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Abstract 

Background: Over the years, many efforts have been made to use the gene expression profiles of 
cancer types/subtypes to identify the prognostic genes with their potential clinical applications. 
However, one major challenge remains is to predict the common prognostic genes using 
simultaneously the dataset of multiple cancers, especially by considering the differences in survival, 
expression and the associated mutated pathways. 
Methods: Herein, we carried out a comprehensive examination for the prognostic genes and linked 
them to the mutational status of 29 cancers, so as to find independent prognostic genes and 
mechanisms. Additionally, their diagnostic value of them was also assessed. Results: our extensive 
analysis revealed: 1) the number of prognostic and diagnostic genes differs greatly across the 
cancers, 2) the potentially implicated 22 genes harbor the diagnostic as well as prognostic capacity, 
3) the universal prognostic genes (CDC20, CDCA8, ASPM, ERCC6L, and GTSE1) were found to be 
involved in the spindle assembly checkpoint, 4) the prognostic genes were found to be statistically 
linked to the frequently mutated TP53-, MAPK-, PI3K- and AKT- related pathways. We also 
manually mined possible biological mechanisms for some of the statistical links in literatures.  
Conclusions: Taken together, we identified the prognostic genes and in addition we assessed their 
diagnostic capacity. Our analysis provides an important insight about the considerable overlapping 
between gene expression variation and the further associated altered mutational pathways across 
the cancer genome. We thus hypothesized that cancer related (mutated) genes are tightly 
connected and are capable to reshape the genome in multiple cancer types. 
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Introduction 
Cancers are characterized by distinct patterns of 

mutation and gene expression, associated with 
different prognosis. Identification of cancer related 
genes and their relevant pathways is an important 
step to elucidate the associated molecular 
mechanisms and biological processes. 

Recently, one study summarized that the shorter 
survival is associated with the upregulation of genes 
related to cell growth and the downregulation of 

genes related to cellular differentiation [1]. Likewise, 
the 70-gene signature test (MammaPrint) provided 
valuable information for considering those breast 
cancer patients which might benefit from adjuvant 
chemotherapy [2]. Considering metastasis a key 
determinant of patient survival, several studies also 
performed similar gene expression evaluations 
towards accurate prognosis prediction and 
subsequently proposed this method for therapeutic 
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decisions in the cancers [3-5]. Gene expression 
signature was also found to be useful in predicting the 
survival stage I in non-small cell lung carcinoma 
(NSCLC) patients [6]. Wilson and colleagues using 
gene expression signatures identified novel groups of 
acute myeloid leukemia (AML) which were not 
predicted before by the traditional studies that impact 
the prognosis and potential therapy [7]. Since, the 
tumor microenvironment strongly influences cancer 
development, progression and metastasis, a study 
took advantage of this biological condition and 
revealed the prognostic gene-expression signature in 
NSCLC [8].  

Apart from global gene expression, its 
correlation with the cancer associated/driver gene 
mutations always gained attention. Recently, 299 
driver mutation genes were revealed [9]. The study 
confirmed that microsatellite instability was 
associated with an improved response to immune 
checkpoint therapy [9].  

However, the previous studies lack the through 
information about the extent of expression variation 
in cancer and the diagnostic capacity of the prognostic 
genes, which might be an important contributor for 
their clinical applicability. Additionally, the relative 
contribution of cancer associated mutations on the 
gene expression levels which could enhance the 
prognostic spectrum is also not fully exploited yet. 

Herein, we aim to identify the distinct and 
recurrent prognostic genes in 29 cancer types 
simultaneously mainly considering the differences in 
survival and the expression in cancers. In addition, we 
thoroughly investigated the impact of cancer specific 
mutations on the expression level in individual cancer 
types. Considering clinical utility, we also highlighted 
about the genes with both prognosis and diagnosis 
capacity. 

Materials and Methods  
Datasets 

Gene expression data, survival data, and 
mutation data were retrieved from TCGA project 
from the initial release of Genomic Data Commons 
(GDC) in October 2016 using RTCGAToolbox [10]. A 
total of 9523 samples across 29 tumor types were 
downloaded, including 8811 tumor tissues and 712 
non-tumor tissues. The abbreviation for cancer type is 
in supplementary information. We are interested in 
overall survival of the patients and hoped to find 
some common prognostic genes, so we did not 
perform a further categorization for the patients. All 
samples are used in survival analysis. 
Microarray-based gene expression data (gene 
expression omnibus ID: GSE21501) for pancreatic 
cancer [11]) were retrieved for validating. 

