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It is known that the microbiome affects human physiology, emotion, disease, growth, and
development. Most humans exhibit reduced appetites under high temperature and high
humidity (HTHH) conditions, and HTHH environments favor fungal growth. Therefore, we
hypothesized that the colonic mycobiota may affect the host’s appetite under HTHH
conditions. Changes in humidity are also associated with autoimmune diseases. In the
current study mice were fed in an HTHH environment (32°C ± 2°C, relative humidity 95%)
maintained via an artificial climate box for 8 hours per day for 21 days. Food intake, the
colonic fungal microbiome, the feces metabolome, and appetite regulators were
monitored. Components of the interleukin 17 pathway were also examined. In the
experimental groups food intake and body weight were reduced, and the colonic
mycobiota and fecal metabolome were substantially altered compared to control
groups maintained at 25°C ± 2°C and relative humidity 65%. The appetite-related
proteins LEPT and POMC were upregulated in the hypothalamus (p < 0.05), and NYP
gene expression was downregulated (p < 0.05). The expression levels of PYY and O-
linked b-N-acetylglucosamine were altered in colonic tissues (p < 0.05), and interleukin 17
expression was upregulated in the colon. There was a strong correlation between colonic
fungus and sugar metabolism. In fimo some metabolites of cholesterol, tromethamine,
and cadaverine were significantly increased. There was significant elevation of the
characteristic fungi Solicoccozyma aeria, and associated appetite suppression and
interleukin 17 receptor signaling activation in some susceptible hosts, and disturbance
of gut bacteria and fungi. The results indicate that the gut mycobiota plays an important
role in the hypothalamus endocrine system with respect to appetite regulation via the
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gut-brain axis, and also plays an indispensable role in the stability of the gut microbiome
and immunity. The mechanisms involved in these associations require extensive
further studies.
Keywords: colonic mycobiota, host appetite, gut-brain axis, climate change, immunity, IL-17R signaling
INTRODUCTION

Our understanding of when and how abruptly this climate-driven
disruption of biodiversity will occur is limited because biodiversity
forecasts typically focus on individual snapshots of the future. It is
certain that biodiversity is threatened by climate change. Climate
change can have adverse effects on biodiversity, by shifting species
distributions (Barnosky et al., 2012; Wernberg et al., 2016; Provost
et al., 2017), increasing extinction rates (Hultman et al., 2015),
altering breeding times (Miller et al., 2018; Lv et al., 2020), and
changing plant growth periods (Piao et al., 2019).

An increasing number of reports indicate that climate change
effects the microbial diversity in soil, forests, and oceans (Sen and
Samanta, 2015; Ladau et al., 2018; Malard and Pearce, 2018;
Praeg et al., 2019). Recent research suggests that gut microbes are
involved in nearly every aspect of our lives, from nutrition
(Gentile and Weir, 2018), to behavior (O’Toole and Jeffery,
2015; Torres-Fuentes et al., 2017; Strandwitz, 2018), to diseases
and mental health (Jiang et al., 2017; Quigley, 2017; Brial et al.,
2018; Strandwitz, 2018). Studies on gut microflora have generally
focused on the characteristics of bacteria, and ignored the
potential effects of fungi on metabolic health.

Although fungi are only a small subset of microbes, they are
very important in homeostatic balance (Li et al., 2019; Richard
and Sokol, 2019). Many fungi may serve as a pathogen reservoir,
and also play a key role in maintaining the functioning of the gut
microbiota (Leonardi et al., 2018; Jones et al., 2019; Zhang et al.,
2020). Specifically, Malassezia spp. was enriched markedly in
both mice and humans. Ablation of the mycobiome was
protective against tumor growth in slowly progressive and
invasive models of pancreatic ductal adenocarcinoma, and
repopulation with a Malassezia species accelerated oncogenesis
(Aykut et al., 2019; Wolf et al., 2020). Thus, it is very important
to determine the composition and function of intestinal fungi
that influence human health.

Temperature and humidity have been linked to almost all
human diseases, such as influenza (Sooryanarain and
Elankumaran, 2015), cardiovascular mortality (Zeng et al.,
2017), chronic obstructive pulmonary disease (Mu et al., 2017),
allergic rhinitis (Duan et al., 2019), and arthritis (Bai et al., 2012;
Bossema et al., 2013; Beukenhorst et al., 2020), among others
(Onozuka and Hashizume, 2011; Balato et al., 2013; Yang et al.,
2017). Infectious diseases such as coronavirus disease 2019 and
H7N9 are evidently particularly affected by temperature and
humidity (Zhang et al., 2015; Yao et al., 2020). A study using a
guinea pig model provided direct experimental evidence
supporting the role of weather conditions in the dynamics of
influenza, thereby addressing a long-standing question
fundamental to the understanding of influenza epidemiology
gy | www.frontiersin.org 2
and evolution (Lowen et al., 2007; Sooryanarain and
Elankumaran, 2015). Potential links between Candida auris
and climate change (Hofer, 2019) and many skin diseases
(Balato et al., 2013; Balato et al., 2014) have been suggested. In
traditional Chinese medicine the climatic factors of season,
weather, wind, temperature, and humidity are comprehensively
considered in the diagnosis of human diseases. Climatic
temperature and humidity can substantially affect pathogenic
microorganisms and the occurrence and development of diseases
related to them. In the present study temperature and humidity
were investigated with the aim of generating experimental data
on the effects of climatic factors on microorganisms, particularly
fungi, and host health.
METHODS

