengths to the centre of mass and

mass of the segments.

Furthermore, we have

fðxt; uðtÞÞ ¼

_qt

M� 1
ðqtÞ½τt � Cðqt; _qtÞ _qt � B _qt�

uðtÞ
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; ð17Þ

where the parameters {σi} are used to set the magnitude of additive noise and {di} the magni-

tude of multiplicative noise.
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Regarding the feedforward cost function, we define ϕ(m(T), xT) to estimate the covariance

of the final hand position. Denoting by J(q) the Jacobian matrix of the two-link arm, an

approximation of this function can be computed by:

�ðmðTÞ; xTÞ ¼ trð½JðmqðTÞÞðqT � mqðTÞÞ�½JðmqðTÞÞðqT � mqðTÞÞ�
0
Þ ð18Þ

where mq(T) is the mean final position of the random variable qT (i.e. the 2-dimensional vector

of final joint positions) and tr denotes the trace of the matrix. The expectation of ϕ(m(T), xT)

can then be rewritten as a function of the mean and covariance of the state process xt:

FðmðTÞ;PðTÞÞ ¼ tr½JðmqðTÞÞPqðTÞJ
0ðmqðTÞÞ� ð19Þ

where Pq is the 2×2 covariance matrix of joint positions.

The infinitesimal cost l(m, u) is defined as follows:

lðm; uÞ ¼ u0u þ aðx���2 þ y���2Þ ð20Þ

where x and y denote the mean Cartesian positions of the hand (which can be computed from

m(t) and the forward kinematic function). This cost implements a compromise between effort

(here measured as squared torque change) and smoothness (here squared hand jerk) through

the α parameter. Evidence for composite cost function mixing kinematic and dynamic or ener-

getic criteria has been found in previous works [50, 72]. The jerk term is useful to correct for

abnormal asymmetries in velocity profiles which may arise partly from the minimum torque

change model (e.g. [73]), but this term does not affect our results otherwise.

For the linear-quadratic-Gaussian sub-problem, we set C = I6 (identity matrix) meaning

that we assume that both position, velocity and force could be estimated from multisensory

information as in [19]. We verified that the same results and conclusions were obtained by

limiting the observation matrix to the position and velocity components only. The observation

noise matrix D was taken of the form D = β I6 where β specifies the overall magnitude of obser-

vation noise. This parameter can be varied depending on whether vision of the cursor is avail-

able or not during the movement. Finally, for the feedback cost function, we set R = ρdiag(1, 1,

0, 0, 0, 0) such that only the deviations about the final arm posture defined by the target loca-

tion were penalized during the post-movement interval.

The SOOC solutions were obtained with the GPOPS optimal control software that

approximates the continuous-time optimal control problem as a sparse nonlinear program-

ming problem [40]. To compute the SFFC solutions, we considered a discrete time approxima-

tion of the linear-quadratic-Gaussian sub-problem around the SOOC solution with a time step

of dt = 0.005 s. Standard discrete-time algorithms for linear-quadratic-Gaussian control were

then used to compute the gains [19]. In our simulations, we extended the time horizon by 1 s

(T0 = T+1) to consider movements longer than the planned duration T. We tested different

extended horizon between 0.5 s and 2 s and it did not change the results. It is worth noting

that sensory feedback delays can be easily handled at this stage due to the discrete time approx-

imation. All the simulations were performed with MATLAB (Mathworks, Natick, MA).

Selection of model parameters. The arm parameters used in the simulations (from [42],

in SI units) are given in Fig 8C.

The remaining parameters of the model are related to cost functions (α, r and ρ) and noise

magnitudes ({σi}, {di} and β). Some of these parameters affect the design of the feedforward

command (α, r, {σi}, {di}) and the others affect the design of the feedback command (ρ, β).

First, we verified that the qualitative predictions and principles of the model were robust to

parameters choices. Second, to have simulations that correspond quantitatively to experimen-

tal data, we adjusted the parameters using the procedure described hereafter. Note that we did
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not try to find the best-fitting parameters using an automated procedure but adjusted the

parameters to yield timing and variance of the same order of magnitude as experimental data.

