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Chunking as the result of an efficiency computation
trade-off

Pavan Ramkumar'2, Daniel E. Acuna?3, Max Berniker'#, Scott T. Grafton®, Robert S. Turner®
& Konrad P. Kording'2

How to move efficiently is an optimal control problem, whose computational complexity
grows exponentially with the horizon of the planned trajectory. Breaking a compound
movement into a series of chunks, each planned over a shorter horizon can thus reduce the
overall computational complexity and associated costs while limiting the achievable
efficiency. This trade-off suggests a cost-effective learning strategy: to learn new movements
we should start with many short chunks (to limit the cost of computation). As practice
reduces the impediments to more complex computation, the chunking structure should
evolve to allow progressively more efficient movements (to maximize efficiency). Here we
show that monkeys learning a reaching sequence over an extended period of time adopt this
strategy by performing movements that can be described as locally optimal trajectories.
Chunking can thus be understood as a cost-effective strategy for producing and learning
efficient movements.
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ompound movements, such as drinking a cup of tea, are

typically produced by threading together a sequence of

simple, elemental movements—for example, reaching out,
grasping the cup, raising it to the lips, tilting it appropriately and
drinking from it. Such actions tend to have distinguishable
components or chunks!™. When we first encounter a new
sequence, each elemental movement is executed as an isolated
chunk, that is, a continuous movement between two halts of the
end effector. With learning, individual elements become faster
and smoother, that is, more efficient. In addition, there is a
progressive process where several contiguous elements can be
combined into chunks with the result that the overall sequence
is executed more efficiently and with fewer chunks*®-%. The
seminal chunking theory of learning® describes the pheno-
menological signatures of movement speed up with learning
(but see ref. 10), yet the causes of chunking have remained
elusive. We approach the problem of why chunking occurs by
considering the goals of the motor system (that is, the functions it
has evolved to optimize) and ask whether chunking might be a
strategy to achieve them.

In the discrete sequence production literature, chunks are
interpreted as the outcome of memory processes that address the
costs assoc1ated with storing and recalling long sequences from
memory!!. For instance, to remember a sequence of 10 numbers
(for example, a phone number) we can combine them in a series
of chunks, each three or four digits long (for example, 3-3-4).
This way, instead of remembering 10 individual numbers, it is
sufficient to remember three chunks. Presumably this strategy is
how the brain best achieves the goal of remembering the sequence
accurately while balancing the competing cost of memorizing
long sequences. The vast majority of early chunking studies are
built from working memory tasks and do not explicitly address
the costs associated with planning or optimally executing a
sequence of physical movements.

Some studies have considered movement sequences as being
represented either cognitively (spatial chunks), or as synergies
between muscles, joint angles and forces (motor chunks)!>~1°.
For example, explicit instruction or knowledge experiments
produce spatial chunks and implicit learning produces motor
chunks'. Bimanual transfer experiments that discriminate
between spatial and motor chunks'>!%17 have suggested that
spatial chunks are formed earlier than motor chunks. According
to a prominent theoretical synthesis!>!>, control of movement
sequences shifts from a general-purpose cognitive system to a
specialized motor system. In this view, the motor system deals
with execution while the cognitive system is freed up to attend to
other tasks. Despite these studies, the literature has not
considered movement sequence production from the standpoint
of optimal control.

Optimal control solves the problem of determining control
policies that maximize some value function. When applied to
motor control, this commonly refers to the problem of computing
the dynamics of joint angles and muscles that maximize efficiency
(resulting in smooth trajectories and lower energetic demands of
execution). To obtain smooth or efficient trajectories, a higher-
order derivative of position such as the squared jerk is minimized
over the course of the movement!®1°, An important facet of such
problems is that they are solved by dynamic programming and
become exponentially harder to solve as the planning horizon of
movements becomes longer'®2!. Thus, the computational
complexity of one extended sequence of movements as a whole
is greater than the total computational complexity of shorter
portions of the same sequence planned independently and then
concatenated.

From these considerations, it follows that long sequences of
movements can be composed of a series of computationally
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simpler shorter sequences, which we operationally define as
chunks. However, such concatenation will in general prevent
performance from being maximally efficient; the concatenation of
optimal chunks is not equivalent to the optimal solution for the
entire sequence. This suggests an inherent trade-off for the motor
system between efficient but computationally complex long
movements and computationally simple but inefficient move-
ments comprising chunks. Thus, the trade-offs between efficiency
and computational complexity must influence chunking on any
given trial such that some upper bound of computational
complexity and some lower bound of sufficient efficiency together
determine chunk structures.