Animals and Treatments
Male C57BL/6 mice weighing 14–16 g and aged 28–35 days were
purchased from the Center for Laboratory Animals, Guangdong
Province (Certification number SCXK[Yue]2018-0002, Table 1).
They were maintained in a temperature-controlled (25°C) and
humidity-controlled (55% ± 10%) room at a 12-h light–dark cycle
in an ordinary clean environment within the Guangdong Institute
of Microbiology. Food and water were available to the mice. The
Animal Ethics Committee of the Guangdong Institute of
Microbiology approved all experimental protocols. All efforts were
made to minimize the number of mice used, and their suffering.

Model 1
Mice were randomly divided into two groups of 16; an
experimental group and a control group. The control group
was not treated. The experimental group was exposed to high
temperature and high humidity (HTHH) conditions
(temperature 32°C ± 2°C, relative humidity 95%) via an
artificial climate box (Figure 1A).

Model 2
Mice were randomly divided into two groups of 16, the treatment
group, and the control group. The treatment groups were
September 2021 | Volume 11 | Article 657807
TABLE 1 | Experimental Model: Organisms/Strains.

Reagent or
Resource

Source Identifier Official
website

Mouse:
C57BL/6

the Center of Laboratory Animals of
Guangdong Province (SCXK [Yue]
2008-0020, SYXK [Yue] 2008-0085

N/A http://www.
gdmlac.com.cn/

http://www.gdmlac.com.cn/
http://www.gdmlac.com.cn/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Guo et al. Fungi and Host Interact
A

B

D

E

C

FIGURE 1 | Colonic mycobiota dysbiosis under HTHH conditions (A) Schematic diagram of the HTHH model. (B) Alpha diversity analysis of colonic fungal
microbiota, and the beta diversity analysis effects ACE, the Chao1 estimator, Simpson’s diversity index, and the Shannon diversity index. (C) Principal component
analysis. (D) Histogram of microbe distributions at the order, family, genus, and species levels. Only the top ten most abundant species are individually shown, and
the additional microbes are combined as “Others”. “Unclassified” represents species that have not been taxonomically annotated. (E) Analysis of variance between
groups at the species level, selecting five with the greatest changes in abundance.
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generated by gavage (ig) of 0.4 mL Solicoccozyma aeria (7.0 × 108

colony-forming units [CFU]/mL) once a day for 2 weeks. The
control group was generated by gavage (ig) of 0.4 mL distilled
water once a day for 2 weeks (Figure 4A).
Saliva Collection From Humans During
Warm and Humid Conditions
From May to June in Guangdong in 2020, volunteers with a lack
of appetite and a greasy tongue coating due to warm and humid
conditions were recruited. According to our long-term
observations, people living in humid conditions or warm and
humid conditions tend to exhibit a thick and greasy tongue coating.
Microbiome ITS and 16S rDNA Analysis
Colonic digesta were collected after mice were killed, then frozen
in liquid nitrogen. Saliva was collected in a tube with a DNA-
protective fluid. Total DNA was extracted from 250–500mg
of sample.
Construction and Sequencing
Primers were designed based on the conservative regions of the
genes of interest, and a sequencing connector was added to the ends
of the primers. Microbial 16S rDNA genes were amplified using the
forward primer 338F 5’-ACTCCTACGGGAGGCAGCA-3’ and the
reverse primer 806R 5’-GGACTACHVGGGTWTCTAAT-3’.
Microbial ITS genes were amplified using the forward primer
ITS1F 5’-CTTGGTCATTTAGAGGAAGTAA-3’ and the reverse
primer ITS2 5’-GCTGCGTTCTTCATCGATGC-3’. PCR
amplification was performed and the products were purified,
quantified, and homogenized to form a sequencing library. The
library was sequenced via an Illumina HiSeq 2500. The original
image data files obtained via high-throughput sequencing (Illumina
HiSeq and other sequencing platforms) were analyzed and converted
into original sequencing reads by Base Calling, and the results were
stored in FASTQ (fq) file format, which contained the sequence
information and the corresponding sequencing quality information.
Data is stored in SRA and the access can be found in Table 2.
GC-MS Fecal Metabolomics Analysis
Each 40-mg feces sample was homogenized in 400 mL deionized
water containing 10 mg/mL L-norvaline as an internal standard.
After centrifugation at 14,000 g and 4°C for 15 min, 300 mL of
supernatant was transferred. The extraction was repeated by
adding 600 mL of ice-cold methanol to the residue. The
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
supernatants from two extractions were combined. A 400-mL
sample of combined supernatants and 10 mL of internal standard
solution (50 mg/mL of L-norleucine) were combined and
evaporated to dryness under a nitrogen stream. The residue
was reconstituted in 30 mL of 20 mg/mL methoxyamine
hydrochloride in pyridine, and the resulting mixture was
incubated at 37°C for 90 min. A 30-mL aliquot of BSTFA with
1% TMCS was added to the mixture and derivatized at 70°C for
60 min prior to GC-MS metabolomics analysis.