We first fixed α = 0.02 in all simulations, to implement a compromise between torque

change and hand jerk. Note that we also considered α = 0 and the results revealed that the

smoothness term contributes to get slightly more linear hand paths with more bell-shaped

velocity profiles, but this does not affect the main findings. Second, to reduce the number of

parameters, we assumed that the magnitude of additive and multiplicative motor noise are the

same in the two joints of the arm, i.e. σ1 = σ2 = σ [rad/s3/2] and d1 = d2 = d [rad/(Nm s1/2)]. The

three remaining free parameters for SOOC ({σ, d, r}) were then adjusted by considering a

movement of 7.4 cm in the N-W direction by using the existing data of [31] as a reference. The

initial arm configuration was approximately q1(0) = 50˚ and q2(0) = 100˚ in this experiment.

In the N-W movement, both joint angles change significantly, so that the effects of noise mag-

nitude can be estimated in the two degrees of freedom using the three steps as follows:

• Since additive noise dominates at low speed, the magnitude of constant noise was adjusted

on 1400 ms long movement in order to obtain an endpoint variance larger than what has

been found in [31]. Indeed, these data were obtained for movements without vision in

healthy subjects, where proprioceptive feedback was still available, and analog movements in

deafferented patients would exhibit a larger endpoint variance [43, 44]. This resulted in σ =

0.005 [rad/s3/2] and in about 6 log(mm2) of endpoint variance (which is larger than the 4.2

log(mm2) measured in [31]).

• Since multiplicative noise dominates for fast speed movements, which are less affected by

feedback, multiplicative noise was adjusted on 350 ms long movements based on the data of

[31]. d = 0.01 yielded an endpoint variance about 4.1 log(mm2).

• The variance weight r was then adjusted to fit the preferred duration of movements observed

in the N-W direction. We found that r = 2,000 yields a movement time of about 1080 ms,

which is similar to the preferred duration in [31].

Once the SOOC solution was obtained, we determined the remaining parameters of the

SFFC model, which are related to the linear-quadratic-Gaussian sub-problem. We first set the

observation noise β and feedback cost weight ρ by assuming that visually-guided movements

are performed accurately at the preferred speed. This resulted in β = 0.003 and ρ = 1,000 for

the data of [31]. Without vision, only proprioceptive feedback can be used and we assume that

this leads to an increase of sensory variance. This increase was chosen to match the endpoint

variance observed without vision in [31] (<4 log(mm2)), and this led to β = 0.03 (i.e. ×10 larger

than the magnitude of observation noise with vision). Note that we did not change ρ in the

present simulations, but we also considered that the product ρβ could remain constant (i.e. ρ =

100 if β = 0.03), which reduced the feedback gain without affecting much the simulations for

the unperturbed reaching movements under consideration.

When simulating movements without vision (or without feedback at all), a basic stopping

mechanism was added by increasing joint friction 50 ms before the planned movement end to

ensure that the terminal velocity always falls below the threshold (we added 3.5 kg m2/s to Bii,

i = 1, 2), which corresponds to a larger muscle viscosity at low speed [74]. Note that to compare

simulated and experimental durations, we systematically applied a 1 cm/s threshold on hand

velocity in agreement with experimental data processing (see above and [31]).

This set of parameters was used to simulate movements of different durations and direc-

tions, and compare the predictions to existing data. We used Eq (9) and the above parameters

to generate reaching movements of duration 300–1450 ms in the N-W and N-E directions,

and then computed the different optimal costs. Next, we tested the model predictions by
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computing optimal movement durations for increasing distances ({7.5, 12.5, 17.5, 22.5, 27.5}

cm in the N-E direction), and in eight directions as in classical experiments of arm reaching

movements without vision [35, 36].

Simulation of new experiment with SFFC. To simulate movements with and without

vision described in Fig 8A and 8B, two previous parameters had to be adjusted to account for

the larger variability and the shorter durations observed in our data compared to the experi-

ment of [31]. This adjustment was made to have a better quantitative fit of the experimental

data but the qualitative results would be the same if keeping previous parameters unchanged.

These changes may be due to differences in experimental protocols (target’s width, arm’s

weight support, instructions etc.). Therefore, to reflect larger variance and shorter durations,

we set σ = 0.025 and r = 6,000 and kept the other parameters invariant. Here, to also investigate

the influence of sensory delays, we performed simulations by considering a 50-ms delay in sen-

sory feedback loops. This was done in the discrete-time approximation of the linear-quadratic-

Gaussian sub-problem by using the classical procedure consisting of augmenting the system’s

state to include delayed instances of the state process (e.g. see [75] for details). Note that delays

did not affect much the present simulations. This was verified by simulating SFFC with and

without delays and very similar quantitative results were obtained for the tested movements.

We report the simulations for the delayed case.

Supporting information

S1 Data. Experimental data supporting Fig 6.
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