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Abstract

How organisms control when to transition between different stages of development is a key

question in biology. In plants, epigenetic silencing by Polycomb repressive complex 1

(PRC1) and PRC2 plays a crucial role in promoting developmental transitions, including

from juvenile-to-adult phases of vegetative growth. PRC1/2 are known to repress the master

regulator of vegetative phase change, miR156, leading to the transition to adult growth, but

how this process is regulated temporally is unknown. Here we investigate whether transcrip-

tion factors in the VIVIPAROUS/ABI3-LIKE (VAL) gene family provide the temporal signal

for the epigenetic repression of miR156. Exploiting a novel val1 allele, we found that VAL1

and VAL2 redundantly regulate vegetative phase change by controlling the overall level,

rather than temporal dynamics, of miR156 expression. Furthermore, we discovered that

VAL1 and VAL2 also act independently of miR156 to control this important developmental

transition. In combination, our results highlight the complexity of temporal regulation in

plants.

Author summary

During their life-cycles multicellular organisms progress through a series of different

developmental phases. The correct timing of the transitions between these phases is essen-

tial to ensure that development occurs at an appropriate rate and in the right order. In

plants, vegetative phase change—the switch from a juvenile to an adult stage of vegetative

growth prior to the onset of reproductive development–is a widely conserved transition

associated with a number of phenotypic changes. It is therefore an excellent model to

investigate the regulation of developmental timing. The timing of vegetative phase change

is determined by a decline in the expression of a regulatory microRNA–miRNA156. How-

ever, what controls the temporal decline in miR156 expression is a major unknown in the

field. In this study we tested whether members of the VAL gene family, known to be

important for coordinating plant developmental transitions, are critical regulators of
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vegetative phase change. Using a series of genetic and biochemical approaches we found

that VAL genes are important determinants of the timing of vegetative phase change.

However, we discovered that VAL genes function largely to control the overall level, rather

than temporal expression pattern, of miR156.

Introduction

Flowering plant development is underpinned by transitions between stereotypical stages of

growth: embryogenesis, seed maturation, juvenile and adult phases of vegetative development

and flowering [1]. The correct timing of these transitions is critical to plant survival and, ulti-

mately, reproductive success. Vegetative phase change describes the transition from juvenile-

to-adult vegetative growth and is associated with changes to multiple traits, including leaf mor-

phology, light-use efficiency, herbivore resistance and shoot physiology [2–5]. In Arabidopsis
thaliana, the juvenile phase is characterized by small round leaves that lack both trichomes on

the abaxial surface and serrations. Adult leaves, on the other hand, are larger, more elongated,

serrated and produce abaxial trichomes [6].

Vegetative phase change is triggered by activity of members of the SQUAMOSA PRO-
MOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors, which are post-tran-

scriptionally repressed during juvenile development by the microRNAs miR156/miR157 [7–

10]. miR156/miR157 are encoded by multiple genes of which MIR156A and MIR156C are the

most functionally significant [11]. The expression of MIR156A and MIR156C declines during

juvenile growth [12,13], leading to the de-repression of their SPL targets and the transition to

adult growth. Elucidating what controls the decline in MIR156A/C expression is therefore crit-

ical to understanding how the juvenile-to-adult transition is regulated in plants.

The molecular mechanisms that lead to the temporal repression of MIR156A/C are only

beginning to be understood. The activity of Polycomb Group (PcG) transcriptional repressors

appears critical. There are two functional complexes of PcG proteins in plants, both of which

repress gene expression through covalent histone modifications. PcG repressive complex 1

(PRC1) consists of a H2A E3 ubiquitin ligase module containing one AtBMI1 protein (AtB-

MI1A/B/C) and one AtRING1 protein (RING1A/B). PRC1 represses gene expression through

ubiquitination of H2A (H2AK121ub) [14–16]. The PRC2 complex includes histone methyl-

transferases such as CURLY LEAF (CLF) and SWINGER (SWN) and promotes H3 trimethyla-

tion (H3K27me3) [17,18].

We have previously found that H3K27me3 increases at MIR156A/C in a PRC2-dependent

manner during juvenile development, and that vegetative phase change is delayed in swn
mutants [19]. The temporal deposition of H3K27me3 is accompanied by depletion of the

antagonistic H3K27ac mark that is associated with active transcription. miR156 accumulation

is also repressed by PRC1, as atbmi1a/b mutants exhibit delayed vegetative phase change [20].

In addition, we have found that accumulation of the active histone mark H3K4me3 decreases

at MIR156A/C during vegetative development [21].

The findings that H3K27me3 replaces H3K27ac and H3K4me3 at MIR156A/C over time,

and that PRC1/PRC2-activity promotes vegetative phase change, led us to propose that the

temporal dynamics of miR156 accumulation are coordinated by antagonistic patterns of active

(H3K27ac, H3K4me3) and repressive (H3K27me3) histone modifications [19,21]. In this

model the stochastic removal of H3K27ac/H3K4me3 facilitates the deposition of H3K27me3

and the gradual epigenetic silencing of miR156. Similar mechanisms have been reported to

function at other developmental transitions [22]. For example, during flowering, H3K27 dea-

cetylation is a pre-requisite for PRC2-mediated H3K27me3 deposition at FLOWERING
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LOCUS C (FLC) [23], and during seed maturation, PRC1 promotes the exchange of H3K4me3

for H3K27me3 at DELAY OF GERMINATION1 (DOG1) and ABSCISIC ACID INSENSITIVE3
(ABI3) [24].

Although there is good evidence that MIR156A/C are epigenetically silenced during vegeta-

tive development, how this mechanism is regulated temporally remains unknown. VIVIPA-
ROUS/ABI3-LIKE (VAL) genes are excellent candidates for temporal effectors in this model.

VAL genes encode B3 domain transcription factors that are closely related to the ABI3/
FUSCA3 (FUS3)/LEAFY COYTLEDON2 (LEC2) clade of embryogenesis regulators. There are

three VAL genes in Arabidopsis, of which VAL1 and VAL2 (also known as HSI2 and HSL2
respectively) are the most functionally important [25]. VAL proteins repress their targets by

binding to 6 base pair RY-sequence motifs (CATGCA) via their B3 domain [26–32].

A number of observations suggest that VAL genes might provide the temporal information

that coordinates vegetative phase change: 1) VAL genes regulate other developmental transi-

tions, i.e. seed maturation [16,25] and flowering [30,32]; 2) MIR156A/C expression is elevated

in val1/2 mutants [20]; 3) VAL1/2 physically interact with several histone deacetylases (HDA6/
9/19) [23,30,33,34]; and 4) VAL genes promote PRC1 and PRC2-binding [20,26,30,32,35].

In this study we investigated whether VAL genes function as temporal regulators of vegeta-

tive phase change. We report that reduced VAL activity significantly delays the timing of vege-

tative phase change through both miR156-dependent and independent mechanisms. We find

that the temporal decline in miR156 expression is remarkably robust and is insensitive to loss

of VAL function, inhibition of VAL1-binding and the combined loss of VAL1 and PRC2 com-

ponents. Finally, we show that the effects of VAL1 on the timing of vegetative phase cannot be

explained by temporal changes in its interactions with other proteins.

Results

VAL genes promote vegetative phase change

To investigate the role of VAL genes in vegetative phase change, we exploited a novel mutant

we identified in an ethyl methanesulfonate screen for plants exhibiting prolonged juvenile

development. Mapping-by-sequencing revealed a substitution at the VAL1 locus, resulting in

the conversion of a highly conserved arginine residue in the N-arm of the VAL1 B3 DNA-

binding domain to a cysteine (S1A Fig). This arginine residue is critical for VAL1 binding to

target RY-motifs [36]. The mutation in VAL1 was confirmed to be the cause of the late juvenile

phenotype by its failure to complement the null val1-2 T-DNA insertion allele, and by the abil-

ity of the VAL1 genomic sequence to rescue this phenotype (S1B and S1C Fig). Unlike val1-2,

the novel val1 allele is semi-dominant, and delays vegetative phase change when heterozygous

(S1D Fig). We therefore named this new allele val1-5(sd), consistent with the nomenclature of

existing val1 alleles [37].