Metabolomics instrumental analysis was performed using an
Agilent 7890A gas chromatography system coupled with an
Agilent 5975C inert MSD system (Agilent Technologies Inc.,
CA, USA). An Optima® 5 MS Accent fused-silica capillary
column (30 m × 0.25 mm × 0.25 mm; Macherey-Nagel, Düren,
Germany) was utilized to separate the derivatives. Helium
(> 99.999% pure) was used as a carrier gas at a constant flow
rate of 1 mL/min through the column. The injection volume was
1 mL in split mode (2:1), and the solvent delay time was 6 min.
The initial oven temperature was 70°C for 2 min, then it was
increased to 160°C at a rate of 6°C per min, then to 240°C at a
rate of 10°C per min, then to 300°C at a rate of 20°C per min, and
lastly it was held at 300°C for 6 min. The temperatures of the
injector, transfer line, and electron impact ion source were set to
250°C, 260°C, and 230°C, respectively. The electron ionization
energy was 70 eV, and data were collected in full scan mode (m/z
50–600).
Correlational Analysis of
Microbiome Metabolomics
Spearman’s correlation conjoint analysis of different colonic
fungal genera and different fecal metabolites was performed. R
was used to generate a heat map. Red represents positive
correlations and blue represents negative correlations. Based
on the results of the correlational analysis, correlation
networks were constructed by selecting p values < 0.01 and
correlation coefficients > 0.7 using Cytoscape software.
Histopathology and Immunostaining
Colonic tissues were removed and fixed in 4% paraformaldehyde
at pH 7.4 for pathological observation. The samples were then
washed, dehydrated, transparency, dipped in paraffin wax, and
embedded, then 3-mm sections were generated. Immunostaining
and a two-step peroxidase conjugated polymer technique
(DAKO Envision kit, DAKO, Carpinteria, CA, USA) were
applied, then the slides were observed via light microscopy.
TABLE 2 | Deposited Data.

Resource Description Identifier

PRJNA693676 Changes of colonic fungal microbiome in C57BL/6 mice under warm and humid environment (T=32 ± 2 °C, RH=95%) SRA
PRJNA694096 Fungal microbiome in colon of C57BL/6J mice by gavage Solicoccozyma aeria SRA
PRJNA694055 Bacterial microbiome in colon of C57BL/6J mice by gavage Solicoccozyma aeria SRA
PRJNA690659 Changes of human saliva fungal microbiomes in high temperature and high humidity environment SRA
September 2021 | Volume 11 | Artic
le 657807
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Western Blotting
Briefly, colon and hypothalamus tissue were dissected from mice
and proteins were extracted with radioimmunoprecipitation assay
lysis buffer. The proteins were separated via sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and transferred onto
polyvinylidene fluoride membranes. After blocking with 5% skim
milk in Tris-buffered saline (20 mM Tris-HCl, 500 mM NaCl, pH
7.4) with 0.2% Tween-20 (Aladdin, T104863) the membranes were
probed with antibodies overnight at 4°C, followed by incubation
with a horseradish peroxidase-conjugated goat anti-mouse
(Servicebio, G2211-1-A) or goat anti-rabbit (Servicebio, G2210-2-
A) secondary IgG antibody (1:2000). The primary antibodies and
the reagents used were found in Tables 3 and 4.
Transcriptome Analysis
RNA concentration and purity was measured using NanoDrop
2000 (Thermo Fisher Scientific, Wilmington, DE). RNA integrity
was assessed using the RNA Nano 6000 Assay Kit of the Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA, USA). A
total amount of 1 mg RNA per sample was used as input material
for the RNA sample preparations. Sequencing libraries were
generated using NEBNext UltraTM RNA Library Prep Kit for
Illumina (NEB, USA) following manufacturer’s recommendations
and index codes were added to attribute sequences to each sample.
Briefly, mRNA was purified from total RNA using poly-T oligo-
attached magnetic beads. Fragmentation was carried out using
divalent cations under elevated temperature in NEBNext First
Strand Synthesis Reaction Buffer (5X). First strand cDNA was
synthesized using random hexamer primer and M-MuLV Reverse
Transcriptase. Second strand cDNA synthesis was subsequently
performed using DNA Polymerase I and RNase H. Remaining
TABLE 4 | Chemicals, Reagent kit, Peptides, and Recombinant Proteins.