Identification of the prognostic genes  
The prognostic genes were identified with a 

log-rank test in a Kaplan–Meier survival model. In 
each cancer type, for each gene, patients were 
classified into two groups, the high-expression group 
(H) and the low-expression group (L), using the 
expression median of the gene as a cutoff. In addition, 
we considered both survival difference (P[SV]) and 
the expression fold change (FC(H/L)) between the 
two groups. The area under the curve (AUC) of a 
receiver operating characteristic (ROC) curve and the 
expression fold change between the cancer (C) and 
normal (N) tissues (FC(C/N)) were employed to 
indicate the diagnosis ability.  

Regression for the expression of the 
prognostic genes with the mutation counts 

The 40 prognostic genes, which were identified 
with P[SV] ≤ 10−6 and FC[H/L] ≥ 4, and the top 200 
frequently mutated genes, were included in this 
section. Firstly, for each prognostic gene, the 
dependence between its expression and the mutation 
counts of the 200 mutated genes were tested with a 
Chi-squared (χ2) test for each cancer type. The 
mutated genes with p-value ≤ 0.001 (χ2 test) were 
included in an enrichment analysis. A cutoff of 
p-value ≤ 0.05 was used to find the enriched gene 
ontology (GO) terms and pathways. Upon satisfaction 
of those criteria, a link between the prognostic gene 
and the mutated pathway (terms) was counted. This 
was done for all cancers to see how many cancer types 
shared the link. Secondly, we carried out a 
generalized linear regression of the expression of the 
prognostic gene with the mutation counts of the top 
200 frequently mutated genes for each cancer type. 
The regression generated a set of parameters 
indicating the contribution of the mutation in 
explaining the expression level of the prognostic gene. 
Only mutated genes with a significant parameter 
were used to construct the network. More details are 
in Supplementary file. 

Results 
Prognostically relevant genes differ 
substantially across cancers 

All the identified prognostic genes in this study 
appeared to significantly differ in all cancer types 
when checked under the same cutoff of overall 
survival difference (P[SV]) (Fig. 1A). Some cancer 
types (CHOL, ESCA, STAD, COAD, GBM, and PCPG) 
showed a limited number of prognostic genes, while 
in some cancers (KIRC and MESO), more of the 
prognostic genes can be identified (Fig. 1A and Fig. 
S1A). While comparing cancer and control data, 
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numbers of the diagnostic genes were also found to be 
significantly different in cancers (AUC≥0.9) (the 
bottom left panel in Fig. 1A, Fig. S1A). In the 
comparisons for number of the genes with an altered 
expression between cancer tissues (FC(H/L)) or in 

comparison to controls (FC(C/N) revealed the quite 
similar results (two left panels in Fig. 1A), hence, 
indicating that number of prognostic and diagnostic 
genes differs in and among cancers.  

 

