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DNA topoisomerases of kinetoplastids represent a family of DNA processing enzymes that essentially solve the topological
problems not only in nuclear DNA but also in kinetoplast DNA. We have, for the first time, identified a Leishmania donovani
homologue of bacterial and eukaryotic IA type of topoisomerase III protein and termed as LdTopIIIβ. Complementation study
of wild-type and mutant LdTopIIIβ with slow-growing topoisomerase III mutant yeast S. cerevisiae revealed the functional
conservation of the leishmanial counterpart of topoisomerase IIIβ protein, the 327 tyrosine being the active site amino acid.
A C-terminal deletion construct of LdTopIIIβ could not suppress the slow-growth phenotype of mutant yeast, indicating the
requirement of C-terminal region for the enzyme function in vivo. LdTopIIIβ localized inside the nucleus and kinetoplast of the
parasite. Taken together, our study indicates functional conservation and possible role of LdTopIIIβ in parasite DNA processing.

1. Introduction

DNA topoisomerases are ubiquitous enzymes found in all
prokaryotic and eukaryotic cells and in some viruses. They
are involved in all aspects of DNA metabolism such as
replication, transcription, recombination, and chromosome
segregation [1, 2]. These reactions are based on sequential
breakage and rejoining of the DNA phosphodiester backbone
[2–4]. Type I DNA topoisomerases catalyze the cleavage of
one strand of DNA, whereas type II DNA topoisomerases
catalyze the cleavage of a double-stranded DNA, requiring
ATP as a cofactor [4].

Type I DNA topoisomerases are further classified in two
subfamilies, IA and IB, based on differences in amino acid
sequence and reaction mechanisms [5]. The type IA enzymes
link covalently to cleaved DNA through the 5′-phosphate.
They are represented by bacterial topoisomerase I and III
and the eukaryotic topoisomerase III enzymes. Type IB
topoisomerases, exemplified by eukaryotic topoisomerase I,
in contrast, become attached to 3′-phosphate end of the
cleaved strand of the DNA [4]. Type IA topoisomerases are
highly conserved from bacteria to humans.

While the function of topoisomerase II and I are quite
well established, the role of topoisomerase III in DNA
metabolism is still being defined. Genes encoding topoiso-
merase III enzymes are highly conserved in evolution from
bacteria to human, and the phenotypic consequences of loss
of topoisomerase III function are generally quite severe. It has
been shown to possess a weak, ATP-independent relaxation
activity towards negatively supercoiled DNA only and strict
dependence on magnesium [6].

The E. coli chromosome encodes two type IA topoiso-
merase, DNA topoisomerase I [7] and topoisomerase III
[8, 9]. Loss of topoisomerase III in E. coli results in an
increase in deletions arising from recombination events
between direct repeats [10, 11]. Yeast cells express a single
type IA topoisomerase, topoisomerase III encoded by the
Top3 gene. In S. pombe, top3 is essential for viability and plays
a role in chromosome segregation [12]. It has been shown
that top3-ts mutant S. pombe cells are sensitive to the DNA
damaging agents UV and MMS (methyl methanesulfonate)
at the restrictive temperature revealing that topoisomerase
III is involved in DNA damage survival [13]. In S. cerevisiae,
top3Δ mutants are viable, but very slow-growing and have
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defects in S phase responses to DNA damage and in both
mitotic and meiotic recombination [14, 15]. In vertebrates,
there are two isoforms of topoisomerase III enzymes termed
α and β [16–19]. Deletion of mouse topoisomerase IIIα
gene led to embryonic lethality [20]. Deletion of mouse
topoisomerase IIIβ gene displayed shortened lifespan and
infertility [21, 22].

