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Abstract: Understanding the spatiotemporal characteristics of PM2.5 concentrations and identifying
their associated meteorological factors can provide useful insight for implementing air pollution
interventions. In this study, we used daily air quality monitoring data for 28 air pollution transmission
channel cities in the Beijing–Tianjin–Hebei region during 2014–2019 to quantify the relative contribu-
tions of meteorological factors on spatiotemporal variation in PM2.5 concentration by combining time
series and spatial perspectives. The results show that annual mean PM2.5 concentration significantly
decreased in 24 of the channel cities from 2014 to 2019, but they all still exceeded the Grade II Chinese
Ambient Air Quality Standards (35 µg m−3) in 2019. PM2.5 concentrations exhibited clear spatial
agglomeration in the most polluted season, and their spatial pattern changed slightly over time. Me-
teorological variables accounted for 31.96% of the temporal variation in PM2.5 concentration among
the 28 cities during the study period, with minimum temperature and average relative humidity as
the most critical factors. Spatially, atmospheric pressure and maximum temperature played a key
role in the distribution of PM2.5 concentration in spring and summer, whereas the effect of sunshine
hours increased greatly in autumn and winter. These findings highlight the importance of future
clean air policy making, but also provide a theoretical support for precise forecasting and prevention
of PM2.5 pollution.

Keywords: PM2.5 concentration; spatiotemporal patterns; meteorological factors; “2 + 26” cities;
Beijing–Tianjin–Hebei region

1. Introduction

Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) repre-
sents one of the most serious air pollutant types due to its profound effects on human
living environments [1–3]. Previous studies have revealed that PM2.5 significantly affects
atmospheric visibility through the scattering and absorption of solar radiation [4–6] and
modification of cloud microphysical properties by acting as cloud condensation nuclei [7,8].
PM2.5 exerts extreme influences on human health and has been associated with respiratory
problems, lung cancer, cardiovascular morbidity and infectious diseases [1,9,10]. Exposure
to PM2.5 pollution was related to approximately 1.03 million deaths in the major cities
of China in 2013 [11], 103.1 million disability-adjusted life-years and 4.2 million deaths
worldwide in 2015 [12] and about 138,150, 80,945, and 18,752 premature deaths for all-cause,
cardiovascular diseases and respiratory diseases, respectively, in the Beijing–Tianjin–Hebei
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(BTH) region in 2015 [13]. Therefore, quantifying the spatiotemporal variation of regional
PM2.5 concentration and understanding its driving factors is essential for addressing global
concerns in government, the scientific community and the general public.

The BTH region is the capital economic circle of China. Mainly due to the coal-based
energy structure, road-dominated freight transport, fugitive dusts and agricultural activi-
ties, it has become one of the most severe air pollution regions in China [14–16]. To date,
many studies have focused on the temporal and spatial variations of PM2.5 in this region.
However, most of these studies have been limited to individual cities [17–19], dozens of
major cities during certain seasons within short time series [20–23] or 13 cities within a
single year [24,25]. Recently, some studies reported an obvious spatial spillover effect of air
pollution among different cities [26,27], suggesting much larger amounts from surrounding
cities. For example, Chang et al., 2019, indicated that, although local PM2.5 emissions were
dominant in all 13 cities within the BTH area, regional transport from Shandong and Henan
Provinces contributed as much as 12.9% of PM2.5 emissions [28]. To dramatically reduce
the pollution in the BTH area, an air pollution prevention and control program for the
BTH and surrounding areas including 28 cities was announced jointly by the Ministry
of Ecology and the Environment of China in 2017. The regulations include mandating
the shutdown of small and polluting factories, clean heating in winter by replacing coal
with gas or electricity, staggered peak production in heating season and no open burning
(Table S1). Thus, comprehensive and accurate investigation of the spatiotemporal variation
of PM2.5 concentration in the 28 cities within the air pollution transmission channel of the
BTH region is urgently needed as a scientific basis for preventing and controlling regional
air pollution [29,30].

Meteorological conditions and synoptic circulation patterns exert important influences
on PM2.5 variation [31,32]. Recently, a large body of research has been conducted based
on the chemical transport models. Wang and Zhang, 2020, suggested that about a 59.9%
decrease in PM2.5 concentration in 2017 was related to atmospheric conditions over the
BTH region [33]. Gonzalez-Abraham et al., 2015, predicted that PM2.5 would increase by
10–30% across the eastern USA to the 2050s [34]. However, the accuracy of these model
simulations is greatly influenced by the emissions inventory, model design and meteoro-
logical conditions [35]. Statistical models derived from observed PM2.5 and meteorological
data offer an alternative approach to identify the effects of meteorological conditions on
PM2.5 distribution [36]. However, due to strong relationships among meteorological factors,
traditional statistical methods, such as correlation analysis and linear regression, tend to
produce biased results when assessing the effects of individual meteorological variables
on PM2.5 [37,38]. On the other hand, PM2.5 responses to meteorological variables are
complex [31,39]. PM2.5 concentration could rise in areas where the temperature changed
from comfortable to cold due to household heating [27] and temperature inversion [38].
It also could be positively related to daily temperature, especially in spring and winter,
probably by decreased wind speed through the transformation of air pressure [14] and
chemical reactions. The response of PM2.5 concentrations to changes in meteorological
conditions seems to be heavily dependent on the time period, case terrain, atmospheric
circulation and existing large spatiotemporal heterogeneities [40,41]. Therefore, analyses
of the relationship between PM2.5 and meteorological variables should be conducted by
combining time series and spatial perspectives to better quantify the role of meteorological
factors in spatiotemporal PM2.5 variation. In February 2012, the new Chinese Ambient Air
Quality Standards (CAAQS, GB3095-2012) were jointly issued by the Ministry of Environ-
mental Protection and the General Administration of Quality Supervision, Inspection and
Quarantine of the People’s Republic of China. It was not until the air quality standard was
published that real-time hourly PM2.5 and PM10 concentration data for the major cities
were collected and released online, which is essential for providing detailed information
about particulate matter pollution and helpful for understanding how local air quality has
changed over time.
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In this study, we examined reductions in PM2.5 concentration during 2014–2019 in the
28 cities of the air pollution transmission channel in the BTH region of China at seasonal
and annual scales. Then we explored the spatial heterogeneity of the relationship between
PM2.5 concentration and meteorological variables based on geographical weight regression
(GWR) analysis. Finally, we performed partial correlation and multiple linear regression
(MLR) analyses to quantify PM2.5 concentration response to meteorological variables and
their contributions to the PM2.5 concentration variation from a time-series perspective. The
findings of this study will contribute to a more comprehensive understanding of the influ-
ence of meteorological variables on PM2.5 concentration and will provide strong theoretical
support for precise forecasting and prevention of PM2.5 pollution in the BTH region.