 
Figure 1. Survival-associated genes differ among cancers. A. The number of genes associated with a differential survival (P[SV]), with an expression change in the cancer tissues 
(FC(H/L)), with a capacity of diagnosis for cancer (AUC), and with an expression change between the control (N) and cancer (C) samples (FC(C/N)), respectively. In each cancer 
type, for each gene, cancer tissues are divided into high (H) and low (L) expression groups based on the median expression of the gene in the cancer type. P[SV] and FC(H/L) 
represent survival difference and fold change between the two groups, respectively. FC(C/N) means the fold change between the cancer tissues and normal controls. AUC is the 
area under receiver operating characteristic (ROC) curves in diagnosing the cancer samples with expression of the gene. B. The number of prognostic genes with a significance 
of P[SV]≤0.001. The data were sorted with the five-year survival probability. C. Relationship between survival probability and variation of gene expression among the population. 
Shown is the five-year survival probability against the standard deviation (Std) of the correlation coefficients of expression profile (20,531 genes) of each pair of patients for each 
cancer. D. The pathways and terms enriched for the genes whose expression was highly correlated to survival time. For each cancer, the top 200 most strongly correlated genes 
were chosen.  
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We did not observe any link between the 
number of prognostic genes and the five-year overall 
survival (Fig. 1B). However, the Pearson correlation 
coefficients (PCCs) of the gene expression of 25,301 
genes for each pair of patients for individual cancer, 
and the associated five-year survival probability 
revealed that the survival probability is highly 
correlated to the standard deviation (Std) of the PCC 
(r=−0.97) (Fig. 1C). On clinical grounds this data 
requires further validations. The pathways and GO 
terms further discriminated the cancer types and 
associated survival-related genes and showed 
enrichment for cell cycle (in KIRP, ACC, and MESO), 
T cell costimulation (in CESC, BRCA, STAD, BLCA, 
HNSC) and cell adhesion (in LUSC, THCA, DBLC, 
UCEC, USC and LIHC) (Fig. 1D). GBM, LAML, and 
PAAD were not included in any of the clusters 
mentioned above. To note, we also observed a 
substantial enrichment in the term “Glycoprotein” in 
this analysis. Previously, one study showed the 
involvement of P-glycoprotein in the multidrug 
resistance (MDR) phenotype of adult solid tumors 
[12]. The activation status of pathway was also 
determined for the genes whose expressions change 
greatly in cancer patients is shown in Fig. S1B. We 
also noticed the genes enriched for Renin secretion in 
nine cancer types (Fig. S1B).  

Mapping and characterization of Prognostic 
genes 

To identify prognostic genes, we first considered 
the association between the variation of clinical 
outcome (here, overall survival) and the gene 
expression level between the high- and low- 
expression groups). The survival difference between 
the two groups was calculated (P[SV]) with Kaplan–
Meier survival model. Second, we estimated the 
ability of a gene/mRNA level to discriminate between 
the two groups [high (H) and low (L)], namely the 
difference extent of the altered expression among the 
two groups. In preliminary investigations with 
relaxed criteria of P[SV]≤10−3 and FC(H/L)≥2, 
selecting the top 10 genes for each cancer type, we 
identified 236 genes in 29 cancer types (see Fig. S2A). 
In Table S1, we listed the genes and their survival 
difference (P[SV]), expression fold change (FC(H/L)), 
and the corresponding cancer types. Eight of the 236 
genes were previously known in 17 cancers [1] (Fig. 
S2B). The remaining novel prognostic genes include 
C1orf88 (for ACC), BCL2L14 (BLCA), TMEM65 
(BRCA), RBM38 (CESC), ATP13A3 (CHOL), ATOH1 
(CORD), ATP1A3 (DLBC, UCS), GRPEL2 (ESCA), 
RARRES2 (GBM), CHGB (HNSC), CLDN3 (KICH), 
ATP6V1C2 (KIRH), HOXD10 (KIRP), TREML2 
(LAML), ISL2 (LGG), CDC20 (LIHC), GTSE1 (LUAD), 

PAPPA (LUSC), CEP55 (MESO), DYDC2 (OV), 
MYEOV (PAAD), KIAA0319 (PRAD), LBH (STAD), 
CILP (THCA), PRKCB (THYM), and TP53TG3B 
(UCEC) (Table S1). Very few genes were found to be 
shared across cancer types, which were consistent 
with the literatures [1, 13]. It is notable that the 
subunits of P- and V-ATPases (such as ATP13A3, 
ATP1A3, and ATP6V1C2) were in the list. These genes 
are responsible for transporting cations across 
membranes and organelle acidification [14]. 

In second step, we further filtered the prognostic 
genes by using stricter criteria, P[SV]≤10−6 and 
FC(H/L)≥4, which results into a list of 40 genes (Fig. 
2A). The detailed data for the 40 genes was listed in 
Table S2. Apparently, the cancers like CHOL, ESCA, 
TGCT, OV and UCS showed no prognostic genes 
under these criteria (Fig. 2A). The genes CDC20, 
CDCA8, and CEP55 were prognostic in more than 
three (multiple) cancer types while other genes were 
specific for particular cancer types, such as MYEOV 
for PAAD (Fig. 2A). Most of the genes had a hazard 
effect, meaning that high expression of the gene was 
associated with poorer overall survival (Fig. 2A). The 
prognostic genes were enriched for the terms of cell 
cycle, cell division, and cytoskeleton (Fig. S2 C and D). 
Fig. S2C shows the sub-cellular location of the 
proteins encoded by the 40 genes. Fig. S2D is for an 
enrichment analysis for the prognostic genes. 
Moreover, principal components (PCs) showed 
clustering patterns for cancer tissues and cancer types 
(Fig. 2B), indicating that these genes represent 
cancer-type specific survival information.  