Reagent or Resource Sourc

RNAiso Plus Takara
DNAiso Reagent Takara

PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) Takara

TB Green® Premix Ex Taq™ II (Tli RNaseH Plus) Takara

Glycogen Periodic Acid Schiff (PAS/Hematoxylin) Stain Kit Solarbio
Mouse IL-17(Interleukin 17) ELISA Kit E-EL-M0047c Elabscience
Saliva DNA Storage Tube cwbio

T-PER™ Tissue Protein Extraction Reagent Thermo Scie
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overhangs were converted into blunt ends via exonuclease/
polymerase activities. After adenylation of 3’ ends of DNA
fragments, NEBNext Adaptor with hairpin loop structure were
ligated to prepare for hybridization. In order to select cDNA
fragments of preferentially 240 bp in length, the library
fragments were purified with AMPure XP system (Beckman
Coulter, Beverly, USA). Then 3 ml USER Enzyme (NEB, USA)
was used with size-selected, adaptor-ligated cDNA at 37°C for
15 min followed by 5 min at 95°C before PCR. Then PCR was
performed with Phusion High-Fidelity DNA polymerase,
Universal PCR primers and Index (X) Primer. At last, PCR
products were purified (AMPure XP system) and library quality
was assessed on the Agilent Bioanalyzer 2100 system. The
clustering of the index-coded samples was performed on a cBot
Cluster Generation System using TruSeq PE Cluster Kit v4-cBot-
HS (Illumia) according to the manufacturer’s instructions. After
cluster generation, the library preparations were sequenced on an
Illumina platform and paired-end reads were generated. KOBAS
software was used to test the statistical enrichment of differential
expression genes in KEGG pathways (Mao et al., 2005).
Description of S. aeria
S. aeria were obtained from the feces of a patient under HTHH
conditions. The results of 16S rDNA identification are shown in
the Supplementary Materials.
S. aeria Preparation
S. aeria were cultured in Yeast Mold Broth (YM broth) at 37°C
for 18 hours, then fungal cells were concentrated via
centrifugation at 14,000 rpm for 15 min and washed twice
TABLE 3 | Antibodies.

Reagent or Resource Source Identifier Working
concentration

Official website

Leptin Receptor Antibody - C-terminal Affinity DF7139 1:2000 http://www.affbiotech.com/
POMC Antibody - C-terminal Affinity DF7154 1:1500 http://www.affbiotech.com/
IL17A Antibody - Internal Affinity DF6127 1:1000 http://www.affbiotech.com/
Peptide YY Polyclonal Antibody proteintech 24294-1-AP 1:500 http://www.ptgcn.com/
Anti-IL-23 antibody Abcam ab45420 1:1000 https://www.abcam.com/
Anti-O-GlcNAc mouse mAb PTM BIO PTM-952 1:1000 http://www.ptm-biolab.com.cn/
e Iden

9109
9770Q
RR047

RR820

G1281
E-EL-M
CW26

ntific™ 78510
tifier O

http://www.taka
http://www.taka

A http://www.taka

A http://www.taka

http://www.sola
0047c https://www.ela

67M https://www.cw
https://www.the
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rabiomed.com.cn/
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rmofisher.com/cn/zh/home.html
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TABLE 6 | Microbial diversity index (�x  ±  SD).

Group ACE Chao1 Simpson Shannon

Control 475.2 ± 26.3 477.2 ± 26.5 0.8765 ± 0.0055 4.3248 ± 0.097
Model 468.1 ± 50.2 474.5 ± 50.0 0.9738 ± 0.0023 6.7435 ± 0.0575
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with sterilized phosphate-buffered saline (Ph 7.2). OD values
were measured in triplicate at 600 nm, and the average value was
used. The fungal cells were diluted to a final dose of 7.0 × 108

CFU/mL (OD 600 = 1 was approximately equal to a bacterial
concentration of 1.0 × 108 CFU/mL).
Statistical Analysis
Data are described as means ± the standard deviation of at least
three independent experiments. Datasets that involved more than
two groups were analyzed via one-way analysis of variance using
Statistical Package for the Social Sciences software (SPSS version
17.0, Abacus Concepts, Berkeley, CA, USA) or Prism8 software
(GraphPad, San Diego, CA, USA, Table 5).
RESULTS

Colonic Mycobiota Dysbiosis Under
HTHH Conditions
In alpha diversity analysis of colonic mycobiota the indexes of
Shannon differed significantly (Figure 1B, Table 6), and in
principal component analysis there were differences between
the control group and the experimental group (Figure 1C).
Colonic mycobiota changes were assessed via the ITS1
technique. A histogram of species distribution at the levels of
order, family, genus, and species are shown in Figure 1D. The
relative abundances of Zygosaccharomyces, Wickerhamomyces,
Starmerella, Stagonospora, Pichia, Sporobolomyces, Rhodotorula,
Rhizophagus, Purpureocillium, Plectosphaerella, Penicillium,
Mortierella , Kodamaea , Kazachstania , Hanseniaspora ,
Fusarium, Filobasidium, Candida, and Botryotrichum were
increased (Figure 1D, Table 7, and Figure S1). The species
that changed most significantly are shown in Figure 1E.
Histograms of species distribution indicate that HTHH
conditions altered the colonic mycobiota extensively.
HTHH Conditions and Appetite Regulation
via the Gut-Brain Axis
Body weight was lost and fecal traits were altered in the
experimental group (Figures 2A, B). Expression levels of LEPT
and POMC proteins in the hypothalamus determined via
western blotting were altered in the experimental group, as was
TABLE 5 | Software and Algorithms.