At first glance, this trade-off between efficiency and computa-
tion may appear to imply that the chunk structure, once
optimized for the trade-off, should stay the same over the course
of learning. However, animals clearly have the ability to form
habits??. In the operant conditioning literature, habitual
movements are defined as stimulus-response behaviours, that
is, automatic actions or sequences of actions performed in
response to stimuli that are insensitive to the action outcome?>?3.
Arguably, this automaticity of habitual movements reduces the
effective cost of computation of a sequence that would have been
more computationally expensive de novo. Moreover, there are
algorithmic reasons why computation can become less costly with
repeated performance. For example, algorithms can s1mpl1fy the
optimization process by caching partial solutions®*, estimatin ng
cost-to-go functions?®, or approximating the optimal policy?°.
Furthermore, the energetic benefit of an efficient trajectory is
likely to offset the relative cost of added computational
complexity for movements that the animal must produce
several times. For all these factors, which are hard to measure
experimentally, it stands to reason that the effective cost of
computing more complex trajectories decreases over the course of
learning. Thus, practice should enable solutions that require
longer planning horizons and that result in longer chunks. We
may thus intuitively expect that the trade-off between a fixed
efficiency goal and a decreasing effective cost of computation
gives rise to progressively longer chunks.

In this study, we tested whether monkeys produce cost-
effective  movement sequences using kinematic data from
monkeys repeating the same sequence of centre-out reaches
many times. We found that movement efficiency was optimized
initially within chunks, and then gradually by producing move-
ments of longer chunks, suggesting that monkeys are cost-
effective learners. We suggest that the optimal motor control
problem can be reframed as a divide-and-conquer strategy:
stringing together the correct set of elemental movements
into chunks and locally optimizing trajectories within the
boundaries of a chunk. This reframing has broad implications
for how the motor system learns to execute movement sequences
efficiently.

Results

A movement sequence task to characterize chunking behaviour.
To characterize movement-chunking behaviour in animals, we
recorded arm movements from monkeys performing a sequence
of centre-out reaches. Although movement sequence production
has primarily been studied in human finger movement tasks,
finger movements generalize less well across species. Here we
intend to develop tasks to test alternative models of chunking
across species so that physiological mechanisms can be studied
using invasive recording techniques not available to humans. We
believe that monkeys are a good model of human chunking
behaviour because we are primarily interested in the control
aspects of the motor system that results in chunking.
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Two monkeys (adults, Macaca mulatta) sequentially reached
using a joystick to five outer targets, and returned to the centre
target in between each reach (Fig. la; see Methods for details).
Each target was visually cued as soon as the previous target was
captured, rendering the task self-paced. The sequence was
identical from trial to trial across days, and monkeys learned it
through practice.

To understand how motor performance evolved with learning,
we visualized speed profiles from the early, middle and late
periods of learning (Fig. 1b, monkey E). In the beginning (for
example, trials 1-100), the monkey is still following the spatial
cues for each reach in the movement and the speed profiles are
highly repeatable from one trial to the next (Fig. 1b, top panel). In
the intermediate period (for example, trials 30,001-30,100),
movements have decreased peak speeds and become smoother,
but there is considerable variability from trial to trial (Fig. b,
middle panel). Towards the end of learning (for example, trials
40,001-40,100), the movements are more similar from trial to
trial. This increase in regularity is a signature of highly practiced
movements? and can be quantified using higher-order derivatives
such as jerk.

a 12 s hold

A model for achieving trade-offs through chunks. We devel-
oped a model to analyse how the trade-off between movement
efficiency and computational complexity can explain the chunk-
ing observed in sequential reaching movements.

Let us define the computational complexity of optimal control
as the de novo cost of computation (that is, the cost of computing
a novel sequence of optimal trajectories). To be clear, both novel
and learned sequences are associated with computational
complexity, but we have no insight at present into the potential
computational savings that may come with repeated performance.
Therefore, we prefer to define computational complexity as the
cost of computing the control trajectory for a novel sequence.

From a normative point of view, the computational complexity
of planning a movement grows exponentially with the duration
over which the movement is optimized!'®. To see why, consider
that at each time step, the monkey can modify the kinematics
(positions, joint angles and so on) and dynamics (forces, torques
and so on) of its arm in N unique ways. To plan ahead for T time
steps, the search space grows as O(N"). Thus, the entire sequence
of movements is computationally expensive to plan but can be
optimized for maximum efficiency. Alternatively, the sequence
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Figure 1 | Movements become more regular with learning. (a) Reaching task. Monkeys move a cursor through 5 out-and-back reaches (10 elemental
movements) between central and peripheral targets. White-filled circular cues indicate which target to capture. Each successful element is rewarded.
(b) Hand trajectories: left, position; right, speed. Each trial is stretched to a duration of 5s. Grey traces indicate single trials and bold coloured traces
indicate mean traces. The coloured envelopes around the mean trace indicate one s.d. on either side of the mean.
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can be broken up into chunks and each chunk can be optimized
independently. This scenario would be computationally simpler
but not maximally efficient.