2. Materials and Methods
2.1. Study Area

The study area includes 28 air pollution transmission channel cities of the BTH region,
covering an area of 275,000 km2 [30,39]. The 28 cities are the two municipalities of Beijing
and Tianjin and 26 prefecture-level cities which comprise the air pollution transmission
channel of the BTH region; these cities include Shijiazhuang, Tangshan, Langfang, Baod-
ing, Cangzhou, Hengshui, Xingtai and Handan in Hebei Province; Taiyuan, Yangquan,
Changzhi and Jincheng in Shanxi Province; Zhengzhou, Kaifeng, Anyang, Hebi, Puyang,
Xinxiang and Jiaozou in Henan Province; and Jinan, Zibo, Jining, Dezhou, Liaocheng,
Binzhou and Heze in Shandong Province (Figure 1). The area has a typical temperate
monsoonal climate, with an annual mean air temperature of 4~15 ◦C and annual precipita-
tion of 450~700 mm. The terrain is generally lower from west to east. Out of the 28 cities,
24 are located on the northern China plain, with altitudes below 200 m, whereas Taiyuan,
Yangquan, Changzhi and Jincheng belong to the Loess Plateau, on the west side of the
Taihang Mountains.
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2.2. Data Sources

Daily PM10 and PM2.5 concentration data (µgm−3) between 1 March 2014 and
28 February 2019 for the 28 cities in the air pollution transmission channel of the BTH
region (Jincheng data started from 1 March 2015) were obtained from an online database
(https://www.aqistudy.cn/historydata, accessed on 8 December 2021). This dataset was
constructed by averaging hourly concentration data for all national air quality monitoring
sites within each city listed on the official website of the China National Environmental
Monitoring Center [37]. In accordance with the China Environmental Protection Standards,
each national air quality monitoring site recorded the real-time hourly PM2.5 and PM10
concentration obtained by the continuous automated monitoring system based on the
micro-oscillating balance method and the β absorption method. The dataset contained very
few missing records (44 days among all monitoring stations) and very few zero values for
PM10 concentration. We interpolated missing values from the mean values of the two clos-
est days to maintain time series data continuity and comparability. In addition, although
PM2.5 has been paid special concern, it was not systematically observed and reported for
most cities in China until 2014. Meanwhile, it was unreasonable to effectively consider the
relative contributions of different particles to local air quality and the composition character-
istics of particulate matter based only on fine particles (and without consideration of coarse
particles). Therefore, we removed zero values of PM10 concentration and the corresponding
PM2.5 concentration values from the time series in order to calculate the PM2.5/PM10 ratio,
which provided crucial information related to particle origin and allowed retrospective
prediction of PM2.5 concentration without direct PM2.5 measurements.

Daily meteorological data, including daily maximum temperature (Tmax, ◦C) and
minimum temperature (Tmin, ◦C), average atmospheric pressure (AP, hPa), sunshine hours
(SH, h), average relative humidity (H, %), maximum wind speed (WS, m/s) and wind direc-
tion (WD) for the 28 meteorological stations were collected from a Chinese meteorological
data sharing service system (http://data.cma.cn/, accessed on 8 December 2021). The
28 meteorological stations were generally located at the center of each city (Figure 1). We
interpolated missing values from the mean values of the two closest days and removed cor-
responding values of meteorological factors to square with records of PM2.5 concentration
values from the time series.