DNA topoisomerases of kinetoplastids represent a fam-
ily of DNA processing enzymes that essentially solve the
topological problems not only in the nuclear DNA but
also in the kinetoplastid DNA. The IB type of bi-subunit
topoisomerase I and topoisomerase II of the parasites which
maintain vital cellular processes, are also proven target for
clinically useful antitumor drugs [23]. Apart from this IB
type of topoisomerase I, three type IA topoisomerases are
there in the parasite genome, termed as topoisomerase IA,
and two topoisomerase III. Topoisomerase IA of T. brucei has
been reported and shown to be mitochondrial and essential
for late theta structure resolution [24]. Very recently, a
Topoisomerase IIIα from T. brucei has been shown to play a
critical role in antigenic switching [25]. In the present study,
for the first time, we have identified functionally active DNA
topoisomerase IIIβ from kinetoplastid parasite L. donovani,
which localized both inside the nucleus and kinetoplast of
the parasite and rescued the topoisomerase III mutant yeast
from slow-growth phenotype.

2. Materials and Methods

2.1. Parasite Culture and Maintenance. L. donovani strain
AG 83 promastigotes were grown at 22◦C in M199 liquid
media supplemented 10% heat inactivated fetal calf serum.
Transfected cells were maintained under the same conditions
with 100 μg/mL G418.

2.2. Strains, Media, and Growth Conditions. The Escherichia
coli strains used were DH5α and BL21 (DE3) pLysS. If
required, ampicillin and chloramphenicol were used at 100
and 34 μg/mL final concentrations, respectively. The yeast
strains used in the studies were W5909-3B (MAT alpha trp1-
1 his3-11, 15 leu2-3, 112 ura3-1 RAD5 LYS2 MET15 ADE2)
and W2633-4C (a/alpha top3:: TRP1/+) (kindly gifted by
Dr. R Rothstein). The yeast cells were grown at 25◦C on
YEPD medium containing 1% peptone, 2% yeast extract,
2% dextrose and 1.5% agar or synthetic minimal media as
required.

2.3. Cloning of Topoisomerase IIIβ Gene from Leishmania
donovani. LdTopIIIβ gene was PCR amplified from the
genomic DNA of L. donovani parasites using the sense primer
5′-GGAAATTCCATATGGGCCGCA ATGTGTTGATG-3′

and antisense primer 5′-CGGGATCCTCACCTGCGATC-
CTCGCGGTTGCC-3′ and was cloned in bacterial expres-
sion vector pET16b in Nde1 and BamH1 restriction sites,
termed as LdTopIIIβ-pET16b.

2.4. Structural Analysis and Homology Modeling. Multiple
sequence alignment of LdTopIIIβ sequences from various

species was carried out using CLUSTAL W (http://expasy
.org/tools). Three-dimensional models of LdTopIIIβ based
on the crystal structure of E. coli topoisomerase III were gen-
erated using Swiss Prot (http://expasy.org/sprot). The gener-
ated files were opened in RasMol (http://www.rasmol.org/).
The protein sequences were represented in ribbon format
and the active site residues were represented in ball and stick
format over the ribbon structure.

2.5. Construction of Expression Vectors and Transfection in
Leishmania. LdTOPIIIβ genes was PCR amplified using
LdTopIIIβ-pET16b as templates and was subcloned using
the sense primer 5′-CGGGATCCATGGGCCGCA ATG-
TGTTGATG-3′ and antisense primer 5′-GATATCCCTGCG-
ATCCTCGCGGTTGCC-3′ in BamH1 and EcoRV sites of
Leishmania transfection vector pXG-B2863 (a kind gift from
Dr. S. M. Beverley), to produce C-terminal-GFP-tagged full-
length LdTopIIIβ protein and termed as LdTopIIIβ-GFP. The
constructs and empty vector pXG-B2863 were transfected
into L. donovani promastigotes separately by electroporation
as described earlier [26]. Briefly, late log-phase promastigotes
were harvested and washed twice in OPTI-MEM (GIBCO).
Cells were finally suspended at a density of 1 × 108/mL and
0.4 mL was taken into a 0.2 mm ice-chilled electroporation
cuvette. Thirty microgram of plasmid DNA was taken in
100 μL of electroporation buffer and added to the cells.
After 10 min on ice, the cells were electroporated with
a single pulse by Bio-Rad Gene Pulsar apparatus using
450 V and 550 μF capacitance. The cells were incubated on
ice for further 5 min and then added to10 mL of drug-
free growth medium. After 24 h of survival 10 μg/mL G418
was added and kept at 22◦C. The transfected cells were
monitored visually by microscope and drug concentration
was increased gradually. Finally the transfected cells were
routinely maintained in medium containing 100 μg/mL
G418.

