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ABSTRACT

Background. The antidiuretic hormone (ADH) or arginine vasopressin (AVP) regulates the body’s water balance. Recently,
modifications in AVP levels have been related to osteoporosis during ageing and microgravity/bed rest. Therefore the
present study was devised to assess whether the absence of AVP, as in patients with central diabetes insipidus (CDI),
modulates renal calcium excretion.

Methods. We retrospectively analysed data from 12 patients with CDI with measured 24-h urinary excretion levels of
calcium. Data were available at the moment of the diagnosis when patients were drug-free and after therapy with dDAVP,
an analog of AVP. Hypercalciuria was defined as 24-h urinary Ca2þ >275 mg/day in males and >250 mg/day in females and a
urinary calcium (Ca):creatinine (Cr) ratio >0.20 mg/mg.

Results. Untreated CDI patients had a daily urinary Ca2þ excretion of 383 6 47 mg/day and a urinary Ca:Cr ratio of
0.26 6 0.38 mg/mg. The urine osmolarity significantly increased after the administration of dDAVP by 210% and the urinary
flow decreased by 72%. Furthermore, the estimated glomerular filtration rate (eGFR) increased by 7%, which did not reach
statistical significance. dDAVP treatment did not significantly modify the urinary Ca2þ concentration; however, the daily
calcium excretion and the urinary Ca:Cr ratio were significantly decreased (160 6 27 mg/day and 0.11 6 0.02 mg/mg,
respectively).

Conclusions. Patients with CDI show hypercalciuria even though urine is more diluted than normal controls, and dDAVP
reverses this effect. These data support the intriguing relationship between AVP and osteoporosis in ageing and
microgravity/bed rest.
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INTRODUCTION

It is commonly accepted that the antidiuretic hormone (ADH)
or arginine vasopressin (AVP), secreted by the neurohypophysis,

regulates the body’s water balance: increased serum osmolality
induces AVP secretion, which in turn increases
water absorption in the renal collecting ducts [1]. These cells
respond to the binding of AVP to the V2 receptor, thereby
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redistributing the aquaporin 2 channel (AQP2) from intracellular
vesicles to the apical plasma membrane [2]. The chronic
infusion of dDAVP, a non-pressor V2 receptor agonist, decreases
the fractional urinary excretion of calcium in Brattleboro rats, a
model of hereditary hypothalamic diabetes insipidus [3]. In
humans, the action of AVP on calcium renal excretion is still
debated. Data from four patients with central diabetes insipidus
(CDI) and four with nephrogenic diabetes insipidus (NDI)
showed increased calcium fractional excretion in 50% of CDI
patients and 25% of NDI patients. Furthermore, intravenous
dDAVP reduced Ca2þ fractional excretion (FE) from 1.71 to 0.58%
in CDI patients 3 h after injection, whereas it did not affect, as
expected, patients with NDI [4]. The reduction of calciuria by
AVP is also supported by the reduction of Ca2þ FE after water
load (which supposedly reduces AVP) in normal subjects.
However, the same authors also found hypercalciuria in the
presence of excessive secretion of ADH, as in the syndrome of
in appropriate secretion of ADH (siADH) [4], which would lead to
the opposite conclusion that AVP increases calciuria.

Additional insights from the role of AVP in the regulation of
urinary calcium excretion derive from children affected by
enuresis, a condition considered as an impaired effect of noc-
turnal AVP action on the collecting duct [5–8]. In that model of
human disease, there were three main findings:

1. hypercalciuria and reduced AVP secretion are associated
with reduced AQP2 excretion [6];

2. a low-calcium diet reduced hypercalciuria and re-established
the response to dDAVP as indicated by a reduction in
the frequency of enuresis, normalization of the higher night-
time than day-time diuresis ratio and increased urine osmo-
lality [7]; and

3. the proposal of a renal concentrating defect sustained by
negative regulatory feedback of calcium-sensing receptor
(CaSR) on aquaporin-2 expression [8].

However, several points are still debated on the role of
hypercalciuria in enuretic children [9]. Indeed, the administra-
tion of dDAVP to adults with nocturnal polyuria before sleep,
together with an improvement in urinary osmolality, increased
whole-day calcium excretion and reduced whole-day urinary
potassium without effects on urinary sodium excretion [10].
Finally, from the experimental point of view, recent evidence
failed to identify the presence of CaSR along the collecting duct,
questioning the presence of a potential functional interaction
between CaSR and AQP2 [11]. Therefore the present study was
devised to assess whether AVP modulates renal calcium excre-
tion in patients with CDI and hypercalciuria, a model that
seems to hold great potential.