To illustrate how this trade-off influences movement chunking
in our reaching task, consider the following. In this task, we
consider a single aiming movement, that is a centre-out or an
out-centre movement as an elemental movement, and a
combination of one or more elemental movements as a chunk.
The smallest possible chunk would thus constitute a single
elemental movement (for example, Fig. 1a, element 1 or 2). Thus,
to minimize the computational complexity of planning an
efficient movement, the arm should come to a halt at the end
of every element, and each such element should be optimized
independently. This scenario lies at one extreme and we refer to it
as the ALL-HALT model, where each HALT point is either a
centre or an outer target at which the arm comes to a halt (Fig. 2a,
top panel). If however the desire for a maximally efficient
movement matters most, we would expect the entire sequence to
be executed as a single chunk. In this scenario, the arm would
never halt and the movement would be optimized over the entire
sequence. We refer to this other extreme as the ALL-VIA model,
where each VIA point is a target through which the arm passes
without coming to a halt (Fig. 2a, lower panel). In reality, there is
a large but finite number of ways in which the entire sequence
could be divided into chunks. Our model assumes that each
movement sequence is executed using a grouping of chunks that
lies on the continuum between these two extremes, as the animal
navigates the trade-off between efficiency and computational
complexity (Fig. 2a, middle panel).

Each chunk structure on this continuum is uniquely defined by
specifying all potential HALT/VIA points in the trajectory, and is
associated with a net computational complexity and net
achievable movement efficiency. To quantify these respective
computational complexities and efficiencies, we fit minimum-jerk
trajectories to each trial between each pair of consecutive HALT
points (chunks) and concatenated these fits across chunks (see
Methods). Each such model trajectory gives the instantaneous
arm position over the course of an entire movement sequence.
We then quantified efficiency and computational complexity of
each trajectory as follows.

In the motor control field, optimal movements are typically
defined operationally as the trajectories that minimize the
integrated squared jerk. Although smooth trajectories can be
obtained by minimizing any higher-order derivatives of position,
jerk (the third-order derivative) is typically chosen because the
ratio of the peak to mean speed of model trajectories agrees well
with the ratio from empirically characterized arm kinematics of
human reaching movements!®. Thus, we defined efficiency as the
negative squared jerk, normalized to discount the effect of
variable movement duration from trial to trial (see Methods).

To quantify the computational complexity of a movement
sequence, we developed a metric that linearly sums the
complexity of computing the trajectory for each chunk. Given
that computational complexity of optimizing a motor control
policy increases exponentially with the horizon of planning, we
defined the computational complexity of a single chunk as the
exponent of the number of elements, that is, the number of
centre—out and out-centre reaches constituting the chunk
(see Methods).

Visualizing efficiency against computational complexity for
each model trajectory gives us an understanding of the trade-off
(Fig. 2b; grey dots). The upper envelope of the space spanned by
all potential outcomes of the model gives us an estimate of the
Pareto frontier (Fig. 2b; red curve). In optimization problems that
involve dual objectives, the Pareto frontier is the set of all points
at which gaining ground on one objective will necessarily lose
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ground on another?’. This Pareto frontier represents the trade-off
curve, which gives the theoretically maximum achievable
efficiency for any given complexity, and below which all real-
world movements must lie.

The shape of this trade-off curve, showing diminishing returns
in efficiency as a function of growing computational complexity,
has two important implications. First, the efficiency gains above a
certain computational complexity are marginal. This suggests that
optimizing the sequence as one smooth, continuous movement
may never be worth the computational effort and might explain
the fundamentally discrete nature of long compound movements.
Second, significant savings in cumulative computational effort
might be achieved over the course of several trials, either by
transitioning between chunk structures of the same computa-
tional complexity or by optimizing for efficiency within chunks.
Learning to exploit this advantage inherent to the task may enable
more efficient compound movements for the same amount of
computation.