As previously mentioned also, that some cancer 
types had few prognostic genes (Fig. 2A), alternative 
strategy, using the Pearson correlation coefficient 
between survival time and gene expression, was 
applied to identify optional candidates from the 236 
prognostic genes (Fig. 2C). Although some of these 
genes are not in the list in Fig. 2A (see also Table S2), 
they performed well in indicating survival, for 
instance, LRRC61 for GBM, CA11 for PAAD, and 
CEP55 for MESO (Fig. 2C and D). To replicate the 
previous findings, we also test those known genes in 
our stringent criteria and found the similar results 
(Fig. 2D). Specifically, the lower expression of MYBL2 
was associated with a favorable overall survival in 
LGG [15], LIHC [16] and NSCLC [17], high DKK1 was 
identified for gastric cancer [18], and NPTX2, which 
was moderately significant (p ≤ 0.05) for the survival 
[20], has been suggested to have prognostic value for 
GBM [19]. We also randomly selected MYEOV, and 
tested its prognostic performance with microarray- 
based data for PAAD [11] and got similar results (Fig. 
S2E). 
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Figure 2. Prognostic genes associated with both survival difference and expression changes in cancer. A. The 40 prognostic genes identified. Firstly, with criteria of a survival 
difference P[SV]≤10−3 and fold change of expression FC(H/L)≥2, and by selecting the top ten genes at most for each cancer type, 236 genes were identified in 29 cancer types (see 
Table S1). Then the 236 genes were further filtered with stricter criteria of P[SV]≤10−6 and FC(H/L)≥4. The term “effect” indicates the relationship between gene expression and 
survival, a downward-pointing triangle means a high expression of the gene corresponds to a poor survival, and an upward-pointing triangle means a high expression to a good 
survival. B. Principal component analysis (PCA) for the gene expression of the 40 prognostic genes (Table S2) in 29 cancer types. C. The genes whose expressions highly correlate 
with survival. The correlation is calculated as a Pearson correlation coefficient (r). D. Survival curves for the three prognostic genes. 

 
Briefly, we systematically identified the 

independent prognostic genes for each cancer type by 
considering both survival difference and gene 
expression discrimination between high- and low- 
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expression patients. 

Genes with both prognostic and diagnostic 
capacities  

In case of few genes with prognostic abilities, the 
average expression levels were higher in normal 
tissue as compared to the cancer tissues, which could 
cause suboptimal results while evaluating these genes 
in clinical application. For example, DKK1 is 
prognostic for cancer LUAD, but its expression level 
even is higher in control (health sample) than in some 
of LUAD samples (Fig. S3). Therefore, we assessed the 
diagnostic ability of the 236 prognostic genes from 
two aspects: the fold change of gene expression 
between the cancer (C) and the control (N) tissues 
(FC(C/N)), and the AUC in diagnosis. Using the 
criteria |log2FC(C/N)| ≥ 1.5 and AUC ≥ 0.8, we 
identified 22 genes (Fig. 3A and Fig. S4). Fig. 3A 
indicates survival difference P[SV] and diagnostic 
ability AUC for the 22 genes. Survival curves and 
ROC curves of the genes are shown in Fig. S4. In Table 
S3, the detailed AUC and P[SV] are listed for the 22 
genes. Here, we also reconfirmed their diagnostic 
value for CDC20, CDCA8, CDK1, MYBL2, KIF14, 
SPAG5, MYEOV, and STC2, while their prognostic 
value was already identified previously. As shown in 
Fig. 3B, the expression levels of the genes exhibited a 
successive increase from the controls, to the 
low-expression cancer group, and then to the 
high-expression cancer group, made assessment of 
both diagnosis and prognosis possible and reliable. In 
Fig. 3C, we showed capacities of both diagnostic and 
prognostic for CDC20 and MYEOV. Interestingly, the 
genes CDC20, CDCA8, MYBL2, C1QTNF6, CEP55, 
CDK1 and KIF14 were found to be more 
universal/common, since they mark multiple types of 
cancers not only in prognosis but also in diagnosis. 
We propose CDC20 as a prognostic marker for LIHC 
and KIRC, and a diagnostic marker for more than nine 
types of cancer (Fig. S5). The functional aspect linked 
these genes includes, [CDC20 (anaphase promoting 
complex/cyclosome) [21], CDCA8 (chromosomal 
passenger complex) [22], CDK1 and MYBL2 (cell cycle 
progression) [23, 24], MYBL2 (well-known prognostic 
predictor) [23] and KIF14 (chromosome segregation 
and mitotic spindle formation) [25, 26]], to major 
biological processes. 