2.3. Methods
2.3.1. Spatial Autocorrelation and Linear Regression

The variation in PM2.5 concentration in each of the air pollution transport channel cities
was investigated at seasonal and annual scales. In this study, spring, summer, autumn and
winter were defined as March–May, June–August, September–November and December–
February, respectively. Linear regression analysis was performed to examine the variation
in PM2.5 concentration for each city. We also performed spatial autocorrelation analysis
to evaluate the spatial associations of PM2.5 concentration by calculating the global and
local Moran’s I using ArcGIS 10.4.1 software [26,42]. The global spatial autocorrelation
describes the spatial dependence of PM2.5 in the whole area of the BTH region, which can
be characterized by Global Moran’s I. The formula is as follows:

GlobalMoran′s I =
n ∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
(∑n

i=1 ∑n
j=1 Wij)∑n

i=1(xi − x)2 (i 6= j) (1)

where xi, xj, are the PM2.5 concentration observations of cities i, j; n is the number of all cities;
x is the average PM2.5 concentrations of all regions; Wij is the spatial weight matrix. Global
Moran’s I values < 0, >0 and =0, indicate negative, positive, and random spatial correlation,
respectively. Local Moran’s I values denote the local spatial autocorrelation patterns,
where High–High (H–H) means that the city and surrounding cities have high PM2.5
concentrations; High–Low (H–L) represents that the city has a high PM2.5 concentration,
but those of surrounding cities are low; Low–High (L–H) shows that the city has a low PM2.5

https://www.aqistudy.cn/historydata
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concentration, but those surrounding cities are high; Low–Low (L–L) means that both the
city and surrounding cities have low PM2.5 concentrations; Not significant (NS) indicates
no significant difference in PM2.5 concentration among cities. Global Moran’s I and Local
Moran’s I statistical tests used a z-test at 95% confidence level. Finally, the coefficient of
variation (CV) was calculated to investigate fluctuation in the temporal variability of PM2.5
concentration. We also explored the spatiotemporal variation in the PM2.5/PM10 ratios
using the same methods.

2.3.2. Partial Correlation and Multiple Linear Regression

Partial correlation analysis was performed to determine the relationships among tem-
poral variations in daily PM2.5 concentration and meteorological factors for each city at
seasonal and annual scales; this method has been successfully applied in previous environ-
mental studies to remove covariate effects among multiple influential factors. Next, we
performed multiple linear regression analysis of daily PM2.5 concentration and meteoro-
logical factors at seasonal and annual scales for each city, and the explanation ability of
meteorological factors on PM2.5 variability was evaluated using the coefficient of determi-
nation (R2) [32,43]. All calculations were performed using MATLAB 2015b software, and
statistical significance was determined at the level of p < 0.05.

2.3.3. Geographically Weighted Regression

The geographically weighted regression was developed to deal with this non-stationarity,
which allows relationships between independent and dependent variables to vary spa-
tially by producing a set of local parameters to reveal spatial relationships by assuming
heterogeneous influence of the same factor on dependent variables in different spatial
units [44,45]. We performed geographically weighted regression to evaluate the spatial
heterogeneity of the influence of meteorological factors on PM2.5 concentration based on
site data for the 28 cities. First, we normalized mean seasonal and annual PM2.5 concentra-
tion and meteorological variable data during 2014–2019 for each city; we then conducted
the geographically weighted regression analysis using the ArcGIS 10.4.1 software. The
geographically weighted regression was run for an observation point by using a spatial
kernel that centered on the point and weighted other observation points by a distance decay
function. In this study, the Gaussian model was selected as a weighting function, and the
corrected Akaike’s information criteria (AICc) was used to obtain the optimal bandwidth.

3. Results
3.1. Overview of PM2.5 Pollution
3.1.1. Spatiotemporal Variation of PM2.5

During 2014–2019, the highest annual mean PM2.5 concentrations were observed in
Xingtai (83.69 µg m−3), Handan (80.98 µg m−3), Shijiazhuang (84.16 µg m−3) and Baoding
(85.35 µg m−3), and the lowest PM2.5 concentration was observed in Shanxi Province, with
a minimum of 56.77 µg m−3 in Yangquan (Figure 2). In all cities, the annual mean PM2.5
concentration exceeded the CAAQS (GB3095-2012) Grade II standard of 35 µg m−3. Mean
PM2.5 concentration showed wide seasonal variation that was similar among all cities.
The highest pollution levels were observed in winter and the lowest values in summer.
However, the seasonal fluctuation range seriously differed among cities. For instance,
Beijing, Tianjin, Tangshan, Langfang, Binzhou, Zibo and Yangquan showed lower CV
values, whereas Baoding, Anyang, Puyang and Kaifeng had larger CV values (>40%). CV
values were higher in winter and lower in spring. From 2014 to 2019, significant reductions
in annual mean PM2.5 concentration occurred across 24 of the 28 channel cities (excluding
Hebi, Taiyuan, Yangquan and Jincheng), with a mean rate of−7.14 µg m−3 year−1 (Figure 2).
About half of the 28 cities showed a decrease rate of more than −8 µg m−3 year−1. These
were mainly scattered in the Hebei and Shandong Provinces. However, in 2019, PM2.5
concentration exceeded the CAAQS (GB3095-2012) Grade II standard in all cities, and PM2.5
concentration variation showed significant seasonal and spatial distribution differences
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among all 28 cities. Compared with other seasons, PM2.5 concentration in spring and
summer exhibited the clearest obviously decreasing trend, with significant reductions in 22
and 26 cities, respectively, which were mainly located in the Hebei and Shandong Provinces.
Significant downward trends were also observed in 20 cities in autumn and only 4 cities
in winter.
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percentiles, respectively; horizontal red lines indicate median values; open black squares represent
mean values; whiskers indicate 1.5 times the interquartile range; and red crosses represent outliers.
Linear regression slopes and R2 values are provided for each city (* p < 0.05): BJ, Beijing; TJ, Tianjin;
SJZ, Shijiazhuang; TS, Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT,
Xingtai; HD, Handan; BZ, Binzhou; DZ, Dezhou; ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ,
Heze; AY, Anyang; HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou; ZZ, Zhengzhou; KF, Kaifeng; TY,
Taiyuan; YQ, Yangquan; CHZ, Changzhi; JC, Jincheng.