MATERIALS AND METHODS

We retrospectively analysed patient data from the Renal Unit of
our university for the period 1980–2000, enrolling all patients with
CDI. A group of 12 patients was enrolled. This period was selected
because the patients admitted to the Nephrology Department
were studied by inulin clearance to measure the glomerular filtra-
tion rate (GFR), whereas at later times this method was no longer
available, at least in CDI patients.

Clinical and anthropometric data of participants are pre-
sented in Table 1. The study was approved by the Ethical
Committee of the Second University of Naples, Italy [12].

Patients did not use thiazide diuretic, known to reduce
calcium excretion, increasing proximal tubular calcium reab-
sorption. No concomitant diseases that may induce

hypercalciuria were known in any of these patients. They had
undergone neurosurgery for the removal of tumours in the
central nervous system. None of them was a renal stone for-
mer (ascertained by their narratives and by ultrasounds). The
diagnosis was based on clinical presentation (polyuria, poly-
dipsia), blood AVP and plasma and urine osmolarity at baseline
and after water deprivation.

They underwent two ambulatory admissions to the University
Hospital of the University of Campania Luigi Vanvitelli, immedi-
ately before starting treatment for their polyuric state and after
1 week of intranasal therapy with dDAVP (a non-pressor analogue
of AVP-Minirin) at a dose of 10lg three times a day.

Data collection and measurement of GFR

GFR was measured as the inulin clearance. Inulin was given as
a bolus (40 mg/kg body weight) followed by constant intrave-
nous infusion to keep the plasma concentration at 20 mg/dL, as
described elsewhere [12, 13]. After 90 min of equilibration, the
baseline GFR was measured by the inulin clearance method us-
ing the average of three determinations, each lasting for 30 min.
The plasma clearance of inulin was calculated by the standard
formula and corrected for 1.73 m2, as described elsewhere [14–
16]. Inulin was measured by colorimetric methods [17]. A 24-h
urine collection was performed the day before to determine ex-
cretion of sodium, potassium, urea, calcium, creatinine and os-
molality. The following parameters were recorded: diuresis
volume, urine flow rate, serum calcium, urea, creatinine, so-
dium, potassium and osmolality. Estimated GFR (eGFR) was de-
termined using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) formula [18]. Sodium and potassium in
urine and plasma were measured by ion-selective electrodes
utilizing a sodium–potassium analyser (KNA1; Radiometer,
Copenhagen, Denmark). Urea was measured by an autoanalyser
(Beckman Coulter, Brea, CA, USA). Creatinine was measured
according to the picric acid colorimetric method [19]. Calcium
was measured with a model 3300 atomic absorption spectrome-
ter (PerkinElmer, Waltham, MA, USA. Urine osmolality was
measured by a freezing point depression Osmometer 3320
(Advanced Instruments, Norwood, MA, USA) as previously de-
scribed [20–22].

Statistical analysis

Statistical analysis was performed with R version 3.6.1 (R
Foundation, Vienna, Austria). Data are expressed as mean 6

standard error of measurement (SEM). The gender effect on
baseline clinical variables was tested by t-test for independent
samples before pooling all data in subsequent
analyses. Differences between means were evaluated by t-test
for paired observations. The baseline value of GFR was

Table 1. Clinical parameters of untreated CDI patients (N ¼ 12)

Parameter Values

Gender (female/male), n/n 4/8
Age (years) 34 6 3
Body weight (kg) 66 6 3
Plasma creatinine (mg/dL) 0.98 6 0.2
Plasma urea (mg/dL) 29 6 5
Systolic blood pressure (mmHg) 116 6 6
Diastolic blood pressure (mmHg) 73 6 4

Data are presented as mean 6 standard deviation unless stated otherwise.
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calculated as the average of three 30-min clearances. P-values
<0.05 were considered statically significant.

All procedures performed in the studies involving human
participants were in accordance with the ethical standards of
the Institutional Committee of the University of Campania and
with the 1964 Helsinki Declaration and its later amendments or
comparable ethical standards.