2.6. Fluorescence Microscopy. Localization of C-terminal GFP
tagged chimeric LdTopIIIβ-GFP protein was visualized by
fluorescence microscopy (Olympus IX81). Cell nucleus and
kinetoplast were stained with DAPI. Differential visualization
of the fluophores was achieved using a 488 nm excitation
filters and 523 nm emission filter for GFP and 258 nm
excitation and 361 nm emission filter for DAPI.

2.7. Construction of Mutants. The full-length LdTopIIIβ was
subcloned in XbaI and BamH1 sites into the yeast shuttle
vector pVT100U, a kind gift from Dr. Rolf Sternglanz
[27] and termed as LdTopIIIβ-pVT using the sense primer
5′-GCTCTAGAATGGGCCGCAATGTGTTGATG-3′ and
antisense primer 5′-CGGGATCCTCACCTGCGATCCTC-
GCGGTT-3′. For construction of C-terminal deletion
construct of LdTopIIIβ, regions corresponding to amino
acids 1-608 was PCR amplified using the primers 5′-
GCTCTAGAATGGGCCGCAATGTGTTGATG-3′ (sense)
and 5′-CGGGATCCGGCGGCGGAGATGGCGGAGAA-3′

(antisense) and was cloned in Xba1 and BamH1 sites of
pVT100U vector.
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2.8. Site-Directed Mutagenesis. Single mutations were intro-
duced in LdTOPIIIβ at position Tyr 327 (Y327). Mutagenesis
was performed by using the QuikChangeXL site-directed kit
(Stratagene, La Jolla, CA) according to the manufacturer’s
protocol. To carry out the desired mutations, LdTopIIIβ-
pVT was used as templates for all mutagenesis experiments.
For each mutation, the wild-type nucleotide was replaced
using a specific pair of mutagenic primers. The following
sense primer, along with the antisense counterparts (with
codons in boldface and substitutions underlined), were used;
for Y327 of LdTopIIIβ, sense primer was 5′-CCGCGGCTA-
TATTTCGTTCCCTCGTACCCGAATCC-3′ and antisense
primer was 5′-GGATTCGGTACGAGGGAACGAAATATA-
GCCGCGG-3′.

2.9. Complementation Assay. The top3 mutant yeast strain
W2633-4C (a/alpha top3:: TRP1/+) (a kind gift from Dr. R
Rothstein) was used for transformation with recombinant
topo III proteins from L. donovani by the lithium acetate and
polyethylene glycol method [28]. The transformants were
cultured on solid synthetic minimal medium at 30◦C for 2
days. Colonies were picked and cultured in tubes with 2 mL
of synthetic minimal media at 30◦C overnight.

2.10. Expression of Recombinant LdTopIIIβ Using the Express-
way Cell-Free E. coli Expression System (Invitrogen). In
vitro transcription and translation of LdTopIIIβ proteins
were carried out according to the manufacturer’s protocol.
LdTopIIIβ-pET16b plasmids were used as DNA templates for
synthesis of the protein. After the reaction is over, the crude
bacterial lysate containing the newly synthesized protein was
tested for activity.

2.11. DNA Relaxation Activity by LdTopIIIβ. The type IA
DNA topoisomerases were assayed by decreased mobility of
the relaxed isomers of supercoiled pBS (SK+) [pBluescript
(SK+)] DNA in an agarose gel. Relaxation assay was carried
out with the crude lysates containing the in vitro transcribed
and translated LdTopIIIβ. Supercoiled pBS DNA (85%–95%
were negatively supercoiled with the remaining being nicked
circles) was used as substrate in the relaxation buffer (25 mM
Tris-HCl, pH 7.5, 5% glycerol, 0.5 mM DTT, 2 mM MgCl2,
50 μg/mL BSA). The amount of supercoiled monomer
DNA band fluorescence after EtBr (0.5 μg/mL) staining was
visualized using Gel Doc 2000 under UV illumination (Bio-
Rad Quality one Software).