To test these implications of our chunking model, we analysed
kinematic data from monkeys performing the centre-out
sequence. First, we inferred chunk boundaries based on local
minima in speed (Fig. 2c, black traces) below an adaptive
threshold (see Methods). Through this method, we could
parameterize each compound movement in terms of its chunk
structure, which is uniquely specified by the number of elements
in each chunk and the location of chunk boundaries (the HALT
points). In early trials, the arm stopped at several HALT points
(Fig. 2¢, red dots), whereas in later trials the HALT points became
VIA points (Fig. 2¢c, green dots). Thus, the number of chunks
appeared to decrease as a function of learning.

We then modelled these kinematic data by fitting minimum-
jerk trajectories between consecutive pairs of HALT points
(Fig. 2c¢, blue traces). If the monkeys optimize for minimum jerk,
we can expect the model to better explain kinematic data as
movements become more efficient. Indeed, we found that the
goodness of fit, quantified by the Pearson’s correlation coefficient
between model and data speed profiles, improved over the course
of learning (Fig. 2d). This suggests that minimum jerk is a good
measure of efficiency and that compound movement sequences
can be modelled as locally optimal trajectories, where optimiza-
tion takes place within chunks.

Movement efficiency and computational complexity. As
suggested by our model fits to data (Fig. 2d), movements
progressively resemble minimum-jerk trajectories. Independent
of our model, we found that efficiency, as quantified by negative
normalized squared jerk, increased by ~50-90% over ~50 days
of performing the same sequence (Fig. 3a; unpaired two-sided
t-test comparing trials across first and last days of practice;
P<0.001; n=661 and 591 trials, respectively, for monkey E;
n =390 and 279 trials, respectively, for monkey F). Thus, as is
often observed, movement efficiency improved with learning.
Visualizing example trials (Fig. 2c) we observed that later trials
had fewer chunks. Across all data, we found that the number of
chunks decreased with extensive practice (Fig. 3b; unpaired two-
sided t-test comparing trials across first and last days of practice;
P<0.001; n=661 and 591 trials, respectively, for monkey E;
n =390 and 279 trials, respectively, for monkey F). The decrease
in number of chunks suggests that the length of individual chunks
increases. As chunks become longer over the course of learning,
movements are optimized over increasingly longer horizons.
Repeated execution of certain sequences should enable savings
in the cost of computation. Thus, with practice, the motor system
can select chunk structures with fewer and longer chunks.
Although computational complexity is directly related to chunk
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plotted against its maximally achievable efficiency under the model, and the corresponding computational complexity. The red curve is the convex hull
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Figure 3 | Efficiency and costs are traded off. (a) Over the course of
practice, movement efficiency (negative normalized squared jerk; mean £ 2
s.e.m.’s) increases with the number of days. (b) The number of chunks
(mean * 2 s.e.m.'s) estimated by the model decreases with number of
days. (¢) Computational complexity (median =2 s.e.m.’s) of chunk
structures, defined as the de novo cost of computation, increases with
increasing chunk length due to longer planning horizons. ***P<0.001.

length, the relationship is still non-monotonic in nature. For
instance, the trajectory for a chunk structure of 8-1-1 is more
computationally complex than a chunk structure of 5-5, even
though the former has more chunks than the latter. Therefore, we
explicitly tracked the computational complexity—which
can be thought of as the cost of computing a chunk structure
de novo—as a function of learning. We found that this metric
increased with learning (Fig. 3c; unpaired two-sided t-test
comparing trials across first and last days of learning; P<0.001;
n==661 and 591 trials, respectively, for monkey E; n =390 and
279 trials, respectively, for monkey F). Thus, a large number of
chunks early on in learning keeps the cost of computation low. As
learning simplifies computational solutions, the motor system is
able to optimize over progressively longer horizons, resulting in
the selection of chunk structures with greater computational
complexity.

The observed decrease in number of chunks could be
attributed to a general increase in movement speed and reduction
in reaction times, leading to detection of fewer chunk boundaries
over time simply because local minima of speed profiles fall below
the boundary detection threshold accidentally. This would imply
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that the observed chunk structures are random and do not
converge towards more efficient ones. To rule out this possibility,
we performed two control analyses.

First, if it were indeed true that the decrease in number of
chunks was an apparent phenomenon resulting from faster
movements, we would expect the number of unique chunk
structures executed in a single day to remain unchanged
as a function of learning. However, we found that the number
of unique structures per day decreased with learning (Supple-
mentary Fig. 1), suggesting a convergence towards chunk
structures that improve efficiency of the entire sequence. Second,
if chunks resulted purely from speeded-up movements, we would
expect high variability in chunk structure and low correlation
between consecutive trials. To test this, we computed the
Hamming distance between chunk structures of consecutive
trials, defined as the number of VIA to HALT and HALT to VIA
point transitions. We found that even during the intermediate
periods of learning with greatest variability, the average
Hamming distance does not exceed 3 (Supplementary Fig. 2),
even though the expected Hamming distance would be 4.5 if the
chunk structures were selected at random on each trial. Together,
these controls suggest a phenomenon involving the noisy
evolution of chunking patterns towards increasing efficiency.