Both val1-5(sd) and val1-2 exhibit delayed vegetative phase change, with val1-5(sd) having a

stronger effect on the timing of abaxial trichome production than val1-2 (S1B Fig). As VAL1
functions redundantly with VAL2 to regulate other developmental transitions [25,30,32,38],

we tested the effects of val1; val2 double mutants on vegetative phase change. Previous analyses

of VAL gene function have utilized val1-2; val2-1 and val1-2; val2-3 double mutants. However,

seedling development is so strongly perturbed in val1-2; val2-1 and val1-2; val2-3 plants

[16,25,35,38] that analyses of vegetative growth is problematic in these backgrounds. There-

fore, we generated new val1; val2 combinations using val2-3 and a previously uncharacterized

T-DNA insertion allele we named val2-4. The val2-4 T-DNA is inserted in the last exon of

VAL2 (Fig 1A) and reduces VAL2 transcript accumulation by about 60% (S1E Fig). Consistent

with previous studies [25,32,38], val2 single mutants had no discernible effect on vegetative
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phase change (Figs 1B and S1F). However, loss of VAL2 activity enhanced the phenotypes of

val1-2 and val1-5(sd). val1-2; val2-4 and val1-5(sd); val2-3 both exhibited delayed abaxial tri-

chome production relative to val1-2 and val1-5(sd), respectively (Fig 1C). val1-5(sd); val2-3
flowered significantly later than val1-5(sd) (Fig 1D) and val1-2; val2-4 produced leaves that

were significantly more juvenile in shape (i.e. rounder) than val1-2 (Fig 1E). Neither double

mutant combination was as phenotypically severe as val1-2; val2-1 (Fig 1C, 1D and 1E). The

weaker phenotype of val1-5(sd); val2-3 compared to val1-2; val2-3 [16,35], and stronger effects

of val2 in the val1-2 than val1-5(sd) background (Fig 1E), suggests that the semi-dominant

phenotype of val1-5(sd) is mediated by interaction with VAL2. Importantly, the rate of germi-

nation was higher in val1-2; val2-4 and val1-5(sd); val2-3 relative to existing val1; val2 double

mutants. val1-2; val2-4 and val1-5(sd); val2-3 thus provide a balance between phenotypic

strength and experimental viability and are useful tools for investigating the role of VAL genes

in developmental timing.

Fig 1. VAL genes redundantly regulate vegetative phase change. (A). Schematic of val1 and val2 alleles used in this

study–grey boxes represent UTRs, black boxes represent exons, red triangles represent T-DNA insertions, red line

represents EMS-induced base substitution. (B) Phenotypes at 21 DAG in LD conditions, scale bar = 5mm. (C-E)

Quantitative analysis of vegetative development. Statistically distinct genotypes were identified by one-way ANOVA

with post hoc Tukey multiple comparison test (letters indicate statistically distinct groups P< 0.05; for (E) comparisons

were made at leaf 5), all plants grown in LD. (C,D) Boxes display the interquartile range (IQR) (boxes), median (lines)

and values beyond 1.5�IQR (whiskers); mean values are marked by ♦. (E) Colored lines represent the mean and black

bars the SEM. Sample sizes (C, D) 21–46, (E) 13–46.

https://doi.org/10.1371/journal.pgen.1009626.g001
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VAL genes function predominantly as quantitative–rather than temporal–

regulators of miR156 expression

Vegetative phase change results from a temporal decline in miR156 expression [8]. A previous

analysis of val1-2; val2-1 revealed elevated expression of MIR156A/C at a single time point

[20]. To determine whether the delay in vegetative phase change we observed in val mutants is

associated with a general increase in the level of miR156, or with a delay in the decline in this

miRNA, we quantified miR156 expression in the shoot apex and in isolated leaf primordia at

different times in shoot development. The primary transcripts of MIR156A and MIR156C
were expressed at similar levels, and exhibited a similar temporal expression pattern, in wild

type, val1-5(sd) (Fig 2A and 2B) and val1-2 shoot apices and leaf primordia (S2 Fig). However,

the abundance of the mature miR156 miRNA transcript was significantly higher in val1-5(sd)
leaf primordia than in wild type (Fig 2B), and it was also marginally higher in val1-5(sd) shoot

apices than in wild type (Fig 2A). The val1-5(sd); val2-3 (Fig 2A and 2B) and val1-2; val2-1 (S2

Fig) double mutants had stronger effects on MIR156A and MIR156C expression than the

respective val1 single mutants, suggesting that VAL1 and VAL2 function redundantly to

repress MIR156A and MIR156C transcription. Mature miR156 was elevated throughout devel-

opment in both the shoot apices (Fig 2A) and the leaf primordia (Fig 2B) of val1-5(sd); val2-3
double mutants. Loss of VAL activity also produced a slight increase in miR157 levels at later

Fig 2. VAL genes function predominantly as quantitative regulators of miR156 expression. (A, B) qRT-PCR

analyses of gene expression. (A) Shoot apices with leaf primordia (LP)� 1mm removed at 1, 2 and 3 weeks. (B)

Isolated LP 0.5-1mm in size. All plants were grown in SD conditions. Each data point represents a biological replicate

and is the average of three technical replicates. Coloured lines represent the mean and black bars mean±s.e.m.

Asterisks represent significant differences between WT and val mutants at the same time point, calculated by an

unpaired two-tailed t-test with a Bonferroni correction for multiple comparisons (� P< 0.025; �� P< 0.005; ��� P<
0.0005).

https://doi.org/10.1371/journal.pgen.1009626.g002
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stages of development (Figs 2A and 2B and S2). Although val1-5(sd); val2-3 increased the

abundance of miR156/miR157, it had only a minor effect on the temporal expression patterns

of these miRNAs. For example, miR156 expression decreased 2.36-fold between 1W and 2W

and 2.31-fold between 2W and 3W in wild type plants, but decreased 1.77 and 1.82-fold

between the same time points in val1-5(sd); val2-3 plants (Fig 2A). Taken together, these data

suggest that VAL genes function primarily as general, rather than temporal, regulators of

miR156 expression.

VAL genes coordinate PRC2 recruitment at specific MIR156 loci

We have previously demonstrated that the temporal decline in MIR156A and MIR156C expres-

sion is associated with PRC2-dependent and progressive deposition of H3K27me3 at these loci

[19]. To determine if VAL genes contribute to this process, we examined H3K27me3 accumula-

tion in the val1-5(sd); val2-3 double mutant. As previously reported [19], H3K27me3 levels

increased at the MIR156A and MIR156C loci during vegetative development in wild type plants

(Fig 3A and 3B). Although there was no difference in the temporal pattern of H3K27me3 deposi-

tion at MIR156A in val1-5(sd); val2-3, the rate of H3K27me3 deposition at MIR156C was signifi-

cantly slower in this double mutant (Fig 3B). These results are consistent with a recent genome-

wide study that revealed a decrease in H3K27me3 levels at MIR156C, but not MIR156A, in val1-2;
val2-3 plants [35]. As a control, we measured H3K27me3 deposition at the floral regulator FLC.

In the absence of vernalization, we observed no change in the level of H3K27me3 during vegeta-

tive development in wild type plants (Fig 3B). However, consistent with previous reports [30,32],

there was a significant decrease in H3K27me3 at FLC in val1-5(sd); val2-3.