RESULTS

Baseline values of the population under study are reported in
Table 1. Blood pressure was in the normal range and no increase
in plasma creatinine level was observed. We have tested the
presence of a gender effect at baseline using t-tests and found
no effect in any of the clinical variables reported in Table 1
(P> 0.05 for all variables, t-test for non-paired data). Therefore,
in subsequent analyses, we included all patients without taking
into consideration gender differences.

Following administration of dDAVP, the same population
showed a 7% increase in eGFR and a 10% increase in measured
GFR, which did not reach statistical significance. As shown in
Table 2, after the administration of dDAVP, the urine osmolarity
increased by 210% (P< 0.01) and the urinary flow decreased by
72% (P< 0.01). This confirms that the dosage and time course of
dDAVP were appropriate.

Untreated CDI patients showed a daily urinary Ca2þ excretion
of 383 6 47 mg/day, which is well above the threshold of 270 mg/
day for males [23]. Furthermore, the urinary Ca:Cr ratio was
0.26 6 0.38 mg/mg, whereas the threshold is 0.20 mg/mg. As
shown in Figure 1, dDAVP treatment did not significantly modify
the urinary Ca2þ concentration; however, daily calcium excretion
was significantly decreased (383 6 47 versus 160 6 27 mg/day).
Urinary calcium excretion in untreated patients, was also greater
before than after receiving dDAVP (5.6 6 0.75 versus
2.3 6 0.39 mg/kg body weight). The urinary Ca:Cr ratio was also
greater before dDAVP treatment (0.27 6 0.03 versus
0.11 6 0.02 mg/mg).

DISCUSSION

The main result of the present study is that, in CDI patients,
dDAVP causes a significant reduction of daily excretion of uri-
nary calcium as well as of the urinary Ca:Cr ratio. The baseline
level of calcium daily excretion is >300 mg/24 h, which is above
the reported thresholds for hypercalciuria (270 mg/day for
males and 250 mg/day for females). The relation between AVP

and calcium excretion is particularly intriguing given that both
are altered with ageing [24] and microgravity/bed rest [25].

Urinary calcium excretion depends on several renal and
extrarenal factors. Hypercalciuria is a common finding in
hypertensive subjects and animals, potentially due to sodium
and chloride reabsorption [26]. It is interesting to note the
recent evidence that sodium excretion is modulated by uro-
modulin secretion [27] and that this, in turn, is modulated by
CaSR [28], thus giving an additional mechanism of calcium–
sodium interplay. This interplay seems relevant in some
forms of hypertension [29]. Indeed, hypercalciuria is associ-
ated with sodium-sensitive hypertension [26], and also in this
case, pendrin, a protein known to be associated with sodium-
sensitive hypertension [29], as well as urinary calcium regula-
tion [30]. Indeed, deletion of the pendrin gene results in hyper-
calciuria, possibly due to downregulation of sodium/clacium
exchanger and epithelial calcium channel calcium-absorbing
molecules in the kidney [30].

Other reports from patients and experimental models point
to AVP as a regulator of urinary calcium excretion. Our study
aims to address whether the administration of dDAVP in
patients with no endogenous vasopressin secretion, as affected
by CDI, present any variation in urinary calcium excretion after
7 days of dDAVP administration. In our model, the 1-week intra-
nasal administration of dDAVP in patients with CDI caused a
significant decrease in urinary volume, urinary sodium excre-
tion and urinary potassium excretion, with a borderline
increase in the eGFR. Indeed, the eGFR reflects both anatomical
(nephron number) and functional (e.g. mesangial function) con-
tributions [31, 32]. Several factors, such as reactive oxygen spe-
cies, may functionally modulate the GFR [33]. The data on
urinary volume and urinary sodium are in keeping with the
well-known effects of AVP on diuresis and urinary sodium ex-
cretion, as well as with the data from four patients with CDI
studied by Hanouna et al. [4]. In our study, urinary calcium ex-
cretion was affected by dDAVP administration together with a
small, non-significant change in the clearance of inulin. This is
in agreement with the reduction in urinary calcium reported by
Hanouna et al. [4] obtained in four patients with CDI [4]. The re-
lation between AVP and eGFR is further intriguing from the rela-
tionship that both have with cognitive functions [34].