Reagent or Resource Source Identifier

GraphPad Prism 8.0.1 GraphPad Software https://www.
graphpad.com/

R version 4.0.1 Bell Laboratories (formerly AT&T,
now Lucent Technologies)

https://www.r-
project.org/
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the expression of NPY determined via qPCR (Table 8), and the
levels of all three were associated with leptin (Figure 2C, p <
0.01). This suggests that HTHH conditions may influence the
central nervous system and negative feedback regulation of
appetite and metabolism, and immunohistochemistry results
exhibited the same trends (Figure 2D). PYY was activated in
the colon (Figures 2C, D). GlcNAcylation was increased in the
colon in the experimental group (Figure 2E, p < 0.05). Periodic
acid–Schiff staining showed that glycogen and mucin were
increased in colon tissues in the experimental group (Figure 2D).
Fecal Content Metabolomics and
HTHH Conditions
In metabolic analysis of fecal contents in the experimental group 17
different metabolites were detected via GC/MS. Of these 17,
D-glucose and maltose were downregulated whereas the other 15
were upregulated (Figure S2A, Table 9), including oleanitrile, stearic
acid, octadecadienoic acid, aspartic acid, tromethamine, norleucine,
alanine, glycine, cadaverine, oxoproline, hydroxy-L-norleucine,
phosphonic acid, cholesterol, and fucose (Figure S2A, Table 9).
Conjoint Correlational Analysis of
Mycobiota Genus-Fecal Metabolites
Based on Spearman’s correlational analysis, correlation networks
were generated using a probability threshold of p < 0.01 (the top 20
of changes in abundance) and a correlation coefficient threshold of
> 0.7 (Figures S2B, C). Themycobiota generaCandida, Starmerella,
Wickerhamomyces, Pichia, and Zygosaccharomyces were
significantly associated with the metabolites phosphonic acid, D-
glucose, stearic acid, L-5-oxoproline, 9,12-(Z, Z)-octadecadienoic
acid, oleanitrile, L-alanine, 2,6-bis(tert-butyl)phenol, 6-hydroxy-L-
norleucine, L-norleucine, cholesterol, L-aspartic acid, glycine,
tromethamine, (-)-fucose, cadaverine, and maltose.

Some harmful metabolites were positively correlated with the
abundance of fungus. Metabolites of cholesterol were positively
correlated with Penicillium, Fusarium, Mortierella, Plectosphaerella,
Purpureocillium, Botryotrichum, and Candida (Figures S2B, C).
Metabolites of stearic acid were positively correlated with
Penicillium, Fusarium, Mortierella, Plectosphaerella, Tausonia,
Trichoderma, Solicoccozyma, Rhizophagus, Lecanicillium,
Purpureocillium, Botryotrichum, and Candida (Figures S2B, C).
Metabolites of tromethamine were positively correlated with
Penicillium, Fusarium, Mortierella, Humicola, Plectosphaerella,
Tausonia, Trichoderma, Solicoccozyma, Rhizophagus, Lecanicillium,
Pichia, Candida, Acrocalymma, Wickerhamomyces, Starmerella,
Zygosaccharomyces, Botryotrichum, and Purpureocillium (Figures
S2B, C). Metabolites of D-glucose were negatively correlated with
Penicillium, Fusarium, Mortierella, Plectosphaerella, Tausonia,
September 2021 | Volume 11 | Article 657807
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TABLE 7 | 71 fungus at genus level in normal group were changed by the condition of the high temperature and high humidity (p value <0.01).