VAL1 is thought to act by recruiting PRC1 which, in turn, promotes the activity of PRC2

[15,39,40]. As a genetic test of this hypothesis, we examined the interaction between val1-2
and clf-29 and swn-3, loss-of-function mutations in the functionally redundant genes that

encode the histone methyltransferase activity of PRC2. As we have shown previously [19],

swn-3 had a larger effect on the timing of vegetative phase change than clf-29 (Fig 3C and 3D).

Consistent with the hypothesis that VAL1 regulates vegetative phase change via its effect on

PRC2 activity, clf-29 and swn-3 interacted synergistically with val1-2, in that the double

mutants had a much more severe vegetative phase change phenotype than the single mutants

(Fig 3C and 3D). Notably, val1-2 suppressed the curling leaf phenotype of clf-29 (Fig 3C), pre-

sumably because it enhances FLC expression [41]. Together, these results suggest that val
mutations delay vegetative phase change by interfering with the activity of PRC2.

To determine whether the synergistic interaction between clf-29 and swn-3 and val1-2 is

due to enhanced miR156/miR157 expression, we quantified expression of the mature miR156

and miR157 miRNAs, and the primary MIR156A and MIR156C transcripts, in these mutant

backgrounds. The overall level and expression pattern of the mature miR156/miR157 tran-

scripts, and the primary MIR156A and MIR156C transcripts, were not affected by val1-2, or by

val1-2; clf-29 and val1-2; swn-3 double mutants (Fig 3E). These results suggest that VAL genes

temporally regulate the deposition of H3K27me3 at specific MIR156 loci, but are not necessary

for the temporal decline in miR156 expression.

VAL genes also repress gene expression by promoting H2AK121ub deposition via recruit-

ment of PRC1 [16,39]. Unlike H3K27me3 (Fig 3B) [19], we found no evidence that

H2AK121ub increases consistently over time at MIR156A and MIR156C (Fig 3F). There

appears to be a transient peak of H2AUb deposition at 2W of growth for MIR156A, MIR156C
and FLC, however, this finding is supported by only 2 biological replicates. val1-5(sd); val2-3
had lower levels of H2AK121ub than wild type plants at 2W but we observed no effect of loss

of VAL activity at 1W or 3W.
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Fig 3. VAL genes regulate miR156 activity via-chromatin modifications. (A) Schematics of the primer locations used for ChIP-qPCR. Blue

and green bars represent sequences encoding the mature miRNA and miRNA hairpin respectively. (B) Temporal analysis of H3K27me3 by

ChIP-qPCR. Each data point represents a biological replicate and is the average of three technical replicates. Lines represent the mean, bars

represent the mean±s.e.m., asterisks represent significant differences between WT and val1-5(sd); val2-3 at the same time point, calculated by

an unpaired two-tailed t-test (� P< 0.05; �� P< 0.01; ��� P< 0.001). H3K27me3 values are relative to H3 and normalised to STM as an internal

control. Plants were grown in SD conditions. (C, D) Phenotypes in LD. (C) Photographs taken at 21DAG, scale bar = 5mm. (D) Asterisks

represent significant differences to either WT or val1-2, calculated by unpaired two-tailed t-test with Bonferroni correction for multiple

comparisons (��� P< 0.0005). Sample size 22–46. (E) qRT-PCR analyses of gene expression in shoot apices with LP� 1mm removed at 1, 2 and

3 weeks. Each data point represents a biological replicate and is the average of three technical replicates. Coloured lines represent the mean and

black bars represent the mean±s.e.m. Plants were grown in SD conditions. (F) Temporal analysis of H2AK121ub by ChIP-qPCR, values are

relative to input and normalised to ABI3 as an internal control. See (B) for details (no statisical analyses are included in (F) due to limited

replication).

https://doi.org/10.1371/journal.pgen.1009626.g003
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VAL1 regulates vegetative phase change via miR156-dependent and

miR156-independent mechanisms

To investigate whether the effects of val1-5(sd); val2-3 on the chromatin state of MIR156A/C
are due to a direct regulatory interaction, we carried out chromatin-immunoprecipitation

qPCR using an HA-tagged version of VAL1 [30]. Confirming the results of a recent ChIP-seq

study [35], we found VAL1-binding at specific locations within both the MIR156A and

MIR156C loci (Figs 4A and 4B and S3). The affinity of VAL1 for MIR156A/C appeared consis-

tent throughout vegetative development.

VAL1/2 bind to RY-sequence motifs, of which there are multiple copies in both MIR156A
and MIR156C (Fig 4A). To determine if these RY-sites are required for the regulation of vege-

tative phase change, we mutated 5 RY-sites in MIR156C individually and in combination. We

selected MIR156C because it is more sensitive to VAL activity than MIR156A (Figs 2,3 and S2).

A C>T substitution that eliminates VAL1 binding [36] was introduced in one or all of these

sites in a genomic construct of MIR156C. Wild type and mutant constructs were then trans-

formed into a mir156a; mir156c; mir157a; mir157c quadruple mutant (qm) background. We

chose this background because it has a low level of endogenous miR156/miR157 activity and is

therefore sensitive to small changes in the level of miR156 [11]. Plants transformed with a wild

type MIR156C construct (+RY) produced leaves with abaxial trichomes at the same node as

the mir156a; mir157a; mir157c triple mutant (tm) (Fig 4C). tm has an endogenous copy of

MIR156C, confirming that the transgenic MIR156C sequence is fully functional. Deletion of

individual RY-sites produced a significant delay in the timing of abaxial trichome production

relative to MIR156C +RY, and deletion of all 5 RY-sites produced a more significant delay

than deletion of any single site (Fig 4C). A similar result was obtained in the case of the angle

of the leaf base (Fig 4D). These results demonstrate that all five RY-sites are important for the

expression of MIR156C, and that they function additively. Individual RY-sites have also been

shown to interact additively to repress the VAL1-PRC2 targets FLC and DOG1 [27,32].

To determine if these phenotypic effects are due to altered MIR156C expression, we quanti-

fied miR156 levels in MIR156C +RY, MIR156C -RY2 and MIR156C -RY12345 plants.

MIR156C -RY2 was selected because it has a marginally stronger effect than other individual

-RY deletions (Fig 4C and 4D). Although there was considerable variation in miR156 levels

between independent transgenic lines, MIR156C -RY2 and MIR156C -RY12345 plants had sig-

nificantly more miR156 than plants transformed with MIR156C +RY (Figs 4E and S4). How-

ever, the temporal expression pattern of MIR156C was identical in -RY and +RY plants.

To establish whether the effects of RY-deletion are VAL1-dependent, we crossed val1-2 into

the qm; MIR156C +/-RY lines. If the delay in vegetative phase change in MIR156C -RY lines is

a consequence of reduced VAL1 binding, val1-2 should have less effect in MIR156C -RY lines

than in MIR156C +RY lines or the tm, in which RY sites are intact. Surprisingly, we found that

loss-of VAL1 significantly delayed abaxial trichome production in MIR156C -RY as well as

MIR156C +RY and tm plants (Fig 4F). It is possible that MIR156C RY-sites are bound by other

B3 domain transcription factors. However, RY-binding is restricted to the ABI3/FUS3/LEC2
and VAL clade of B3 domain genes [32,36,42], whose expression of is largely restricted to seed

development [43]. It is therefore unlikely that these genes regulate vegetative shoot identity.

Moreover, FUS3 and ABI3 directly promote the expression of MIR156C [44,45]. A role for

these genes in the regulation of MIR156C post-germination is thus inconsistent with the juve-

nilized phenotype and elevated miR156 expression we found in MIR156C -RY plants. (Fig 4C,

4D and 4E). With regard to the potential effects of other VAL genes, we observed no vegetative

phase change phenotype in val2 single mutants (Figs 1B and S1F) and VAL3 has limited

expression and functionality relative to VAL1 and VAL2 [25]. Alternatively, this result suggests
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Fig 4. Loss of RY VAL-binding motifs at the MIR156C locus delays vegetative phase change. (A) Schematic depicting the location of

primers used for ChIP-qPCR, the sequences encoding the miR156 hairpin and mature miRNA are coloured green and blue respectively.