We also tested the possibility of fifteen 
immunoregulation-related genes in prognosis and 
diagnosis (Fig. 4). PVR was found to be significant for 
prognosis for KIRC and HNSC. The product of PVR is 
the ligand of TIGIT, which can repress the activity of 
NK cells [27]. Also, CD48 showed prognostic value for 
BRCA (Fig. 4).  

Mutational landscape in cancers and potential 
association with prognostic genes 

To determine the potential role of mutation/s on 
the expression levels of the 40 prognostic genes with 
strong criteria (gene list in Table S2), we selected top 
200 frequently mutated genes in this analysis (see 
flowchart in Fig. S6). Fig. S7A shows mutation rate of 
top 50 mutated genes. Fig. S7B shows an enrichment 
analysis for the 200 genes. 

We sought to determine the potential links 
between the associated/mutated pathway and the 
expression of the 40 prognostic genes identified in 
Table S2. The computational flowchart is in Fig. S6. 
The results are shown in Fig. 5. The analysis revealed 
3 subgroups (Fig. 5A): 1) the gene expression was 
affected by many mutated pathways in more than five 
cancer types. These key genes were CDC20, CDCA8, 
ASPM, ERCC6L, KLRA1, KIF14, SGOL1, and FAM72D, 
2) the genes whose expression was affected by only a 
few pathways, such “Focal adhesion”, the “FoxO and 
ErbB signaling pathways” and “Carbohydrate 
digestion and absorption”. These genes included 
GTS1, C1orf88, C5orf32, ATP6V1C2, CLIP, and 
C1QTNF6. 3) gene whose expression was associated 
with less than three cancer types. Like MYEOV, 
ANKRD56, and C7orf29 are connected to mutations in 
the “Tight junction” and “Long-term potentiation” 
pathways. Mutations occurring in the PI3K/PI4K 
domain, methylation-related and central carbon 
metabolism-related genes also showed extensive 
alteration of the expression levels of the prognostic 
genes (Fig. 5A). 

We further tested the relationships between the 
mutated genes and the prognostic genes (Fig. 5B). The 
data showed that CDC20, CDCA8, and ASPM were 
associated with a greater number (frequency) of 
mutated genes, while mutations in PKHD1, ATM, and 
ZNF536 were associated with a greater number of 
prognostic genes. Among the frequently mutated 
genes, including TP53 and PTEN, showed a strong 
association to CDC20 expression (Fig. 5B). As shown 
in Fig. 5B, mutations in TG (thyroglobulin), EP400, a 
component of the NuA4 histone acetyltransferase 
complex, and SI (a sucrase-isomaltase enzyme) 
showed links with CDCA8. Mutations in CNTNAP5, 
which encodes a cell adhesion molecule in the 
nervous system [28], and mutations in ATM, whose 
product belongs to the PI3/PI4-kinase family and 
functions as a cell cycle checkpoint kinase, exhibited a 
link to the prognostic gene ASPM. GTSE1 encodes a 
protein that is involved in TP53-induced cell cycle 
arrest in G2/M phase by interfering with microtubule 
rearrangements [29]. We found that mutations in 
cadherin 23 (CDH23), which helps cells stick together, 
and TEX15, which is involved in DNA 
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double-stranded break repair, are linked to GTSE1 
expression. The expression of MYEOV is mainly 
affected by mutations in genes associated with 
intraflagellar transport (DYNC2H1), actin-microtu-

bule interactions and cellular junctions (MACF1), 
myotendinous junctions (COL22A1), and calcium- 
binding microfibrils and glucose homeostasis (FBN1).  