Spatial autocorrelation analysis revealed that the average PM2.5 concentrations during
2014–2019 had a Global Moran’s I of−0.05 (p = 0.95) in spring, 0.09 (p = 0.35) in summer, 0.20
(p = 0.08) in autumn, and 0.30 (p = 0.01) in winter, indicating spatial patterns in winter across
all channel cities. Local spatial patterns of average PM2.5 concentrations in winter displayed
clear spatial agglomeration characteristics, with H–H spatial clusters from Dezhou in 2015,
to Handan Anyang, Hebi and Puyang in 2019. The L–L spatial clusters appeared in Beijing
and Tianjin and persisted thereafter (Figure 3).
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3.1.2. Distribution of PM2.5/PM10 Ratios

Annual mean PM2.5 concentration accounted for a large fraction of PM10 during
2014–2019 in most cities, with a mean PM2.5/PM10 ratio of 0.56 (Figure 4). PM2.5/PM10
ratios showed large differences in spatial distribution, with higher ratios found in Bei-
jing (0.68), Tianjin (0.62) and Binzhou (0.61) and lower ratios observed in Taiyuan (0.49),
Yangquan (0.51) and Jincheng (0.50), all of which are located in Shanxi Province. By con-
trast, despite similar spatial distributions of mean PM2.5/PM10 ratios in each season, clear
seasonal differences were observed. Among the 28 cities, 27 cities displayed their highest
mean PM2.5/PM10 ratios in winter (excluding Hengshui), whereas almost all cities showed
their lowest mean ratios in spring. From 2014 to 2019, the annual mean PM2.5/PM10 ra-
tios in most cities of Hebei and Shandong Provinces exhibited a clearly decreasing trend,
with significant decreases in Langfang, Shijiazhuang, Dezhou and Heze, whereas most
of the other cities fluctuated over time (Figure 4). Compared with spring and summer,
mean PM2.5/PM10 ratios showed particularly large decreases in autumn, with significant
reductions in 12 of the 28 cities. By contrast, 23 cites showed a fluctuating upward trend for
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PM2.5/PM10 ratios in winter, especially in the cities of Henan Province, such as Puyang
(p = 0.02), Zhengzhou (p = 0.03) and Kaifeng (p = 0.01).
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during 2014–2019. In each box plot, the bottom and top of the box represent the 25th and 75th
percentiles, respectively; horizontal red lines indicate median values; open black squares indicate
mean values; whiskers show 1.5 times the interquartile range; and red crosses represent outliers.
Linear regression slopes and R2 values are provided for each city (* p < 0.05): BJ, Beijing; TJ, Tianjin;
SJZ, Shijiazhuang; TS, Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT,
Xingtai; HD, Handan; BZ, Binzhou; DZ, Dezhou; ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ,
Heze; AY, Anyang; HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou; ZZ, Zhengzhou; KF, Kaifeng; TY,
Taiyuan; YQ, Yangquan; CHZ, Changzhi; JC, Jincheng.

Spatial autocorrelation analysis of mean PM2.5/PM10 ratios demonstrated that the
Global Moran’s I ranged from 0.005 to 0.15, with no significant differences at the seasonal or
annual scale, indicating that the PM2.5/PM10 ratio of each city did not influence those of
the other cities in aggregate. However, local spatial autocorrelation analysis exhibited L–L
spatial clusters of mean PM2.5/PM10 ratios in Taiyuan and Yangquan during spring and
winter and H–H spatial clusters in Tianjin in summer and in both Tianjin and Beijing in
autumn (Figure 5).

3.2. Relationships between Temporal PM2.5 Variation and Meteorological Variables

Partial correlation analysis results for PM2.5 concentration with the meteorological
variables are shown in Table 1. PM2.5 concentration was significantly negatively correlated
with AP, Tmin, SH (except in Puyang) and WS (except in Yangquan); it was positively
correlated with Tmax in 23 of the 28 cities and with H throughout the study period. By
comparison, the correlation between WD and PM2.5 concentration was positive over the
northeastern part of the study area (Beijing, Tianjin, Langfang, Cangzhou, Binzhou, Dezhou,
Jinan and Jining), but negative over the southwestern region (Handan, Liaocheng, Heze,
Puyang, Xinxiang, Jiaozuo, Kaifeng, Yangquan, Changzhi and Jincheng). Generally, Tmin
and H (especially Tmin) were critical factors affecting variation in PM2.5 concentration
throughout the year.
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Figure 5. Local spatial autocorrelation features of seasonal and annual mean PM2.5/PM10 ratios in
the 28 air transport channel cities during 2014–2019: H–H, city and surrounding cities have high
PM2.5 concentrations; H–L, city has a high PM2.5 concentration, but those of surrounding cities are
low; L–H, city has a low PM2.5 concentration, but those of surrounding cities are high; L–L, both the
city and surrounding cities have low PM2.5 concentrations; NS, no significant difference in PM2.5

concentration among cities.