(B) Anti-HA ChIP-qPCR of WT Col control plants at 2W and VAL1::VAL1-HA; val1-2; FRI-Sf2 plants at 1, 2 and 3W of growth. The

data is presented as percentage input normalized to ACT7 and is displayed relative to WT. Each data point represents a biological

replicate and is the average of three technical replicates, bars represent the mean and error bars the mean±s.e.m. (C, D) Phenotypes of

T1 plants transformed with MIR156C RY variants. Statistically distinct genotypes were identified by one-way ANOVA with post hoc
Tukey multiple comparison test (letters indicate statistically distinct groups P< 0.05; comparison in (D) made at leaf 5). qm = mir156a
mir156c mir157a mir157c quadruple mutant, tm = mir156a mir157a mir157c triple mutant, EV = empty vector. (D) Colored lines

represent the mean and black bars the mean±s.e.m. Sample size (C) 26–52, (D) 37–51. (E) qRT-PCR analyses of gene expression in

shoot apices with LP� 1mm removed at 1, 2 and 3 weeks. Each data point represents an independent homozygous T3 line and is the

average of three technical replicates. Colored lines represent the mean and black bars the mean±s.e.m. Asterisks represent significant

differences between qm; MIR156C and qm; MIR156C -RY lines at the same time point, calculated by an unpaired two-tailed t-test with a

Bonferroni correction for multiple comparisons (� P< 0.025, �� P< 0.005). (F) Genetic interaction between val1-2 and MIR156C RY
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that VAL1 may regulate vegetative phase change through both miR156-dependent and

miR156-independent mechanisms. This interpretation is supported by the observation that

loss-of VAL1 and PRC2-components strongly delayed vegetative phase change but had only

minor effects on miR156 expression (Fig 3C, 3D and 3E).

To test this hypothesis, we introgressed val1-2 into the qm genetic background, which has

low levels of miR156/miR157 [11]. Although the morphology (Fig 5A) of val1-2; qm leaves 1

and 2 were indistinguishable from that of qm plants, val1-2 partially suppressed the effect of

the qm genotype on the morphology of leaves 3 and 5 (Fig 5B). This confirms that VAL1 func-

tions through a miR156/miR157-independent mechanism to regulate vegetative phase change.

deletions. Asterisks represent significant differences between plants with wild type or null VAL1 alleles calculated by an unpaired two-

tailed t-test (��� P< 0.001). Sample size 24–36. Phenotyping analyses were carried out in LD conditions, gene expression and ChIP

analyses were carried out in SD conditions.

https://doi.org/10.1371/journal.pgen.1009626.g004

Fig 5. VAL1 regulates vegetative phase change by miR156-dependent and independent mechanisms. (A-C)

Phenotypes of val1-2 and mir156a mir156c mir157a mir157c quadruple mutant lines. (A) Photographs taken at 17

DAG. Scale bar = 1mm. (B, C) Statistically distinct genotypes were identified by one-way ANOVA with post hoc Tukey

multiple comparison test (letters indicate statistically distinct groups P< 0.05; (B) comparisons made at leaf 5). Bars

represent the mean±s.e.m. Sample size (B) 17–60, (C) 18–36. Silhouettes in B show representative leaf 5 shapes. (D)

Expression of a miR156-resistant (rSPL9) reporter construct in WT, val1-2 and val1-5(sd) backgrounds. Scale

bars = 1mm. (E) qRT-PCR analysis of gene expression in shoot apices with LP� 1mm removed at 1, 2 and 3 weeks.

Each data point represents a biological replicate and is the average of three technical replicates. Coloured lines

represent the mean and gray bars represent the mean±s.e.m. Asterisk represents significant difference between WT

and val mutant lines at the same time point, calculated by an unpaired two-tailed t-test with a Bonferroni correction (�

P< 0.025; �� P< 0.005). All phenotypic analyses were carried out in LD conditions, the gene expression analysis was

carried out in SD conditions.

https://doi.org/10.1371/journal.pgen.1009626.g005
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Surprisingly, a survey of abaxial trichome production revealed that val1-2 enhanced this aspect

of the precocious qm phenotype (Fig 5C). This result can be explained by the observations that

reduced histone deacetylation in a toe loss-of-function background accelerates abaxial tri-

chome formation [46], that SPL genes repress TOE activity [9], and that VAL genes promote

histone deacetylation [23,34,39].

To determine if VAL1 regulates SPL gene expression independently of miR156, we crossed

a miR156-resistant (rSPL9) SPL9::rSPL9-GUS reporter construct into val1 genetic back-

grounds. The expression of this reporter was visibly and strongly suppressed by val1-2 and

val1-5(sd) (Fig 5D), implying that miR156 is not required for the regulation of SPL9 by VAL1.

The transcript levels of SPL9, and its target miR172, were also decreased in val mutant plants

(Fig 5E). However, it is difficult to know if this decrease is dependent or independent of

miR156 because miR156 induces cleavage of the SPL9 transcript [11,47,48].

VAL1/2 act as transcriptional repressors. As SPL9 transcription decreases in val loss-of

function mutants it is therefore unlikely that VAL1/2 regulate SPL9 directly. To test this pre-

diction, we quantified H2AK121ub and H3K27me3 at SPL9. Consistent with previous studies,

we found high levels of H2AK121ub but negligible H3K27me3 at SPL9 (S5 Fig) [40,49]. We

also found no sustained difference in the abundance of these modifications in wild type and

val1-5(sd); val2-3 plants. Taken together these results suggest that, in addition to regulating

SPL9 via their effect on miR156 levels, VAL1/2 promote SPL9 expression indirectly through

one or more miR156-independent mechanisms (i.e. repression of an unknown transcriptional

repressor of SPL9). The observation that val1-5(sd); val2-3 has no effect on H2AK121ub at

SPL9 also suggests that VAL1/2 are not universally required for PRC1-activity.

The effects of VAL1 on developmental timing may be partly explained by

its expression pattern

Our results show that VAL genes control the timing of vegetative phase change (Fig 1C and

1E), and have subtle effects on the expression pattern of miR156 during vegetative develop-

ment (Figs 2 and S2). To determine if these effects are attributable to changes in the expression

level of VAL1, we measured the abundance of VAL1 transcript levels during vegetative growth.

We observed a small but significant increase in VAL1 transcripts in shoot apices between 2

and 3 weeks of growth (Fig 6A) but there was no significant change in VAL1 levels in leaf pri-

mordia (Fig 6B). To further investigate VAL1 expression over time, we generated a VAL1 tran-

scriptional reporter by fusing a 2.3kb sequence containing the VAL1 promoter and 5’ UTR,

and a 2kb sequence containing the VAL1 3’UTR and terminator, to the GUS coding sequence

(VAL1::GUS-VAL1 3’ UTR). We generated a VAL1 translational fusion by inserting a 3.8kb

VAL1 genomic sequence upstream of GUS in this construct (VAL1::VAL1-GUS-VAL1 3’UTR).

Because the expression of the transcriptional fusion was consistently more diffuse, variable,

and weaker than the expression of the translational fusion (S6 Fig), we used plants containing

the translational fusion for subsequent studies.

During embryogenesis, the translational fusion was expressed in the root and shoot apical

meristems and provasculature (Figs 6C and S6). Following germination, expression became

restricted to the shoot and root apices and initiating lateral root primordia (Figs 6C and S6).