 

 
Figure 3. Genes with the capacity for both prognosis and diagnosis. A. The 22 genes (Table S3) that are both prognostic and diagnostic. The 236 prognostic genes were further 
filtered with two new criteria. One was the fold change of expression between the cancer tissues (C) and the normal tissues (N), namely |log2(FC[C/N])|≥2. The other was the 
capacity of differentiating cancer and normal cases, which was assessed by AUC of ROC curve, with the criterion of AUC≥0.8. B. The gene expression of the 22 genes in normal 
tissues, and both low- and high-expression cancer groups (Cancer-L and Cancer-H). C. Demonstration of two genes, CDC20 and MYEOV, in prognosis and diagnosis. Left panels, 
expression levels of the genes in normal and cancer tissues (Cancer-H and Cancer-L). Middle panels, the ROC curves of diagnosis. Right panels, the survival curves of the high- 
and low-expression groups. The p value of the log-rank test and the number of the groups are indicated. 
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Figure 4. Prognostic and diagnostic value of fifteen immunoregulation-related genes. Shown is the survival difference (P[SV]) between the high- and low-expression groups of 
each immunoregulation-related gene. The AUC indicates the diagnostic capacity in differentiating cancer tissues.  

 
In order to validate the statistical associations 

identified above, we thoroughly checked the 
literatures to verify the links between the prognostic 
genes and the mutated pathways and genes. The 
results are summarized in Table S4. TP53-, MAPK-, 
PI3K- and AKT- related pathways show more 
associations with the prognostic genes, partly due to 
that the pathways were extensively studied in the past 
years (Table S4). On statistical point of view, minor 
association appeared in the literature, while the 
biological associations showed a complex scenario. 
For example, for prognostic gene CDC20 (Table S4), it 
was suggested that TP53 or DNA damage induced 
endogenous TP53 can downregulate CDC20 
transcriptionally. Binding of TP53 at CDC20 promoter 
can bring about chromatin remodeling thereby 
repressing CDC20 [30, 31]. In case of UHRF1, its 
overexpression can affect DNMT1 hence lowers the 
DNA methylation (Table S4), hence can result into 
genome instability [32]. Also, this overexpression 
frequently associates to the TP53 mutation [32]. In 
case of MYEOV and cell tight junction process (Fig. 
5A), although no direct evidence was available, 
however, an independent experiment suggests that 
Ras/MEK/ERK pathway controls the junction 
formation and the inhibition of MEK will decrease the 
MYEOV expression [33] (Table S4). Overall, the 
literature mining supports our study as a proof of 
principle and reliability of our analysis. 

To our knowledge, this is the first study which 
has exclusively elaborated the impact of mutational 
landscape on the gene expression of prognostic 
factors. 

Discussion 
Genetic and epigenetic features of cancer cells 

define its phenotypic capacity for the metastasis, 
however, it is the gene expression signatures which 
provide better insights about the happening inside the 
cancer cell. Decoding these signature profiles can not 
only help in prognostic but also staging the clinical 
assessments. In this study, we performed 
comprehensive analysis to identify prognostic genes 
for overall survival using 29 cancers dataset. 

First, we could show that the prognostic genes 
vary greatly among cancer types. Moreover, cancer 
with multiple subtypes harbors very fewer prognostic 
genes. For instance, six subgroups (IDH, K27, G34, 
RTK I and II, and MES) in GBM [34], five molecular 
subtypes (Luminal A, Luminal B, Her2 
overexpressing, basal, and normal-like) in breast 
cancers [35] and four subtypes in ESCA [36] can be 
noticed. These three cancers represent very few 
prognostic genes (Fig. 1A–B). It is well established 
that intra-tumor genetic heterogeneity is associated 
with poorer survival across cancers [37]. In this 
regard, we found a significant association between the 
inter-tumor expression heterogeneity and the overall 
survival (Fig. 1C).  