3. Results

3.1. Type IA Topoisomerase Genes in Leishmania. A search of
the Leishmania major genome database yielded three type
IA topoisomerases. One is on chromosome 21, annotated as
topoisomerase IA (LmjF21.0125) with an ORF of 2453 bp.
Two other type IA topoisomerases are present on chromo-
some 28 and 36, respectively, both of which are annotated as
topoisomerase III (LmjF28.1780 and LmjF36.3200, resp.).

3.2. Identification of Topoisomerase III Genes in Leishmania
donovani. One of the two topoisomerase III genes present
in L. major geneDB is 2601 bp (LmjF28.1780) and encodes a
95 kDa predicted protein. The other topoisomerase III ORF
(LmjF36.3200) is 2844 bp, and encodes a 104 kDa predicted
protein. Topoisomerase III gene with 2601 bp was PCR
amplified from the genomic DNA of L. donovani, cloned and
sequenced (GeneBank accession number GQ499197). Blast
analysis of the sequence confirmed the topoisomerase III
lineage of the protein and henceforth referred as LdTopIIIβ.
The alignment of LdTopIIIβ with S. cerevisiae and S. pombe
topoisomerase III and human topoisomerase III is shown
in Figure 1. The active site tyrosine is located at the 327
position within a highly conserved GYISYPRTES sequence.
The protein has 46.22% identity and 76.09% similarity
with human topoisomerase IIIβ. It contains seven CXXC
sequences instead of eight found in other topoisomerase IIIβ
proteins. The intervening spacers are also highly conserved.
Glycine (G) and arginine (R) rich clusters at the C-terminus
end, which is another hallmark of topoisomerase IIIβ, are
also present. It has a continuous stretch of 19 G and R
residues in the C-terminus. Three-dimensional structure
generated by Swiss Prot has been shown in Figure 2(a).
Figure 2(b) shows the magnified view of the active site. The
conserved amino acid residues are represented in ball and
stick format and have been labeled. Homology comparisons
of LdTopIIIβ with other IA type of topoisomerases have
been provided in Table 1, which strongly indicates its
topoisomerase III lineage.

3.3. Localization Study of LdTopIIIβ-GFP. In silico search was
carried out to determine possible localization of LdTopIIIβ
protein. A 0.244 probability of mitochondrial transport
was predicted by Mitoprot (http://expasy.org/tools) analysis
and 73.9% cytoplasmic and 17.4% nuclear distribution was
revealed by PSORT II analysis (http://expasy.org/tools). To
determine the precise localization of the protein, full-length
LdTopIIIβ (865 aa) was cloned in Leishmania expression
vector as a C-terminal fusion protein with GFP, termed as
LdTopIIIβ-GFP, and the construct was transfected in L. dono-
vani parasites. Localization of LdTopIIIβ-GFP was viewed
under fluorescence microscopy (Figure 3(a)). Nucleus and
kinetoplast DNA was stained with DAPI (Figure 3(b)). Com-
parison of DAPI and GFP fluorescence and merged images
(Figure 3(c)) revealed that LdTopIIIβ protein localized both
inside the nucleus and kinetoplast of the parasites. Figures
3(d) and 3(e) show cytoplasmic distribution of control GFP
protein in L. donovani parasites.

3.4. LdTopIIIβ Suppresses the Yeast top3Δ Slow-Growth Phe-
notype. Mutation of the S. cerevisiae top3 gene is known
to result in several phenotypes, including a growth rate
which is only 50% that of wild-type [14]. In order to
assess whether the LdTopIIIβ possesses functional similarity
to the yeast topoisomerase III, we have used a functional
complementation assay of LdTopIIIβ protein to rescue top3
mutant S. cerevisiae strain from slow-growing phenotype. We
have cloned the LdTOPIIIβ gene in a shuttle vector pVT100U
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Figure 1: Continued.
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Figure 1: Amino acid sequence alignment. Sequence of LdTopIIIβ (Ld) was aligned with the amino acid sequences of H. sapiens
topoisomerase IIIβ (Hs), topoisomerase III from S. cerevisiae (Sc) and S. pombe (Sp) using CLUSTAL W. The amino acids are numbered on
the top of the sequences. Active site motifs and other important conserved and identical residues are depicted in red. Green and blue indicate
strongly similar and weakly similar amino acids, respectively.
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Figure 2: (a) Three-dimensional structure of LdTopIIIβ. A ribbon structure representation of LdTopIIIβ generated based on the crystal
structure of E. coli topo isomerase III. Catalytically conserved residues are represented in ball and stick format over the ribbon structure. (b)
Close up view of LdTopIIIβ in which the amino acid residues that are vital for enzyme action are labeled and represented in ball and stick
format. The positions of the amino acids are also mentioned.