Throughout the rest of shoot development, the translational fusion was expressed in the shoot

apex and during the early stages of leaf development (Fig 6C). Histological inspection indi-

cated that VAL1 expression increases in the shoot apex during vegetative development. This

was validated by a quantitative analysis of GUS expression, which demonstrated that VAL1

accumulates more strongly in the shoot apex than leaf primordia. Further, that VAL1 levels

increase over time in the shoot apex but not in older leaf primordia (Fig 6E and 6F). Taken
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together, these data indicate that VAL1 expression is restricted to apical meristems and the

early stages of root and leaf development. Our data also indicate that VAL1 expression

increases during shoot development in very young leaf primordia, quickly declines to a uni-

form level as the leaf develops, and ceases before the leaf is fully expanded. However, the func-

tional significance of increased VAL1 accumulation during vegetative development is unclear,

as we did not detect a concomitant increase in VAL1-binding to MIR156A/C (Figs 4B and S3).

Finally, the difference in the staining patterns and stability of our transcriptional and transla-

tional reporters suggest that cis-regulatory elements within the VAL1 coding sequence regulate

the level and site of its expression.

VAL1 has previously been found to physically interact with VAL2, multiple PRC1 and

PRC2 components, and the transcriptional repressor SAP18 [16,26,27,29,30,32,33,50]. How-

ever, these studies do not provide information about VAL1’s in planta protein interactions

over time. To determine whether VAL1 interacts with different proteins at different stages of

vegetative development, we carried out a mass spectrometry analysis of proteins bound to HA-

tagged VAL1 at 1, 2 and 3 weeks of growth. Immunoprecipitations were carried out on a

VAL1-HA; val1-2; FRI-Sf2 line, using a val1-2; fri line as a control. The difference in the FRI
genotype of these lines is a consequence of the genotypes available at the time the experiments

were performed and may have had an effect on our results.

ATBMI1A was significantly enriched in the combined experimental samples relative to the

control samples (Fig 7A), which is consistent with a previous mass spectrometry analysis of

proteins bound to VAL1-HA [30]. We did not detect other proteins that have been identified

by mass spectrometry in immunoprecipitation experiments with VAL1-HA. We also observed

a highly significant enrichment of the chloroplast binding protein CRB. However, this is

explained by the enrichment of CRB in the total proteome of the experimental versus control

Fig 6. VAL1 is expressed throughout vegetative development. (A, B) qRT-PCR analyses of gene expression. (A) Shoot apices with leaf primordia (LP)� 1mm

removed at 1, 2 and 3 weeks. (B) Isolated LP 0.5-1mm in size. (C-F) Analyses of a VAL1-GUS translational fusion. (C) Expression in whole plants, scale bars = 1mm. (D)

Expression in shoot apices following wax sectioning, scale bars = 0.1mm. (E, F) VAL1 levels quantified by MUG assay in two independent homozygous T3 lines. (A, B,

E, F) Each data point represents a biological replicate and is the average of three technical replicates. Lines represent the mean and grey bars mean±s.e.m. Asterisks

represent significant differences between two continuous time points, calculated by an unpaired two-tailed t-test (� P< 0.05; �� P< 0.01). All plants except the 3 DAG

sample (C–long days) were grown in SD conditions.

https://doi.org/10.1371/journal.pgen.1009626.g006
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samples (Fig 7B). Comparisons of the proteins present in samples harvested from 1, 2 and 3

weeks old plants revealed that ATBMI1A was consistently among the most abundant proteins

immunoprecipitated with VAL1-HA (Fig 7C, 7D and 7E). The abundance of ATBMI1A in the

immunoprecipitated sample increased significantly from 1 week to 2 weeks, as indicated by

both the increase in the fold change between experimental and control samples, and the statis-

tical significance of the enrichment. This is probably a result of the increase in the abundance

of VAL1 between 1 and 2 weeks (Fig 6D and 6E), a result which was confirmed by the increas-

ing abundance of VAL1 in the immunoprecipitated samples from different time points (Fig

7C, 7D and 7E). The parallel changes in the abundance of VAL1-HA and ATBMI1A, and the

absence of any major change in the proteins associated with VAL1-HA in different samples,

suggest that the binding partners of VAL1 do not change significantly during shoot

development.

Fig 7. VAL1-protein interactions are consistent during vegetative development. (A-E) Protein enrichment

calculated via mass spectrometry. Fold change represents the ratio of proteins purified from experimental (VAL1-HA;
val1-2; FRI-Sf2) to control (val1-2; fri) samples, a t-test P-value is represented on the y-axis. Red dotted line indicates a

P-value< 0.05 (resulting from the -log2 transformation of the actual p-value; proteins above the line have a significant

enrichment). Each bubble represents an individual protein, the size or the bubble represents the protein abundance

averaged across the experimental and control samples. (A, C-E) Proteins immunoprecipitated using an anti-HA

antibody, (B) total proteome samples.

https://doi.org/10.1371/journal.pgen.1009626.g007
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To investigate overall trends in protein accumulation during vegetative development we

conducted a supervised clustering analysis of the val1-2; VAL1-HA; FRI-Sf2 total proteome

sample. We designed two clusters in which proteins either increased or decreased from 1 to 2

to 3 weeks of development (see Methods for details). The 50 proteins with the strongest and

most consistent decreasing developmental trend were significantly enriched for Gene Ontol-

ogy terms related to photosynthesis and carbon fixation (S7 Fig). In contrast, the 50 proteins

with the highest increasing trend score were enriched for GO terms relating to water stress

and translation. The finding that younger plants invest more resources in photosynthesis is

consistent with a transcriptomic analysis of vegetative development in maize [51], and the

enhanced photosynthetic capacity of juvenile plants at low light levels [3].

Discussion

Plant life cycles are characterized by transitions between distinct developmental phases. VAL
genes have previously been shown to promote the switch from embryogenesis to seed matura-

tion [16,25], and from vegetative to reproductive growth [30,32]. The results presented here

demonstrate that VAL1 and VAL2 also regulate the intervening transition from juvenile to

adult stages of vegetative growth. VAL genes thus function as a regulatory hub that coordinates

developmental transitions throughout plant life cycles.

Regulation of miR156 expression by VAL1/2
Vegetative phase change is promoted by a temporal decline in miR156/miR157 expression [8].

When the level of miR156/miR157 falls below a specific threshold, the de-repression of SPL
genes initiates a switch to adult identity. Previous work has shown that–with the exception of

SPL3 –the increase in SPL transcript levels during development is entirely attributable to post-

transcriptional regulation by miR156/miR157 [11]. Factors that control the timing of vegeta-

tive phase change can therefore act in three ways: 1) by modifying the rate of decline in

miR156; 2) by constitutively increasing or decreasing the level of miR156; and 3) by constitu-

tively increasing or decreasing the rate of transcription of SPL genes. Our results suggest that

VAL1 and VAL2 regulate vegetative phase change both by constitutively decreasing the level of

miR156 and by indirectly promoting SPL gene expression.

Evidence that VAL1/VAL2 constitutively regulate the level of miR156 was provided by the

phenotype of plants deficient for VAL1 and VAL2, VAL1-DNA binding patterns and from the

phenotype of plants expressing a MIR156C transgene lacking VAL-binding sites. We found

that although VAL1 expression increases in the shoot apex as plants develop, val1; val2 double

mutants displayed only a slight decrease in the rate at which miR156 declines. Instead, val1;
val2 double mutants exhibited a significant increase in the level of miR156 at every stage of

vegetative development we examined. Consistent with this result, mir156/mir157 mutants

transformed with a MIR156C transgene lacking VAL-binding sites had elevated levels of

miR156 relative to the wild type MIR156C control, but displayed the same temporal decrease

in miR156 as control plants.

We have proposed that the decrease in MIR156A/C expression during shoot development

may be attributable to the stochastic replacement of H3K27ac and H3K4me3 by H3K27me3

[19,21]. The observation that the increase in miR156 expression in val1; val2 is associated with

a decrease in the level of H3K27me3 at MIR156C supports this hypothesis, in that it shows that

H3K27me3 is associated with low levels of MIR156C expression.