However, in one of the patients studied by Hanouna et al. [4],
creatinine clearance was severely impaired [4]. Finally, those
patients were dehydrated, as indicated by their plasma
sodium concentration (median 144.5 mmol/L) and osmolality
(median 303.5 mOsm/L). It should be noted that in adults, noc-
turnal polyuria desmopressin increases whole-day calcium ex-
cretion, as happened in enuretic children [35]. In the present
study, dDAVP significantly reduced urinary volume and in-
creased urine osmolality and urinary sodium reabsorption in
hypercalciuric patients allowed unrestricted calcium intake.
This is at odds with data on enuretic children, with such an ef-
fect achieved only after reducing sodium and calcium intake for
3–6 months [7].

The present data are the results of clinical observations based
on water and electrolyte excretion, therefore they are unable to
shed light on the potential interplay between CaSR and
aquaporin-2 as a pivotal mechanism proposed for hypercalciuric
subjects [36, 37] to avoid calcium saturation in the urine. In
rodents, AVP increases calcium reabsorption in the ascending
Henle’s loop [3]. Specifically, the experiments of Bouby et al. [3] in
the Brattleboro strain of rats with DI demonstrate a reduction in
urinary calcium excretion after chronic dDAVP administration.
This was associated with a trophic effect on the thick ascending

Table 2. Model validation: effects of dDAVP on renal physiological
parameters

Variable CDI baseline
CDI þ

dDAVP
P-value
(t-test)

Plasma osmolarity (mOsm/kg) 292 6 4 284 6 4 0.18
Urinary osmolarity (mOsm/kg) 174 6 10 556 6 42 �0.01
mGFR (mL/min/1.73 m2) 86 6 4 97 6 6 0.14
eGFR (mL/min/1.73 m2) 86 6 6 92 6 6 0.54
CrCl (mL/min) 93 6 5 101 6 7 0.40
Volume (mL/min) 6.8 6 0.7 1.8 6 0.1 �0.01

Data are presented as mean 6 SEM.

mGFR, measured GFR (inulin method); eGFR, estimated by the CKD-EPI equation;

CrCl, creatinine clearance.
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limb of Henle’s loop [3]. Therefore, in these animals, the AVP-
regulated calcium excretion is unlikely mediated by TRPC3, a
member of the mammalian transient receptor potential (TRP)
channel, which is expressed in the principal cells of collecting
ducts in rats [36] and humans [37]. Conversely, studies in rabbits
suggest involvement of the cortical collecting tubules in AVP-
mediated calcium reabsorption [38]. However, in humans, regu-
lation of calcium excretion is unlikely to occur at the level of the
Henle’s loop or cortical collecting tubules, because AVP receptor
is mainly located in the collecting duct [39]. Consistently, in
humans, involvement of the collecting duct on AVP-regulated
calcium excretion has been advocated [4].

The present study has several limitations to be considered.
First, mutations of CaSR were not available at the time of the
clinical study and the corresponding genetic techniques were
not available. However, it is very unlikely that CaSR mutations
cosegregate with CDI, because the latter has a central (brain)
origin.

Similarly, other acquired and rare causes of hypercalciuria,
such as hyperparathyroidism, vitamin D excess, granulomatous
diseases (e.g. sarcoidosis, tuberculosis) and renal tubular acido-
sis (and the associated genetic forms [40]), could not be formally
excluded, given the retrospective nature of the work. Indeed,
since the plasma levels of calcium in these patients were nor-
mal and the urinary calcium levels in spot urine samples were
below the normal values (due to the dilution of urine), no addi-
tional studies were required at the time of diagnosis. Thus it is
very unlikely that these causes play a role in the effects of
dDAVP.

The data suggest a trend for a positive association between
urinary osmolality and inulin clearance. Most of the literature
data suggest that a reduction in eGFR, as in chronic kidney dis-
ease, may cause a loss of urine concentrating capacity [41, 42].
The data from CDI patients would lend support for an inverted
relationship: the change in urine osmolality caused by AVP may
induce a change in GFR. This is also supported by the decrease
in GFR when high hydration status (and hence low urine osmo-
larity) is induced in normal patients [43]. The present data also
confirm that polyuria per se is associated with increased sodium
excretion [43]. In conclusion, in hypercalciuric patients with
CDI, urinary calcium handling is affected by dDAVP.
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