Genus Changes in abundance Modify Genus Changes in abundance Modify

Penicillium 7.8869% up Pseudogymnoascus 0.0958% up
Fusarium 6.3765% up Paraglomus 0.0804% up
Mortierella 4.1440% up Hannaella 0.0763% up
Plectosphaerella 1.7074% up Malassezia 0.0751% up
Tausonia 1.6460% up Microdochium 0.0738% up
Humicola 1.4352% up Exophiala 0.0735% up
Rhizophagus 1.0118% up Mycosphaerella 0.0722% up
Solicoccozyma 0.9925% up Stropharia 0.0720% up
Trichoderma 0.9365% up Septoria 0.0691% up
Lecanicillium 0.8303% up Botrytis 0.0687% up
Alternaria 0.8222% up Nigrospora 0.0651% up
Fusicolla 0.7223% up Phialophora 0.0620% up
Acrocalymma 0.7166% up Conlarium 0.0563% up
Purpureocillium 0.6670% up Leptosphaeria 0.0527% up
Botryotrichum 0.6629% up Thelonectria 0.0380% up
Cladosporium 0.5244% up Conocybe 0.0373% up
Clonostachys 0.4180% up Knufia 0.0317% up
Leucoagaricus 0.4045% up Achroiostachys 0.0296% up
Coniochaeta 0.3746% up Paraphoma 0.0293% up
Thielavia 0.3625% up Clitopilus 0.0288% up
Trichosporon 0.2555% up Cyphellophora 0.0269% up
Chaetomium 0.2544% up Didymella 0.0207% up
Staphylotrichum 0.2478% up Peziza 0.0148% up
Corynascella 0.2403% up Saccharomyces 0.0107% up
Microascus 0.2362% up Sterigmatomyces -0.0113% down
Marasmius 0.1931% up Stagonospora -0.0130% down
Codinaea 0.1916% up Kodamaea -0.0145% down
Filobasidium 0.1845% up Hyphopichia -0.0165% down
Panaeolus 0.1692% up Sporobolomyces -0.0309% down
Stachybotrys 0.1491% up Rhodotorula -0.0368% down
Wallemia 0.1239% up Hanseniaspora -0.2018% down
Papiliotrema 0.1174% up Kazachstania -0.5368% down
Polyschema 0.1145% up Starmerella -2.8127% down
Tetracladium 0.1102% up Wickerhamomyces -4.2380% down
Pichia -20.1428% down Zygosaccharomyces -33.6231% down
Candida -2.5646% down
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Humicola, Rhizophagus, Solicoccozyma, Trichoderma, Lecanicillium,
Alternaria, Fusicolla, Acrocalymma, Purpureocillium, and
Botryotrichum (Figures S2B, C). Metabolites of maltose were
negatively correlated with Penicillium, Fusarium, Mortierella,
Plectosphaerella, Rhizophagus, Purpureocillium, and Botryotrichum
(Figures S2B, C).
S. aeria Was Higher in the Saliva of
Humans Under HTHH Conditions
Tongue coatings were thick and greasy during HTHH conditions
(Figure 3A). A species-level heatmap is shown in Figure 3B.
Mycosphaerella tassiana, Conocybe velutipes, Achroiostachys
betulicola, Morietella elongate, Beauveria pseudobassiana,
Exophiala equina, Schizothecium glutinans, Ophiocordyceps
graci l ioides , Preussia flanaganii , Ascochyta phacae ,
Solicoccozyma aeria, and Sporormiella megalospora were
increased, indicating that the saliva mycobiota was significantly
altered. The three most significantly affected species are shown in
Figure 3C. S. aeria was significantly altered in humans and mice.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
S. aeria-Associated Appetite Suppression
and IL-17R Pathway Activation in Mice
In western blotting analyses LEPT and PYY protein levels were
upregulated in the treatment group (Figure 4C, p < 0.05). This
suggests that S. aeria may influence the central nervous system,
and negative feedback regulation of appetite. Serum levels of IL-
17 (Figure 4B, p < 0.05), and colon tissue expression levels of IL-
23 and IL-17 were significantly upregulated (Figures 4D, E, p <
0.05). The IL-17RA pathway may be activated by gut microbiota
(Figure 4F), and is related to most autoimmune diseases, such as
rheumatoid arthritis, systemic lupus erythematosus, ankylosing
spondylitis (AS), and inflammatory bowel disease (Atarashi
et al., 2015; Kim et al., 2016). IL-23 may induce pathogenic
Th17 cells and promote inflammatory disease (Lee et al., 2020).
S. aeria and Gut Microbiota in
C57BL/6 Mice

In 16S rDNA sequencing analyses at the genus level the
relative abundances of Bacteroidales , Lactobacillales ,
September 2021 | Volume 11 | Article 657807
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Desulfovibrionales, Saccharimonadales, and Erysipelotrichales
were increased in the S. aeria-treated mice, whereas those of
Clostridiales, Verrucomicrobiales, Betaproteobacteriales,
Coriobacteriales, and Campylobacterales were reduced (Figure
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
5A, left). At the species level the relative abundances of
Muribaculaceae, Lactobacillus, Desulfovibrio, Tyzzerella 3, and
Dubosiella were increased, whereas those of Lachnospiraceae,
Akkermansia , Desulfovibrionaceae, Parasutterella, and
A

C

D E

B

FIGURE 2 | Effects of HTHH conditions on appetite in mice exerted via the gut-brain axis (A) Body weight in the experimental group was significantly lower than that
in the control group. (B) The appearance and morphology of feces differed in the control group and the experimental group. (C) Western blotting results of LEPT and
POMC expression in the hypothalamus, and PYY expression in the colon. NPY expression in the hypothalamus was detected via qPCR (n = 3, two-tailed Student’s
t-test. #p < 0.05, ##p < 0.01. (D) PYY and IL-17A expression detected via immunohistochemistry. Periodic acid–Schiff staining was used to detect glycogen and
mucin in colon tissue. (E) GlcNAcylation in the colon was detected using a pan anti-O-GlcNAc monoclonal antibody (n = 3).
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TABLE 9 | 17 fecal metabolites which in normal group changed by the condition
of the high temperature and high humidity (p value < 0.01).