The evidence that VAL1/VAL2 regulate the level, but not the temporal expression pattern,

of miR156 leaves open the question of how its temporal pattern arises. Notably, recent

genome-wide studies have found that only ~45% of PRC2 targets are dependent on
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recruitment by VALs/RY-motifs, and that the trans/cis-regulatory modules are unknown for

~36% of PRC2 targets [35,52]. Several other chromatin regulators, such as the CHD3 nucleo-

some remodeler PICKLE [19], the PRC-accessory protein LHP1 [53], the SWI/SNF2 chroma-

tin remodeler BRAHMA [54], and the histone 2 regulators ARP6 and HTA9/11 [21,55] have

been found to play a role in the expression of miR156. Furthermore, transcription factors

including AGL15/18 [56], MYB33 [57], and members of the NF-Y family [58,59], also regulate

miR156 expression. It is possible that the temporal expression pattern of miR156 is a conse-

quence of complex interactions between these diverse factors, rather than being dependent on

a single class of regulator, such as VAL1/2.

VAL genes and PRC1 activity

VAL1/2 are thought to be necessary for the recruitment of PRC1 to target loci, where it

represses gene expression via PRC2-dependent and independent mechanisms [35,39,40]. We

found that VAL1/2 accelerate vegetative phase change by repressing the expression of

MIR156A/C, and by indirectly promoting the expression of SPL9, a target of miR156. These

results are consistent with a previous study [20], which showed that VAL1/2 and the PRC1

components, AtBMI1A/B, repress MIR156A/C expression. However, the PRC1 components

EMBRYONIC FLOWER1 [20] and RING1A/B [49] have also been reported to repress the

expression of SPL9 independently of miR156. These latter effects delay vegetative phase

change, which is the exact opposite of the effect produced by PRC1-mediated repression of

MIR156A/C. Together, these results indicate that PRC1 can operate at different points within a

regulatory pathway, or in interacting regulatory pathways, to modulate the output of the path-

way or pathways. If the genes repressed by PRC1 have different functions—as in the case of

miR156 and its SPL targets—then the functional significance of a particular level of PRC1

activity at a particular locus can be difficult to predict. These results also support the hypothesis

that there may be different forms of PRC1, which target different genes. Moreover, our finding

that H2AK121ub deposition at SPL9 was unaffected in val1-5(sd); val2-3 suggests that VAL1/2

may not be universally required for PRC1-recruitment.

In this regard, it is interesting that although MIR156A and MIR156C are close paralogs and

have similar expression patterns, previous studies [19,21], and the results presented here, indi-

cate that these genes are differentially sensitive to mutations that affect the activity of PRC2

and PRC1. For example, we found that val1; val2 mutants display a greater reduction in

H3K27me3 at MIR156C than at MIR156A. Our findings align with the results of ChIP-seq

studies of H2AK121ub and H3K27me3 in atbmi1a/b/c [40] and val1-2; val2-3 [35] mutants.

The implication of these observations is that MIR156C expression is more dependent on PRC1

and PRC2 activity than MIR156A. Defining the molecular basis for this difference could pro-

vide important insights into factors that influence epigenetic regulation in plants.

In addition to their roles in vegetative phase change, VAL genes regulate multiple nodes of

the flowering time [29,30,32] and seed development [16,25–27] networks. The co-option of

VAL activity throughout genetic networks thus appears critical to coordinating plant develop-

mental transitions. Despite the centrality of VAL function to the control of developmental tim-

ing, the persistent and robust pattern of MIR156A/C expression in val mutant plants

emphasizes the complexity of temporal regulation in plants.

Materials and methods

Plant material and growth conditions

All stocks were grown in the Col-0 background. The following genetic lines have been

described previously: val1-2 (SALK_088606), val2-1 (CS906036) [25] (val2-1 was backcrossed
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to Col-0 6 times from the original Wassilewskija parent); val2-3 (SALK_059568C) [16]; clf-29
(SALK_021003) [60]; swn-3 (SALK_050195) [17]; mir156a-2 mir156c-1 mir157a-1 mir157c-1
[11]; SPL9::rSPL9-GUS [10]; val1-2 VAL1::VAL1-3xHA FRI-Sf2 [30]. val2-4 (SALK_127961)

was obtained from the Arabidopsis Biological Resources Center (Ohio State University, OH,

USA). Seeds were sown on fertilized Farfard #2 soil (Farfard) and kept at 4˚C for 3 days prior

to transfer to a growth chamber, with the transfer day counted as day 0 for plant age (0 DAG–

days after germination). Plant were grown at 22˚C under a mix of both white (USHIO F32T8/

741) and red-enriched (Interlectric F32/T8/WS Gro-Lite) fluorescent bulbs in either long

day (16 hrs light/8 hrs. dark; 40 μmol m-2 s-1) or short day (10 hrs light/14 hrs dark; 100 μmol

m-2 s-1) conditions. The locus identifiers of the genes investigated in this study are as follows:

VAL1, AT2G30470; VAL2, AT4G32010; MIR156A, AT2G25095; MIR156C, AT4G312877;

MIR157A, AT1G66783; MIR157C, AT3G18217; CLF, AT2G23380; SWN, AT4G02020; SPL9,

AT2G42200; FLC, AT5G10140. The val1-5(sd), val1-5(sd); val2-3, val1-2; val2-4, val1-2;

mir156ac mir157ac and VAL1::VAL1-GUS-VAL1 3’UTR lines described herein have been

donated to the ABRC (https://abrc.osu.edu/ stock numbers CS72451-CS72455 respectively).

Identification of the val1-5(sd) mutant

The val1-5(sd) allele was generated by exposing mir157a-1; mir157c-1 seed to ethyl methane-

sulfonate. An M2 mutant plant exhibiting delayed vegetative phase change was backcrossed to

the parental line and allowed to self. Tissue was pooled from 30 plants exhibiting severely

delayed vegetative phase change in the BC1F2 generation. DNA was extracted via-SDS lysis

and phenol-chloroform extraction and further purified using Clean and Concentrator col-

umns (Zymo Research). DNA concentration was determined using a Qubit 2.0 Fluorometer

(Invitrogen) and 1μg of DNA sheared using a Covaris S2 sonicator (Covaris) to produce 350bp

inserts. Sequencing libraries were made following the TruSeq DNA PCR-free LT Sample Prep

Kit (Illumina) manufacturer’s instructions. Library quality and quantity was validated by Bioa-

nalyser (Agilent) and KAPA analysis (Kapa Biosystems). 100bp paired end reads were gener-

ated using a HiSeq 2500 (Illumina) and aligned to the TAIR10 reference genome following the

default SHORE pipeline [61]. The SHOREmap backcross pipeline [62] using default options

was employed to identify polymorphisms. Manual inspection of allele frequencies in the

mutant revealed a peak centered on the VAL1 locus. The causative mutation was confirmed by

Sanger sequencing and complementation assays. The mutant was backcrossed to a ‘Traffic

Line’ [63] with seed-fluorescent markers inserted adjacent to the VAL1 locus to eliminate addi-

tional closely linked polymorphisms. Consequently, the resultant val1-5(sd) plants used in this

study contain a linked pNAP::RFP insertion at 13,622,737bp on Chromosome 2 (Crick

strand).