Second, considering both survival difference and 
expression change, we identified 236 prognostic 
genes. Earlier, it was shown that the cancer-normal 
expression differentiation is irrelevant to genes 
survival correlation in multiple cancers and is not 
helpful in identifying prognostic genes [38].  
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Figure 5. Association between the expression of the prognostic genes and the somatic mutations. A. Links between the expression of the prognostic genes and the mutation 
profile of the top 200 frequently mutated genes. For each prognostic gene, a Chi-squared test was employed to test the association between its expression level and the mutation 
times of the 200 mutated genes in each cancer. The mutated genes with p ≤ 0.001 were included in an enrichment test for GO term, KEGG pathway, InterPro domain, and 
SMART mode. A cutoff of p ≤ 0.05 was used to find the enriched terms and pathways. If the criteria were satisfied, a link between the prognostic gene and the mutated pathway 
(term) was counted once. This was done for each cancer type. The heat map here displays the counts for the links within 29 cancer types. B. Generalized linear regression of the 
expression of the 40 prognostic genes (Table S2) with the mutation profile of the top 200 mutated genes. The network displays the regression results after filtering with p < 0.05 
in the Chi-squared test. In the network, the yellow-marked genes are the prognostic genes and the other genes are the mutated genes. A line from the mutated gene to the 
prognostic gene indicates that the mutation relates to the expression of the prognostic gene. Blue and red lines mean negative and positive effects, respectively. The line width 
is proportional to the significance (p value of Chi-squared test). A manual validation by literature mining is in Table S4. 

 
Herein, we also demonstrate that to identify 

prognostic genes by comparing gene expression 
between cancer and control samples is not reliable 
approach (DKK1, Fig. S3). In our analysis, we 
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identified 22 genes concerning prognosis and 
diagnosis and among them highly significant ones 
(CDC20, ASPM, CDCA8, SGOL1, and ERCC6L) were 
shown to play roles in G2/M processes, such as the 
spindle assembly checkpoint [21, 22, 39, 40]. 
Therefore, we proposed that the regulation of 
anaphase of the cell cycle is intimately associated with 
the patient survival.  

Third, we took advantage of mutational data and 
aim to find their association with relevant prognostic 
genes. The analysis clearly showed that the mutations 
in PI3K–AKT, ErbB, and FoxO signaling pathways, in 
addition to their associated biological processes, can 
ubiquitously alter the expression of the prognostic 
genes. In addition, the close association between the 
prognostic genes that function in anaphase of the cell 
cycle (CDC20, CDCA8, ASPM and GTSE1) and the 
mutated genes (TP53, PTEN, ATM, EP400 and BAI3) 
can be noticed (Fig. 5B). This also indicates about 
considerable overlapping between gene expression 
variation and the mutational pathways altered across 
different tumor types. 

Herein, we considered 3 points which are 
missing in the previous studies. First, both the 
survival difference P[SV] and the expression level 
difference (fold change (High group/Low group) 
(FC(H/L)) ) were considered in identifying the 
prognostic genes in cancer samples. Second, we also 
assessed the diagnostic ability of the prognostic genes, 
which makes it possible to convert the prognostic 
genes into a clinical test. Third, we statistically linked 
the prognostic genes to the frequent mutated 
pathways and the genes, which provides the possible 
molecular mechanisms for the prognostic genes. In 
addition, we manually collected some evidences as a 
proof of in principle supporting our results. Certainly, 
the translation of our analysis in the cancer genome 
requires functional elucidations. Importantly, we can 
hypothesize that these cancer related (mutated) genes 
are tightly connected and are capable to reshape the 
genome in one or even multiple cancer types. Taken 
together, our analysis provided a comprehensive list 
of genes relevant to prognostic and diagnostic in 
cancers. Moreover, we revealed the statistically 
significant link connecting the prognostic cancer 
genes and the respective cancer related mutations. 

Conclusions 
Common prognostic genes with diagnostic 

capacity for multiple cancers have potential 
application in planning clinical treatment and in 
studying cancer mechanism. In this paper, we found 
22 genes that have both diagnostic and prognostic 
capacity and relate to cell cycle and cell division. The 
universal prognostic genes (CDC20, CDCA8, ASPM, 

ERCC6L, and GTSE1), mainly function in anaphase of 
the cell cycle, especially in the spindle assembly 
checkpoint. Moreover, we statistically linked the 
expression of the prognostic genes with the pathways 
that harbored mutated genes. Our results suggested 
that the mutations in TP53, PI3K–AKT, ErbB, and 
FoxO signaling pathways, in addition to their 
associated biological processes, can ubiquitously alter 
the expression of the prognostic genes. Briefly, we 
systematically identified the prognostic genes for 
overall survival, assessed their diagnostic potential, 
and linked the genes with mutations. 
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