Table 1: Amino acids homology comparisons between Leishmania
donovani topoisomerase IIIβ (866 amino acids) and other members
of typeIA topoisomerases.

Type IA topoisomerases Identity
(%)

Similarity
(%)

Size
(amino acids)

LdTopIIIα 28.54 59.66 947

LdTopIA 13.22 48.56 812

Human TopIIIα 27.14 55.47 1001

Human TopIIIβ 46.22 76.09 862

S. cerevisiae TopIII 22.96 47.33 656

S. pombe TopIII 22.56 49.32 622

to generate LdTopIIIβ-pVT and transformed in top3Δ yeast
S. cerevisiae and Ura+ colonies were selected. Yeast cells
transformed with vector pVT100U served as control in
the complementation assay. The LdTopIIIβ-pVT partially
complemented the slow-growth of top3Δ yeast (Figure 4(a)).
The improved growth rate was not observed in case of the
vector control (Figure 4(a)). This observation suggests that
LdTopIIIβ can be functionally expressed in yeast and shares
functional similarity with S. cerevisiae top3 gene, which is
consistent with earlier observations made with Drosophila
and human topisomerase IIIβ proteins [19, 29]. To observe
this complementation of LdTopIIIβ in liquid medium a
yeast growth curve analysis was carried out (Figure 4(b)).
Equal amounts of the wild-type, topoisomerase 3 mutant
yeast cells, topoisomerase 3 mutant yeast cells containing
empty vector (pVT100U) and topoisomerase 3 mutant yeast
cells containing LdTopIIIβ (grown overnight at 30◦C) were
inoculated in fresh minimal medium and grown at 30◦C. At
every 2 hr interval up to 12 hrs, the growth was monitored
and plotted.

3.5. Effects of Active Site Mutation of LdTopIIIβ on Comple-
mentation Ability. Tyrosine 327 of LdTopIIIβ was predicted
to be the active site amino acid residue from sequence
alignment analysis. In order to determine that LdTopIIIβ
functionally complements the top3 mutant yeast and the
growth recovery was not due to any compensatory mech-
anism induced by LdTopIIIβ we carried out site directed
mutagenesis. We have mutated the active site residue of
LdTopIIIβ to phenylalanine (Y327F) by site directed muta-
genesis and transformed in top3 mutant yeast. Transformed
cells were grown on plate, as well as in liquid minimal media.
It was observed that the active site mutant construct could
not suppress the slow-growth of top3 mutant S. cerevisiae
(Figures 5(a) and 5(b)) confirming role of active site tyrosine
327 in functional conservation of LdTopIIIβ inside mutant
yeast cells.

3.6. The C-Terminal Domain of LdTopIIIβ Is Essential for In
Vivo Complementation. The Leishmania enzyme has a C-
terminal segment of amino acids with no counterpart in
yeast protein. The leishmanial protein contains Zn-binding
motif at its C-terminus, which is absent in the topoisomerase
III proteins of E. coli and yeast. The C-terminus residues
of E. coli topoisomerase III have been previously shown
to be involved in DNA binding [30]. To determine the
role of the C-terminal stretch of LdTopIIIβ in functional
complementation, we have made a C-terminal deletion con-
struct (LdTopIIICΔ258) removing the 258 amino acids and
transformed in topoisomerase III mutant yeast. The transfor-
mants were grown in plates and it was observed that the C-
terminal deletion construct failed to rescue the mutant yeast
from slow-growth (Figure 5(a)), suggesting essentiality of the
C-terminal segment for functional complementation in vivo.
To validate this observation in liquid medium we inoculated
overnight grown cultures at 30◦C in fresh minimal medium
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Figure 3: Localization LdTopIIIβ. Wild-type construct of LdTopIIIβ was transfected in L. donovani parasites as C-terminally fused GFP
proteins and viewed under fluorescence microscope (100x). Nucleus and kinetoplast DNA are visualized by DAPI staining.