Generation of transgenic plants

For RY-mutation lines the RY-site TGCATG was replaced by TGTATG. A 5kb MIR156C
genomic sequence including 2kb upstream of the transcriptional start site and 665bp down-

stream of the end of the last exon was cloned into the binary vector pAGM4723 from the

Golden Gate MoClo toolbox supplied by Addgene (www.addgene.org) [64,65]. For -RY3,

-RY4 and -RY5 Q5 Site Directed Mutagenesis Kit (New England Biolabs) was used to induce a

substitution directly into the expression vector. For -RY1, -RY2 and -RY12345 Gibson Assem-

bly cloning (New England Biolabs) was used to assemble individual fragments into the same

backbone. Golden Gate cloning was also used to generate VAL1::VAL1-VAL1 3’UTR, VAL1::

VAL1-GUS-VAL1 3’UTR, VAL1::GUS-VAL1 3’UTR lines. Promoter/5’UTR (VAL1–2.3kb),

functional (VAL1–3.8kb, MIR156A [7]) and 3’UTR/terminator (VAL1 – 2kb) sequences were
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cloned separately from Arabidopsis gDNA, with Type II restriction sites removed where neces-

sary. GUS and AtuOCS sequences were obtained from the MoClo Plant Parts toolkit supplied

by Addgene (www.addgene.org) [66]. Component parts were assembled using Golden Gate

cloning into the pAGM4723 binary vector, including green or red seed fluorescent expression

cassettes as selectable markers. Constructs were transformed into Arabidopsis using the floral

dip method. All primers used for cloning are included in S1 Table.

Quantification of gene expression

Tissue (either shoot apices with leaf primordia�1mm attached or isolated leaf primordia 0.5-

1mm in size–as specified in the text) were ground in liquid nitrogen and total RNA extracted

using Trizol (Invitrogen) as per the manufacturer’s instructions. RNA was treated with

RNAse-free DNAse (Qiagen) and 250ng-1μg of RNA was used for reverse transcription using

Superscript III (Invitrogen). Gene specific stem-loop RT primers were used to amplify

miR156, miR157, miR172 and SnoR101 sRNAs [67,68] and a polyT RT primer was used for

mRNA amplification. Three-step qPCR of cDNA was carried out using SYBR-Green Master

Mix (Bimake). qPCR reactions were run in triplicate and an average was calculated. Relative

transcript levels were normalized to snoR101 (for miRNAs) and ACT2 (for mRNAs) and

expressed as a ratio of expression to a specified control sample. The qPCR primers used in this

study are listed in S1 Table.

Chromatin immunoprecipitation

Expanded leaves and roots were removed during tissue harvesting to produce samples

enriched for shoot apices and young leaves. For histone ChIP ~0.5g of fresh tissue per antibody

and for anti-HA ChIP ~5g of fresh tissue were harvested. Samples were fixed in 1% formalde-

hyde under vacuum for 15 minutes. Cross-linked samples were ground in liquid nitrogen and

suspended in Honda buffer (0.44M sucrose, 1.25% ficoll, 2.5% dextran 40, 20mM hepes pH

7.4, 10mM MgCl2, 0.5% Triton, 5mM DTT, 1mM PMSF, 1% protease inhibitors), filtered

through two layers of Miracloth (EMD Millipore), and pelleted and washed thrice in Honda

buffer. For histone ChIP, pellets were resuspended in nuclei lysis buffer (50mM Tris-HCl pH

8, 10mM EDTA, 1% SDS, 1% protease inhibitors), for anti-HA ChIP, pellets were resuspended

in RIPA buffer (1X PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 1% protease inhibi-

tors). Samples were sonicated using a Fisherbrand Sonic Dismembrator (Fisher Scientific) 6x

10s at setting 3.2. ChIP samples were pre-cleared using Dynabeads Protein A (Invitrogen). 2%

was removed as input and samples were incubated overnight with 1% antibody (for histone

ChIP: anti-H3 (abcam ab1791, RRID:AB_302613), anti-H3K27me3 (EMD Millipore 07–449,

RRID:AB_310624), anti-H2AK121ub (Cell Signaling Technology 8240, RRID:AB_10891618);

for VAL1-HA ChIP: anti-HA (Roche 11583816001, RRID:AB_514505)). Chromatin-antibody

conjugates were purified with Dynabeads Protein A and washed in low/high salt, lithium and

TE buffers. Following reverse-crosslinking DNA was isolated using a QIAquick PCR Purifica-

tion Kit (Qiagen).

For ChIP-qPCR assays, three-step qPCR was carried out using SYBR-Green Master Mix

(Bimake). qPCR reactions were run in triplicate and an average was calculated. Data were nor-

malized and presented as follows: 1) For H3K27me3 –STM was used as a control locus

[22,69,70], data is presented as a ratio of (H3K27me3 gene of interest/H3 gene of interest) to

(H3K27me3 STM/H3 STM); 2) For H2AK121ub–ABI3 was used as a control locus [16,30,49],

data is presented as a ratio of (H2AK121ub gene of interest/input gene of interest) to

(H2AK121ub ABI3/input ABI3); 3) For VAL1-HA–UBQ10, ACT7 and TA3 were used as con-

trol loci, data is presented as a ratio of ((VAL1-HA ChIP gene of interest/input gene of
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interest)/(VAL1-HA ChIP control/input control)) relative to ((WT ChIP gene of interest/

input gene of interest)/(WT ChIP control/input control)). The qPCR primers used in this

study are listed in S1 Table.

Mass spectrometry

VAL1::VAL1-3xHA; val1-2; FRI-Sf2 and val1-2 genotypes were used as experimental and

control samples respectively. Expanded leaves and roots were removed during tissue harvest-

ing to produce samples enriched for shoot apices and young leaves. 2-3g of fresh tissue was

harvested for immunoprecipitation, and 0.2–0.6g was harvested for total protein extraction,

at 1,2 and 3 weeks after germination. For immunoprecipitation, tissue was ground in liquid

nitrogen, suspended in IP buffer (20mM Tris-HCl pH 8, 150mM NaCl, 2.5mM EDTA, 0.5%

Triton, 1% protease inhibitors, 1mM PMSF), rotated for 2 hours at 4˚C and filtered through

2 layers of Miracloth. Anti-HA (Roche) conjugated Dynabeads Protein A (Invitrogen) were

added and samples were rotated overnight at 4˚C. Beads were washed thrice with IP buffer

and proteins were purified for mass spectrometry using an S-Trap: Rapid Universal MS Sam-

ple Prep (Protifi) following the manufacturer’s instructions. For total proteomes, ground tis-

sue was suspended in 8M urea and rotated at room temperature for 45 minutes. The samples

were centrifuged thrice and the supernatant reduced with DTT (final concentration 5mM)

and alkylated with iodoacetamide 40 (final concentration 40mM) before overnight digest

with trypsin. Samples were resuspended in 10 μl of water + 0.1% TFA and loaded onto a Dio-

nex RSLC Ultimate 300 (Thermo Scientific, San Jose, CA, USA), coupled online with an

Orbitrap Fusion Lumos (Thermo Scientific). Chromatographic separation was performed

with a two-column system, consisting of a C18 trap cartridge (300 μm ID, 5 mm length) and

a picofrit analytical column (75 μm ID, 25 cm length) packed in-house with reversed-phase

Repro-Sil Pur C18-AQ 3 μm resin. Peptides were separated using a 90 min gradient (for the

IP experiments) and 180 min (for the full proteome experiment) from 2–28% buffer-B

(buffer-A: 0.1% formic acid, buffer-B: 80% acetonitrile + 0.1% formic acid) at a flow rate of

300 nl/min. The mass spectrometer was set to acquire spectra in a data-dependent acquisi-

tion (DDA) mode. Briefly, the full MS scan was set to 300–1200 m/z in the orbitrap with a

resolution of 120,000 (at 200 m/z) and an AGC target of 5x10e5. MS/MS was performed in

the ion trap using the top speed mode (2 secs), an AGC target of 10e4 and an HCD collision

energy of 30. Raw files were searched using Proteome Discoverer software (v2.4, Thermo Sci-

entific) using SEQUEST as search engine using the SwissProt Arabidopsis thaliana database.