Metabolite (M vs N) Modify Metabolite (M vs N) Modify

Phosphonic acid up Cholesterol up
Stearic acid up L-Aspartic acid up
L-5-Oxoproline up Glycine up
9,12-Octadecadienoic acid (Z,Z)- up Tromethamine up
Oleanitrile up (-)-Fucose up
L-Alanine up Cadaverine up
2,6-Bis (tert-butyl)phenol up Maltose down
6-Hydroxy-L-norleucine up D-glucose down
L-Norleucine up

TABLE 8 | Sequence-Based Reagents.

Gene Primer Sequence (5’!3’) Amplicon
Size

NPY Mus-NPY-F161 5’-ATGCTAGGTAACAAGCGAATGG-3’ 161
Mus-NPY-R161 5’-TGTCGCAGAGCGGAGTAGTAT-3’

GAPDH Mus-GAPDH-F117 5’-TCTCCTGCGACTTCAACA-3’ 117
Mus-GAPDH-R117 5’-TGTAGCCGTATTCATTGTCA-3’

Guo et al. Fungi and Host Interact
Lachnospiraceae NK4A136 group were reduced (Figure 5A,
right). In principal component analysis there were differences
between the control group and the treated group (Figure 5B).

In ITS sequencing analyses, at the genus level in the S. aeria-
treated group the relative abundance of Kazachstania was
increased, whereas those of Talaromyces, Chaetomium,
Trichoderma, Russula, Fusarium, Penicillium, Leptobacillium,
Aspergillus, and Mortierella were reduced (Figure 5C, left). At
the species level Kazachstania pintolopesii was significantly
increased, whereas Leptobacillium leptobactrum, Mortierella
humilis, Aspergillus brunneus, Wickerhamomyces anomalus,
Mortiere l la e longata , Saitozyma podzolica , Russula
subpallidirosea, Tolypocladium album, and Saccharomyces
cerevisiae were reduced (Figure 5C, right). In principal
component analysis there were differences between the control
group and the treated group (Figure 5D).

In previous studies enrichment of Escherichia-Shigella
(Proteobacteria), Veillonella (Firmicutes), Faecalibacterium
(Firmicutes), Eubacterium rectale group (Firmicutes),
Streptococcus (Firmicutes), Lachnospiraceae NK4A136 group
(Firmicutes), and reduced Prevotella strain 9 (Bacteroidetes),
Megamonas (Firmicutes), and Fusobacterium (Fusobacteria)
were detected in AS patients (Li et al., 2019). AS-enriched
species including Bacteroides coprophilus, Parabacteroides
distasonis, Eubacterium siraeum, Acidaminococcus fermentans
and Prevotella copri were identified in AS patients via
metagenomic analyses (Zhou et al., 2020). Desulfovibrionales is
the main producer of hydrogen sulfide in the intestinal tract.
High concentrations of hydrogen sulfide are associated with
intestinal inflammation, and Desulfovibrionales plays an
important role in the occurrence and development of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
inflammatory bowel disease (Dordević et al., 2021; Kushkevych
et al., 2021).

Lachnospiraceae NK4A136 group, Desulfovibrionales, and
Bactero ida le s were increased in trea tment group.
Desulfovibrionales could produce toxic H2S and have a strong
association with IBD (Inness et al., 2007), and that S. aeria is a
powerful trigger in some susceptible hosts. S. aeria significantly
altered the abundance of K. pintolopesii. It’s reported that
C.albians is not a natural colonizer of mucosal surfaces in
these-the rodent equivalent of normal flora yeast is
K.pintolopesii (Naglik et al., 2008), thus we speculate that K.
pintolopesii may be a conditional pathogen which activate the
IL17A pathway.
DISCUSSION

Illness-associated behaviors such as loss of appetite, fatigue, low-
grade fever, drowsiness, and/or chills usually indicate pathogenic
infection and/or low immunity. In the current study food intake
and body weight were reduced, and in the hypothalamus the
appetite-related proteins LEPT and POMC were upregulated
(p < 0.05) and NPY gene expression was downregulated
(Figure 2, p < 0.05). In colonic tissues the expression levels of
PYY and O-GlaNAc were altered, as was periodic acid–Schiff
staining (Figure 2, p < 0.05). IL-17 expression was upregulated in
the colon, indicating that in mice appetite and immunity were
altered under HTHH conditions. Other colonic mycobiota and
fecal metabolome parameters were also significantly altered
under HTHH conditions (Figures 1 and 2), indicating that
HTHH can change the mycobiota and metabolome, then
influence host behaviors.