Seasonal correlations between PM2.5 concentration and meteorological variables were
generally similar to those at the annual scale, with some exceptions (Table S2). In winter,
correlations between PM2.5 concentration and SH and H (especially H) were much stronger
than those at the annual scale in most cities, whereas those correlations between PM2.5
concentration and Tmin became slightly weaker. In spring, Tmin and H were the two most
important factors affecting the variation in PM2.5 concentration in most cities, whereas
the relationship between AP and PM2.5 concentration was significant only in seven cities.
Among the four seasons, PM2.5 concentration showed the weakest correlation with AP and
H in summer and was more strongly correlated with Tmax and SH for more cities in summer
than in spring and autumn. In autumn, PM2.5 concentration was significantly negatively
correlated with Tmin in 27 cities, with AP in 25 cities and with H in 24 cities; Tmin had
the greatest influence on PM2.5 concentration variation. Interestingly, partial correlation
analysis also showed that PM2.5 concentration was positively related to WD in winter in
eastern cities such as Tianjin, Cangzhou, Xingtai, Binzhou, Dezhou, Zibo, Jinan and Jining,
but positively correlated with WD in summer in some northern cities (Beijing, Langfang,
Baoding, Hengshui, Binzhou, and Taiyuan).

Based on multiple linear regression analysis, meteorological variables account for
31.96% (mean R2) of the variation in PM2.5 concentration among the 28 cities during the
study period; Shijiazhuang had the highest R2 value (44.46%), and Jinan had the lowest
value (21.30%). At the seasonal scale, the mean R2 was highest in winter (0.43), with
the highest R2 values in Beijing, Tianjin and the cities of Hebei and Shandong Provinces,
whereas R2 was lowest in summer, with a mean value of 0.13 (Table 2).
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Table 1. Partial correlations of PM2.5 concentration with meteorological variables based on daily data during 2014–2019: SH, sunshine hours; Tmax, daily maximum
temperature; Tmin, daily minimum temperature; AP, average atmospheric pressure; H, average relative humidity; WS maximum wind speed; WD, wind direction; BJ,
Beijing; TJ, Tianjin; SJZ, Shijiazhuang; TS, Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT, Xingtai; HD, Handan; BZ, Binzhou; DZ, Dezhou;
ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ, Heze; AY, Anyang; HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou; ZZ, Zhengzhou; KF, Kaifeng; TY, Taiyuan;
YQ, Yangquan; CHZ, Changzhi; JC, Jincheng.

Variable
Correlation Coefficient

BJ TJ TS LF BD SJZ CZ HS XT HD BZ DZ ZB JN LC JNG HZ AY HB PY XX JZ ZZ KF TY YQ CHZ JC

SH −0.15 −0.20 −0.20 −0.16 −0.28 −0.25 −0.10 −0.18 −0.25 −0.13 −0.31 −0.17 −0.29 −0.13 −0.08 −0.11 −0.13 −0.18 −0.14 0.01 −0.12 −0.06 −0.10 −0.08 −0.21 −0.21 −0.07 −0.05
Tmax 0.02 0.21 0.18 0.12 0.09 0.16 0.04 0.14 0.20 0.07 0.28 0.13 0.23 0.02 0.06 0.13 0.11 0.10 −0.03 −0.05 0.03 0.01 0.00 0.08 0.18 0.16 0.06 0.14
Tmin −0.24 −0.38 −0.33 −0.31 −0.37 −0.39 −0.22 −0.34 −0.32 −0.31 −0.39 −0.28 −0.38 −0.12 −0.30 −0.29 −0.28 −0.29 −0.21 −0.27 −0.22 −0.23 −0.25 −0.25 −0.37 −0.33 −0.19 −0.36
AP −0.24 −0.20 −0.18 −0.20 −0.23 −0.26 −0.17 −0.17 −0.12 −0.22 −0.15 −0.14 −0.13 −0.08 −0.15 −0.12 −0.10 −0.19 −0.17 −0.16 −0.17 −0.22 −0.17 −0.12 −0.19 −0.17 −0.13 −0.13
H 0.28 0.28 0.28 0.28 0.18 0.20 0.22 0.27 0.17 0.26 0.09 0.20 0.20 0.09 0.29 0.19 0.18 0.12 0.21 0.26 0.18 0.21 0.13 0.16 0.26 0.20 0.09 0.20

WS −0.09 −0.28 −0.12 −0.12 −0.19 −0.26 −0.11 −0.15 −0.25 −0.16 −0.26 −0.14 −0.12 −0.20 −0.18 −0.12 −0.26 −0.17 −0.11 −0.20 −0.16 −0.13 −0.23 −0.22 −0.13 −0.03 −0.24 −0.19
WD 0.05 0.05 −0.04 0.08 −0.03 −0.04 0.11 0.04 0.01 −0.07 0.09 0.11 0.02 0.08 −0.05 0.05 −0.05 −0.01 −0.01 −0.05 −0.06 −0.06 −0.03 −0.05 0.02 −0.15 −0.12 −0.10

Note: Bold font denotes p < 0.05.

Table 2. Coefficients of determination (R2) for multiple linear regression of PM2.5 concentration with meteorological variables based on daily data from 2014 to 2019
at the annual and seasonal scales: BJ, Beijing; TJ, Tianjin; SJZ, Shijiazhuang; TS, Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT, Xingtai;
HD, Handan; BZ, Binzhou; DZ, Dezhou; ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ, Heze; AY, Anyang; HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou;
ZZ, Zhengzhou; KF, Kaifeng; TY, Taiyuan; YQ, Yangquan; CHZ, Changzhi; JC, Jincheng.