The search for total proteome included variable modifications of methionine oxidation and

N-terminal acetylation, and fixed modification of carbamidomethyl cysteine. Trypsin was

specified as the digestive enzyme. Mass tolerance was set to 10 pm for precursor ions and 0.2

Da for product ions. Peptide and protein false discovery rate was set to 1%. Data transforma-

tion, normalization and statistical analysis using heteroscedastic t-test was performed as pre-

viously described [71].

Proteins were sorted according to their descending or ascending linearity across the three

week experimental time course. To do so, we used a custom score taking into account mono-

tonic trend, reproducibility across replicates and magnitude of change across weeks. The

50 proteins with the highest descending and ascending trend scores were used to identify

enriched GO terms for biological processes using the Fisher’s Exact PANTHER Overrepresen-

tation Test (released 2020-07-28) and GO Ontology database DOI: 10.5281/zenodo.4081749

(released 2020-10-09). The Arabidopsis thaliana genome was used as a reference list. Protein

interaction maps for the same sets of 50 proteins were made using the STRING app from

Cytoscape [72].
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GUS staining and histology

Shoot apices and whole plants were fixed in 90% acetone on ice for 10 minutes, washed with

GUS staining buffer (5mM potassium ferricyanide and 5mM ferrocyanide in 0.1M PO4 buffer)

and incubated at 37˚C overnight in GUS staining buffer with 2mM X-Gluc. Embryos were

placed directly in X-Gluc (GoldBio) GUS staining buffer and incubated for 1hr. To quantify

GUS activity, a 4-methylumbelliferyl b-D-glucuronide (MUG) (Sigma-Aldrich) assay was car-

ried out as previously described [11]. For histological observations individuals were fixed in

FAA (3.7% formaldehyde), dehydrated in an ethanol series and cleared using Histo-Clear

(National Diagnostics). Following embedding in Paraplast Plus (Sigma-Aldrich) 8μM sections

were produced using an HM 355 microtome (Microm) and visualized using an Olympus

BX51 microscope with a DP71 camera attachment (Olympus).

Leaf measurements

The angle of the leaf blade base was measured using two tangents from the blade base inter-

secting at the petiole. Blade length:width ratios were measured using the tip of the blade to the

petiole junction (length) and the widest point of the blade. Measurements of leaf shape were

made using ImageJ [73].

Quantification and statistical analyses

Details of all statistical analyses, including the type of statistical test, sample size, replicate

number and significance threshold, are included in the relevant Fig legend. For figures featur-

ing boxplots, boxes display the IQR (boxes), median (lines), and values beyond 1.5� IQR (whis-

kers); mean values are marked by a solid diamond (◆). Statistical analyses were carried out

using RStudio [74] and Microsoft Excel.

Supporting information

S1 Fig. val1-5(sd) is an antimorphic allele. (A) Sequence alignment of the B3 DNA-binding

domain N-arm of Arabidopsis LAV family members and the maize ABI3 ortholog VP1. Num-

bers correspond to amino acid sequence position, colors correspond to the ClustalX amino

acid color scheme. In the val1-5(sd) mutant a C>T base substitution converts an arginine to a

cysteine. (B) val1-5(sd) complementation test with the null val1-2 allele. (C) Rescue of the

val1-5(sd) abaxial trichome phenotype with a VAL1 genomic sequence. Independent T1 lines

are shown. (D) Allele heterozygosity testing. (B-D) Boxes display the interquartile range (IQR)

(boxes), median (lines) and values beyond 1.5�IQR (whiskers); mean values are marked by υ.

Samples sizes are displayed on the graph. Statistically distinct genotypes were identified by

one-way ANOVA with post hoc Tukey multiple comparison test (letters indicate statistically

distinct groups; P< 0.05), all plants grown in LD. (E) qRT-PCR analysis of gene expression in

whole seedlings harvested at 7 DAG in LD conditions. Each data point represents a biological

replicate and is the average of three technical replicates. Bars represent the mean and error

bars mean±s.e.m. Asterisks represent significant difference between WT and val2-4 calculated

by an unpaired two-tailed t-test (��� P< 0.0005). (F) Heteroblastic series of lines shown in

Fig 1.

(TIF)

S2 Fig. VAL genes redundantly regulate miR156 expression. qRT-PCR analyses of gene

expression in shoot apices with leaf primordia (LP)� 1mm removed at 1, 2 and 3 weeks. All

plants were grown in SD conditions. Each data point represents a biological replicate and is

the average of three technical replicates. Coloured lines represent the mean and black lines
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mean±s.e.m. Asterisks represent significant differences between WT and val mutants at the

same time point, calculated by an unpaired two-tailed t-test with a Bonferroni correction for

multiple comparisons (� P< 0.025; �� P< 0.005; ��� P< 0.0005).

(TIF)

S3 Fig. VAL1 binds consistently to MIR156A and MIR156C during vegetative develop-

ment. (A) Schematic depicting the location of primers used for ChIP-qPCR, the sequences

encoding the miR156 hairpin and mature miRNA are coloured green and blue respectively.

(B) Anti-HA ChIP-qPCR of WT Col control plants at 2W and VAL1::VAL1-HA; val1-2;
FRI-Sf2 plants at 1, 2 and 3W of growth. The data is presented as percentage input normalized

to a control locus (UBQ10 or TA3) and is displayed relative to WT. Each data point represents

a biological replicate and is the average of three technical replicates, bars represent the mean

and error bars the mean±s.e.m. Plants were grown in SD conditions.

(TIF)

S4 Fig. RY sites are not required for the temporal decline of MIR156C. (A) qRT-PCR analy-

ses of gene expression in shoot apices with LP� 1mm removed at 1 and 2 weeks. Bars repre-

sent the average of three technical replicates for a single biological replicate of pooled T1

plants, at least 15 independent T1 plants were pooled for each sample. qm = mir156a mir156c
mir157a mir157c quadruple mutant, tm = mir156a mir157a mir157c triple mutant. Plants were

grown in SD conditions.

(TIF)

S5 Fig. VAL genes do not regulate SPL9 chromatin state. (A, B) Temporal analysis of histone

modification scalculated by ChIP-qPCR. Each data point represents a biological replicate and

is the average of three technical replicates. Lines represent the mean and bars represent the

mean±s.e.m., (A) H2AK121ub values are relative to input and normalised to ABI3 as an inter-

nal control. (B) H3K27me3 values are relative to H3 and normalised to STM as an internal

control. Plants were grown in SD conditions.

(TIF)

S6 Fig. VAL1 expression is dependent on genetic elements in the coding sequence of the

gene. (A) Torpedo-stage embryos of two-independent homozygous transgenic lines each

expressing a transcriptional (top panel) or translational (bottom panel) VAL1-GUS reporter

construct. (B) Seedlings at 3 DAG. Each number designates an independent homozygous

transgenic line. Arrow heads point to initiating lateral root primordia. All plants were grown

in LD.

(TIF)

S7 Fig. Proteomic changes during vegetative development. (A,B) The 50 proteins with the

strongest increasing or decreasing trend score during vegetative development in the experi-

mental sample only (see Methods for details). (A) GO terms enriched within the 50 proteins

that have the strongest increasing or decreasing trend score. (B) Interaction networks for each

set of 50 proteins, the darker the color the stronger the increasing (red) or decreasing (blue)

trend score.

(TIF)

S1 Table. Primer sequences. This table includes all the primer sequences used in this study.

(XLSX)

S1 Data. Proteins detected by mass spectrometry following anti-HA immunoprecipitation.

Related to Fig 7. This dataset includes the raw mass spectrometry results and data processing
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for IP-samples.

(XLSX)

S2 Data. Total proteome changes during vegetative development. Related to Fig 7. This

dataset includes the raw mass spectrometry results and data processing for total proteome

samples.

(XLSX)

S3 Data. Underlying data for all figures. This dataset includes all the data used to generate

Figs 1–6 and S1–S6 Figs.

(XLSX)
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