and monitored their growth at 3 hr intervals. The growth
curve (Figure 5(b)) clearly indicates that LdTopIIICΔ258
could not functionally complement the slow-growing topoi-
somerase III mutant yeast. This indicates that the conserved
C-terminal region between amino acid residues 608–866
contains important residues that are required for in vivo
function of LdTopIIICΔ258. To get a better insight into the
functional characteristics of the enzyme, we next sought to
obtain recombinant LdTopIIIβ protein in vitro.

3.7. In Vitro Activity of Recombinant LdTopIII Protein.
LdTopIIIβ was cloned in bacterial expression vector pET-16b
and overexpressed in BL21 (DE3)-pLysS strain and induced
with IPTG. But the overexpressed protein went to inclusion
body and were found in the pellet as insoluble protein which
could not be recovered in the soluble fraction in active state.
However, to test the activity of the recombinant protein,
we have used in vitro transcription-translation kit, which is
specially designed for in vitro transcription and translation
of target DNA to protein in a single reaction. The crude
lysate containing the newly synthesized proteins were used
for DNA relaxation assay. Figure 6(a) shows DNA relaxation
by increasing amount of recombinant LdTopIIIβ (lanes 2–
8). Lane 1 is the DNA control. The results clearly show that
the recombinant protein containing lysates were able to relax
the negatively supercoiled DNA. To test that the activity was
not coming from the lysate itself, we have carried out DNA
relaxation activity with the empty vector containing lysate
which contained insignificant amount of activity, shown in
Figure 6(b) (lane 3). Lane 2 shows DNA relaxation activity
by recombinant LdTopIIIβ.

4. Discussion

The type IA topoisomerases are among the most conserved
proteins in nature, and their presence in all organisms is
supported by extensive biochemical and genomic sequence
data [2, 4]. This universal presence suggests that the type
IA DNA topoisomerases play an indispensable role in one
or more fundamental processes involving DNA, plausibly
in the removal of double Holliday junctions [2]. Topoiso-
merases IIIα and IIIβ of kinetoplastid parasites seem to be
orthologues of same kind of enzymes in other eukaryotes,
notable for branching early within their respective groups.
In the present study, for the first time we have identified
functionally active DNA topoisomerase IIIβ from L. dono-
vani. Blast sequence alignments suggested topoisomerase
IIIβ from Leishmania has high homology with human and
drosophila topoisomerase IIIβ. It shares many features,
which are typical for other topoisomerase IIIβ proteins
including the CXXC type of motifs and a long stretch of
G and R residues at its C-terminus. GFP-fused LdTopIIIβ
localized both inside the nucleus and the kinetoplast of L.
donovani parasites indicating the involvement of LdTopIIIβ
in DNA processing inside both the parasite organelle. Our
results show for the first time the presence of an IA type of
topoisomerase in the nucleus, as well as in the kinetoplast of
Leishmania parasites. Previously, a IA type of topoisomerase
from bacterial origin has been reported to be mitochondrial
in T. brucei [24].