Period
Coefficient of Determination

BJ TJ TS LF BD SJZ CZ HS XT HD BZ DZ ZB JN LC JNI HZ AY HB PY XX JZ ZZ KF TY YQ CHZ JC

Spring 0.30 0.31 0.26 0.27 0.28 0.39 0.16 0.27 0.30 0.24 0.24 0.13 0.21 0.14 0.19 0.09 0.21 0.17 0.17 0.23 0.19 0.26 0.19 0.12 0.28 0.25 0.16 0.16
Summer 0.29 0.16 0.04 0.09 0.15 0.31 0.06 0.11 0.19 0.04 0.23 0.07 0.19 0.10 0.19 0.08 0.19 0.08 0.12 0.07 0.06 0.05 0.06 0.07 0.19 0.16 0.07 0.06
Autumn 0.36 0.43 0.39 0.30 0.34 0.41 0.20 0.31 0.34 0.20 0.22 0.24 0.22 0.13 0.26 0.16 0.18 0.21 0.24 0.18 0.19 0.19 0.19 0.14 0.33 0.21 0.16 0.23
Winter 0.52 0.53 0.56 0.57 0.45 0.54 0.47 0.41 0.40 0.45 0.47 0.44 0.47 0.44 0.42 0.35 0.39 0.37 0.38 0.36 0.33 0.39 0.39 0.36 0.45 0.51 0.30 0.39

Year 0.30 0.38 0.31 0.35 0.40 0.44 0.26 0.36 0.35 0.34 0.30 0.28 0.31 0.21 0.35 0.29 0.35 0.31 0.32 0.35 0.29 0.33 0.33 0.31 0.32 0.28 0.24 0.31

Note: Bold font denotes p < 0.05.
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3.3. Effects of Meteorological Factors on the Spatial Heterogeneity of PM2.5

The geographic distribution of regression coefficient values of seven meteorological
factors across the BTH region is shown in Figure 6. The association direction between SH,
WS, WD and PM2.5 concentration was negative in all cities, especially for SH and WD,
suggesting that increases in SH and WD had an inhibitory effect on PM2.5 concentration.
Among the seven meteorological factors examined, SH had the strongest influence on
PM2.5 concentration in Beijing, Tianjin, Langfang, Hengshui, Xingtai, Handan, Binzhou,
Liaocheng, Jining, Anyang and Hebi, which are located to the east of the Taihang Mountains.
By comparison, AP and both temperature factors exhibited a strongly positive effect on
PM2.5 concentration in the remaining cities. Notably, Tmax had the strongest influence
in Tangshan, Baoding, Binzhou, Cangzhou and Dezhou, whereas AP had the strongest
influence in the other 13 cities.
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Figure 6. The influence characteristics of meteorological factors for each city based on regression
coefficients derived from geographically weighted regression at the annual scale. Blue and orange
indicate positive and negative spatial correlations, respectively, between mean PM2.5 concentration
and meteorological variables. Annuli from the center outward represent the magnitude of the
regression coefficient, from lowest to highest: SH, sunshine hours; Tmax, daily maximum temperature;
Tmin, daily minimum temperature; AP, average atmospheric pressure; H, average relative humidity;
WS maximum wind speed; WD, wind direction; BJ, Beijing; TJ, Tianjin; SJZ, Shijiazhuang; TS,
Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT, Xingtai; HD, Handan;
BZ, Binzhou; DZ, Dezhou; ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ, Heze; AY, Anyang;
HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou; ZZ, Zhengzhou; KF, Kaifeng; TY, Taiyuan; YQ,
Yangquan; CHZ, Changzhi; JC, Jincheng.

Significant spatial heterogeneity was detected in both the direction and strength of
the environmental factors among different seasons based on the GWR method (Figure 7).
In spring, AP and Tmax had the greatest influence on the spatial distribution of PM2.5
concentration. AP had a significant positive relationship with PM2.5 concentration in
Beijing, Tianjin, Langfang, Xingtai, Liaocheng, Jining and Anyang, whereas Tmax had the
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largest positive effect on PM2.5 concentration in the remaining cities (about 71.43% of
all cities). WS and WD were negatively correlated with PM2.5 concentration in all cities
except Tangshan, but had a smaller impact on PM2.5 concentration in Beijing, Tianjin,
Langfang, Hengshui, Xingtai, Handan, Liaocheng, Jining, Heze, Anyang, Hebi and Puyang
(Figure 7a). In summer, the impact patterns of temperature, wind and atmospheric pressure
were generally similar to those in spring, but to a much smaller degree. H displayed a
clear negative relationship with PM2.5 concentration in most cities of Shanxi, Henan and
Shandong Provinces (Figure 7b), indicating that higher humidity was associated with lower
PM2.5 concentration.
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Figure 7. The influence characteristic of meteorological factors for each city based on regression
coefficients derived from GWR at the seasonal scale. (a) Spring; (b) Summer; (c) Autumn; (d) Winter.
Blue and orange indicate positive and negative spatial correlations, respectively, between mean PM2.5