Little attention has been paid to autoimmune diseases
triggered by weather or high humidity. Few studies have
investigated relationships between humidity-induced microbial
alterations and autoimmune diseases, and no causative
characteristic microbe has been reported. In the present study
environmental temperature and humidity could trigger
homeostasis changes in human microbes, especially fungi,
activate IL17A pathway and elevate the level of IL17A in serum.
There was also significant elevation of the characteristic fungi S.
aeria, and that species was present at high relative abundance in
the HTHH mice and humans. Appetite suppression and IL-17R
signaling activation were detected in mice, as were disturbances of
the gut microbiota and mycobiota. S. aeria may trigger K.
pintolopesii proliferation in some susceptible hosts, but this
requires extensive further investigation.

In previous studies germ-free conditions or limited
microbiota content attenuated arthritis severity in the
ZAP70W163C BALB/c (SKG) mouse model (Rehaume et al.,
2014), and spondylitis and colitis disappear when breeding in
the GF state in the HLA-B27 transgenic mouse model (Taurog
et al., 1994). These observations indicate that microbes play an
important role in autoimmune diseases. Th17 cells and IL-17 are
September 2021 | Volume 11 | Article 657807
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involved in host defenses by way of immunothrombosis, and
promote the removal of pathogenic microorganisms (Amezcua
Vesely et al., 2019; Kitamoto et al., 2020), but too much IL-17A is
fatal for the host, and can lead to a variety of inflammatory or
autoimmune diseases (Gravallese and Schett, 2018; Jo
et al., 2018).

It is not clear what substances cause the activation of
autoimmune disease and activate the IL-17RA pathway, or
whether S. aeria is significantly increased during the onset of
inflammatory bowel disease, rheumatoid arthritis, AS and other
autoimmune diseases. HTHH conditions can lead to imbalanced
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
gut and oral microbiomes, particularly significant changes in
fungi, which provides a new perspective with respect to the study
of microbe-related diseases induced by climate changes. The
microbial diversity hosted by specific pathogen-free mice is
relatively simple, and the microbial diversity hosted by wild
mice is reportedly completely different, which imposes
substantial limitations on the study of interactions and
functions of the relevant microbes in the natural environment
(Rosshart et al., 2019). In the future, germ-free and ZAP70W163C

BALB/c (SKG) mice will be used to test the effects of S. aeria and
K. pintolopesii.
A B

C

FIGURE 3 | Fungal microbiome in saliva from humans during HTHH conditions (A) The appearance and morphology of the tongue coatings are different.
(B) Heatmap of the fungal microbiome at the species level. The x-coordinate represents species, and the 20 species with the lowest p values are shown. The
ordinate represents the relative abundance of species. Columns of different colors represent each sample. (C) The three with the greatest changes in abundance at
the species level (t-test). #p < 0.05.
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FIGURE 4 | Appetite suppression and IL17RA pathway activation by S. aeria gavage (A) Schematic diagram of the S. aeria gavage experiment. (B) Changes in
serum IL-17 determined using an enzyme-linked immunosorbent assay kit (n = 6, two-tailed Student’s t-test). (C) PYY expression levels in colon tissues, and LEPT
expression levels in the hypothalamus determined via western blotting (n = 3, two-tailed Student’s t-test). (D) IL-17A expression levels in colon tissues determined via
immunohistochemistry. (E) IL-23 and IL-17A expression levels in colon tissues determined via western blotting (n = 3, two-tailed Student’s t-test). #p < 0.05,
##p < 0.01, ###p < 0.001 (F) Enrichment analysis of colonic differentially expressed genes in KEGG pathway Note: The abscisate is the number of genes of interest
annotated in this entry, and the ordinate is each pathway entry. The color of the column represents the P value of the hypergeometric test.
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FIGURE 5 | Changes in the bacterial microbiomes and fungal microbiomes in the treatment group and the control group (A) Histogram of species distribution in the
bacterial microbiome (left, genus level; right, species level). (B) Principal component analysis. (C) Histogram of species distribution in the fungal microbiome (left,
genus level; right, species level). (D) Left, principal component analysis.
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Supplementary Figure 1 | Species-level heatmap Species-level
heatmap generated using sample abundance similarity for clustering. The
difference between two samples is represented visually by the change
in color gradient.

Supplementary Figure 2 | (A) Heatmap of significant metabolites depicting
differences between the control group and the experimental group. (B) Conjoint
analysis of 71 significantly different fungal genera and 17 significantly different fecal
metabolites (+p < 0.1, ++p < 0.05, +++ p < 0.01). (C) Spearman’s correlational
coefficients for different fungal genera (top 20 with respect to changes in
abundance) and 17 significantly different fecal metabolites. In the correlational
analysis the probability threshold used to construct correlation networks was p <
0.01, and the correlation coefficient threshold used was > 0.7. Blue nodes represent
metabolites, and yellow nodes represent fungal genera. The red line indicates a
positive correlation and the black line indicates a negative correlation. More nodal
connections indicates more associations with others, and the sizes of nodes
correspond with the change in abundance.

Supplementary Figure 3 | Fecal content metabolomics were altered under
HTHH conditions (A) Principal component analysis, PLS-DA analysis, and OPLS-
DA analysis of fecal metabolites. (B) Pathway analysis of fecal metabolites in the
control group and the experimental group.
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