LdTopIIIβ could suppress the slow-growth phenotype of
the mutant yeast indicating the functional conservation of
topoisomerase III activity. The result is consistent with the
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Figure 4: Functional complementation of LdTopIIIβ. (a) S. cere-
visiae top3Δ strain was transformed with a vector pVT100U and
the vector carrying wild-type LdTopIIIβ. Transformed cells were
streaked on solid synthetic minimal media and incubated at 28◦C.
Ten-fold serial dilutions of exponentially growing wild-type strain,
top3Δ strain, top3Δ strain harboring an empty vector, or top3Δ
strain harboring plasmid encoded LdTopIIIβ, as indicated on the
right, grown on the plate. (b) Growth rate of the above-described
strains were measured in the liquid synthetic medium and OD600

was plotted against time. Results represent the means ± standard
errors of three independent experiments.

earlier observations made with human and Drosophila topoi-
somerase IIIβ enzymes. The C-terminal deletion construct
of LdTopIIIβ lacking its Zn binding domain was unable
to rescue the topoisomerase III mutant yeast from slow-
growing phenotype revealing that the C-terminal 258 amino
acids were indispensable for functional complementation of
LdTopIIIβ in vivo. Previous report reveals the requirement
of the C-terminus region of bacterial topoisomerase III in
substrate specificity [30]. It is possible that C-terminal end
of the leishmanial topoisomerase IIIβ protein is essential
for DNA binding which requires further investigations.
Site directed mutagenesis study revealed that tyrosine at
327 position within the conserved amino acid stretch
is the active site tyrosine of LdTopIIIβ and when this
tyrosine is mutated to phenylalanine, the protein failed to
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Figure 5: Complementation assay with mutant LdTopIIIβ. (a)
Topoisomerase III mutant yeast strain was transformed with
the plasmid containing wild-type (c), active site mutant (d)
and C-terminal deletion construct (e) of LdTopIIIβ, separately.
Transformed cells were streaked on solid synthetic minimal media
and incubated at 30◦C. (b) Complementation assay as described
above carried out in liquid synthetic medium and OD600 plotted
against time. Results represent the means± standard errors of three
independent experiments.

complement the slow-growing mutant yeasts. The result
indicates towards involvement of the functionally active
LdTopIIIβ in rescue of the mutant yeast from slow-growth.
Our attempts to purify recombinant LdTopIIIβ enzymes in
active state from bacteria were unsuccessful as the proteins
consistently went to inclusion body. But we were able
to study, for the first time, the in vitro DNA relaxation
activity the recombinant topoisomerase III protein from the
kinetoplastid parasite Leishmania, when synthesized using
cell free in vitro transcription-translation kit. Altogether,
this is the first report of functionally active topoisomerase
IIIβ protein from unicellular kinetoplastid parasite Leishma-
nia.

The biological functions of eukaryotic topoisomerse III
proteins are intriguing. Important nonoverlapping function
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Figure 6: DNA relaxation assay by recombinant LdTopIIIβ. (a)
Negatively super coiled DNA was incubated with 1, 2, 3, 4, 5, 7
and 10 μL of recombinant LdTopIIIβ containing lysate for 30 min
(lanes 2–8). Lane 1 is the DNA control. (b) DNA relaxation assay
carried out with recombinant LdTopIIIβ (lane 2), and empty vector
containing lysate (lane 3). Lane 1 is the DNA control.

of the two isozymes of topoisomerse III has been revealed
by previous studies. The mouse-knockout experiments sug-
gests, the α form is essential for embryonic development,
whereas the β form is critical for life span [20, 21]. Genetic
experiments in yeast have demonstrated that TOP3 plays a
role in suppressing mitotic recombination and in resolving
recombined homologous chromosomes during meiosis I
[14, 31]. Preferential cleavage of plasmid-based R- and
D-loops, has been reported by Drosophila topoisomerase
IIIβ [32]. Furthermore, the combined action of either
yeast or bacterial topoisomerse III and the DNA helicase
RecQ can promote the formation of DNA catenanes [33].
The unwinding action of a RecQ type helicase appears
to generate a DNA structure that can be recognized by
a topoisomerase III. RecQ helicases are also conserved in
kinetoplastide parasites. The only report of functionally
significant topoisomerase IIIα from kinetoplastide parasite
came very recently, which describes that topoisomerse IIIα
from Trypanosoma brucei influences antigenic variation by
monitoring expression-site-associated VSG switching [25].
Existence of functionally active topoisomerase III protein in
Leishmania indicates towards its role in DNA metabolism
in the parasites, which requires further studies and might
emerge as a new therapeutic target that can be exploited
against the deadly parasites.
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