concentration and meteorological variables. Annuli from the center outward represent the magnitude
of the regression coefficient, from lowest to highest. See Figure 7 for legend: BJ, Beijing; TJ, Tianjin;
SJZ, Shijiazhuang; TS, Tangshan; LF, Langfang; BD, Baoding; CZ, Cangzhou; HS, Hengshui; XT,
Xingtai; HD, Handan; BZ, Binzhou; DZ, Dezhou; ZB, Zibo; JN, Jinan; LC, Liaocheng; JNG, Jining; HZ,
Heze; AY, Anyang; HB, Hebi; PY, Puyang; XX, Xinxiang; JZ, Jiaozou; ZZ, Zhengzhou; KF, Kaifeng; TY,
Taiyuan; YQ, Yangquan; CHZ, Changzhi; JC, Jincheng.
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In autumn, the relationships between SH, WS and WD and PM2.5 concentration were
negative, whereas AP and H were positively related with PM2.5 concentration in all cities.
These patterns were comparable with those at the annual scale. In Beijing, Tianjin, Tangshan,
Langfang, Baoding, Hengshui, Xingtai, Handan, Binzhou, Dezhou, Jining, Anyang and
Hebi, SH played the most dominant role in determining PM2.5 concentration, whereas AP
was the dominant variable in most other cities, which were mainly located in the southern
part of the BTH region (about 50% of all cities). Correlations between meteorological
factors and PM2.5 concentration were generally similar in winter and autumn (Figure 7c,d),
but with some differences. For instance, SH remained the strongest influence in 13 cities,
whereas its impact weakened in nine cities and strengthened in most central and southern
cities. AP exerted an increasing impact in southern cities and maintained a dominant role
in Jiaozuo, Zhengzhou, Kaifeng, Taiyuan, Yangquan and Jincheng. H showed a negative
relationship with PM2.5 concentration in Heze and Xinxiang, and an enhanced positive
relationship in 22 cities. Temperature had the largest positive effect on PM2.5 concentration
in eastern and central cities, including Shijiazhuang, Cangzhou, Binzhou, Dezhou, Zibo,
Jinan and Changzhi (Figure 7d).

4. Discussion
4.1. Spatiotemporal Variations in PM2.5

In this study, we found that annual mean PM2.5 concentration decreased in the
28 channel cities (significantly in 24 cities) in the BTH region during 2014–2019. Similar
trends have been reported in previous studies. For example, average annual PM2.5 concen-
tration was reported to have decreased throughout the BTH region during 2013–2016 [46]
and 2013–2018 [32,33] and to have declined by about 40% in Beijing from 2013–2018 [18,36].
These decreases in PM2.5 concentration can be attributed mainly to the Action Plan on
Prevention and Control of Air Pollution in 2013 and the Air Pollution Prevention and
Control Program in Beijing, Tianjin, Hebei and surrounding areas in 2017. However, it was
noteworthy that the rate of decline in PM2.5 concentration slowed dramatically after 2017,
even fluctuating upward in some cities (Figure S1). We also found that the annual mean
PM2.5 concentration of all channel cities in the BTH region remained much higher than
the Grade II standard of CAAQS in 2019, which indicates that further measures are still
strongly needed despite the improvements attributed to control strategies implemented
within the past decade.

The results of this study demonstrate that PM2.5 concentration exhibits a distinct
seasonal cycle, with less severe PM2.5 pollution in summer and greater pollution in winter,
probably due to the combined impact of unfavorable weather conditions and coal and
biomass combustion for residential heating [32,47]. The PM2.5/PM10 ratio also showed a
seasonal variation, decreasing in spring and peaking in winter, which can be attributed
to increasing fuel consumption [48] and the secondary formation of PM2.5 in winter [23].
In addition, our results showed significant reductions in PM2.5 concentration in only four
cities in winter, the most polluted season, whereas PM2.5/PM10 ratios of most cites showed
a fluctuating upward trend. The increase in PM2.5/PM10 ratios also have been reported
at several monitoring sites in the UK [49] and India [50]. These results indicate that
more control measures should focus on PM2.5 emissions and their formation mechanisms
in winter.

Air pollution has been suggested to be strongly affected by pollutants from adjacent
cities [51]. The intensity of spatially dependent air pollution tends to differ seasonally due
to differences in synoptic patterns and emission characteristics [28]. For example, Sun
et al. (2019) reported that spatial agglomeration of air pollution was stronger in winter
and weaker in summer [51]. Using a pollutant tracing model, Wang et al. (2015) explored
the regional contributions of PM2.5 pollution in Shijiazhuang, Xingtai and Handan, and
found that regional contributions were larger in January than in July [52]. In accordance
with these findings, our results showed clear large scale spatial autocorrelation of PM2.5
concentration occurred in autumn and winter, indicating that PM2.5 pollution in adjacent
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cities may strongly interact among the 28 cities of the BTH region during the latter half
of the year. However, the local spatial autocorrelation results of our study showed that
regions with high agglomeration of PM2.5 concentration were mainly concentrated in the
southern Hebei Province and northern Henan Province, but with some spatial variation,
suggesting that joint variable control strategies should be emphasized for PM2.5 pollution
over time.

4.2. Relationship between PM2.5 Concentration and Meteorological Factors

Meteorological conditions played an important role in influencing PM2.5 concentration.
In this study, Tmin and H were the leading factors affecting PM2.5 concentration at the
annual scale. Tmin was negatively correlated with PM2.5 concentration, which is consistent
with the fact that air quality is better in summer and worse in winter. This negative
correlation may be closely related to less dispersion and dilution of air pollutants at lower
Tmin. At low minimum temperature, air convection is weak and temperature inversion
can easily occur. These conditions are not conducive to the diffusion and dilution of air
pollutants [33]. By contrast, H had the strongest positive influence on PM2.5 concentration.
Increases in H increase the production of sulfate aerosols via aqueous reactions and also
significantly affect the partitioning of HNO3 between the gas and particulate phases,
leading to enhanced nitrate formation [34]. In addition, high humidity conditions promote
the production of secondary organic aerosols [53]. For example, the contribution of more-
oxidized secondary organic aerosols to organic aerosols increases substantially as a function
of relative humidity [54]. However, some studies have reported that particulate pollutants
tend to gather mass and fall to the ground on days with high relative humidity [55]. This
divergence may be attributed partly to the degree of relative humidity. At moderate
relative humidity, particulate pollutants tend to cluster, and environmental quality worsens.
However, as humidity increases, these particles are scavenged through precipitation [56,57].

The correlations between meteorological factors and PM2.5 concentration showed
some interesting characteristics in different seasons. Generally, meteorological factors had a
greater influence on PM2.5 concentration in all cities in winter, and the effects of these factors
were much stronger in winter than in other seasons, which is consistent with the findings
of a previous study [37]. In winter, unfavorable circulation conditions, such as the positive
humidity anomalies, a stable boundary layer and air stagnation occur frequently in east
Asian monsoonal climates, exacerbating air pollution [33]. Fewer meteorological factors
influenced PM2.5 concentration in summer, when the variation in PM2.5 concentration
depended mainly on changes in Tmax and SH. Previous studies have reported that increases
in temperature increased radical production rates and promoted aerosol formation, but the
atmospheric photolysis occurred on organic carbon, reducing PM2.5 concentration [37,40]
(Chen et al., 2017; Dawson et al., 2007). These findings are consistent with our results to
some extent. However, other studies reported that high temperatures caused atmospheric
convection, resulting in greater dispersion and dilution of air pollutants, and photochemical
reactions of precursor volatile organic compounds under sunlight could result in secondary
organic aerosols and photochemical smog [58,59]. Therefore, further studies are needed to
explore the influence mechanisms of Tmax and SH on PM2.5 concentration in this region.

The spatial distribution of air pollution has been associated with meteorological factors
in previous studies [55]. Liu et al. (2017) found that temperature had a significant positive
effect on air pollution distribution, whereas wind speed and precipitation had significant
negative effects in 289 Chinese cities in 2014 [42]. Sun et al., 2019, found that temperature
and wind speed were significantly negatively correlated with the urban air quality index in
338 Chinese cities [51]. In contrast to some previous studies, our GWR results demonstrated
that WS was negatively correlated with PM2.5 concentration in all cities, while Tmax and Tmin
exhibited a positive correlation with PM2.5 concentration in 82.14% and 60.71% of all cities,
respectively, at the annual scale. The influence of temperature seems complex and differs
regionally. We also found that SH strongly affected the PM2.5 concentration in areas east
of the Taihang mountains, whereas AP strongly affected the PM2.5 concentration in cities
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west of this mountain range. These differences can be attributed partly to the topographical
characteristics. Unique atmospheric circulation subject to the particular topography has
been suggested to develop spatial distribution characteristics of air pollutants [60,61].

This study had some limitations. First, PM10 and PM2.5 concentration data for Jincheng
was collected and analyzed from 1 March 2015 due to the limited monitoring record. In
addition, there were about 44 missing air pollution records among 28 cities and few zero
values for PM10 concentration, which were removed to calculate the PM2.5/PM10 ratios.
Although we applied interpolation to maintain the continuity and comparability of these
time series data, some uncertainty remains. Moreover, although the Local Moran’s I
method used in this study could indeed shed light on the potential interdependence and
specific spatial agglomeration patterns of PM2.5 concentration, the limited observations
for 28 cities were slightly less than the restriction on the numbers required by this method.
Additionally, the temporal and spatial variations of PM2.5 concentration were strongly
correlated with meteorological factors, and their relationships varied significantly across
seasons and geographical locations, probably relating to PM2.5 components. To better
address this problem, GWR was applied in this study to capture the spatial nonstationary
characteristics, but it could not simultaneously deal with temporal nonstationarity [62,63],
which also could result in some uncertainty. Future research is required to elucidate
these mechanisms.

5. Conclusions

In this study, we investigated the spatial and temporal variation of PM2.5 concentra-
tion in 28 cities within the atmospheric pollution transmission channel in the BTH region
with associated meteorological influences during 2014–2019. Average PM2.5 concentration
appeared to decrease significantly in most cities at the annual scale, but exhibited clear
seasonal and spatial variation. The mean PM2.5 concentration demonstrated a significant
decreasing trend in more than 20 cities in spring and summer, but only 4 cities in win-
ter, indicating that strict measures should be continued, especially in the most severely
polluted season, despite successful air pollution control plans implemented within the
past decade. Temporal variation in daily PM2.5 concentration was strongly correlated with
minimum temperature and average relative humidity. The higher the PM2.5 temporal
concentration, the stronger the influence of the meteorological factors, with a mean ex-
planatory power of 31.96% for the 28 cities. Spatially, wind speed was negatively correlated
with PM2.5 concentration for all cities, while maximum temperature and minimum tem-
perature exhibited a positive correlation with PM2.5 concentration in 82.14% and 60.71%
cities, respectively. These results will provide valuable references for understanding the
spatiotemporal variation of PM2.5 pollution, as well as for future clean air policy making.
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