Cost-effective learning behaviour. Optimizing movements for
efficiency requires computational resources. For a given amount
of computational resources, there is a limit to the possible range
of movements. Reiterating, this implies the existence of a Pareto
frontier that describes the computational complexity of the pro-
blem that needs to be solved for a given movement efficiency, and
constitutes a constraint the motor system must contend with.

There are multiple strategies (Fig. 4a, coloured traces) to
transition from a naive (low efficiency and low complexity) to a
practiced (high efficiency and high complexity) movement in the
efficiency—computation space. A learner with limited computa-
tional resources over the course of learning would take a vertical
path and only take on trajectories of greater computational
complexity when even further efficiencies are required or when
the effective cost of computation decreases (for example, through
mechanisms associated with habit formation; Fig. 4a; scenarios 1
and 2). Alternatively, a learner may choose to devote increasing
computational resources constantly throughout learning (Fig. 4a;
scenario 3). Finally, deploying greater computational resources
right from the outset provides maximal achievable efficiency
immediately. Learners using this strategy optimize movements
over long horizons at high complexity (Fig. 4a; scenarios 4 and 5).
Critically, these different learning scenarios are not equivalent
with respect to the cumulative computational resources devoted
over the course of learning.

To quantify the cumulative outlay of computational resources
associated with each strategy, we performed a simulation based
on the known ways in which organisms improve efficiency over
time (see Methods). Across a wide range of rates of increase in
efficiency (Fig. 4b), scenario 1 ranks first in terms of minimizing
the total cost of computation (Fig. 4c), even though all scenarios
achieve the same efficiency (see Methods for details). Thus, a
chunking-based strategy described by following the Pareto
frontier in the efficiency-computation space results in the
smallest total outlay of computational resources over the course
of learning.

To test this hypothesis, we visualized how motor performance
evolved through learning along the dimensions of efficiency and
computational complexity (Fig. 5, coloured dots). By comparing
behavioural data against the complexity and efficiency of the
minimum-jerk model trajectories (Fig. 5, grey dots) and the
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Pareto frontier (Fig. 5, red trace), several aspects stand out. First,
the efficiencies of the model trajectories are much higher than
those of actual behaviour during the first several days of learning.
Thus, when the monkeys start learning, their efficiency is low
(their jerk is far from the minimum) but it approaches the
maximum efficiency (minimum jerk) after several days of
learning.

Second, even after tens of thousands of trials, the monkeys do
not reach the point where the entire sequence is executed as a
single chunk. Indeed, the average computational complexity of
chunk structures in a session seems to be restricted to about
50-60% of the complexity of executing the sequence as a single
chunk (Fig. 5 versus Fig. 2b). This suggests that even if reductions
in the cost of computation can be achieved by habit learning, they
are not arbitrarily large reductions to the point that such costs do
not matter. Given this and the diminishing returns of efficiency
with increasing complexity, it seems that the persistence of
chunking far into learning is a reasonable strategy.

Third, we find that the two monkeys took different learning
paths while learning to produce efficient movement sequences.
Monkey E took a path that very closely resembles the most cost-
effective strategies (Fig. 4; scenarios 1 and 2) by increasing
efficiency without increasing computational complexity for the
first half of the sessions and then selecting chunk structures with
greater computational complexity to achieve further efficiency
improvements during the second half of the sessions. By contrast,

monkey F took a path with no appreciable increase in
computational complexity during the entire period of learning.
Thus, it seems to achieve efficiency improvements for a fixed
complexity. How cost-effective are these different strategies with
respect to the outlay of computational resources over the course
of learning?

To quantify the cost-effectiveness of these learning strategies,
we used a Monte Carlo simulation. We built a null hypothesis
under which monkeys aim to achieve the efficiency gains
observed in the experiment with no regard for the cumulative
outlay of computation throughout learning. Such a learner would
show random changes in average cost from day to day. We
simulated this behaviour using a random walk through the space
of computational complexity from one day to the next, and a
deterministic update of efficiency for each day based on data. We
simulated a large number of these learning paths to represent
candidates from the null distribution (see Methods). We found
that the null hypothesis could be rejected at a significance level of
P =0.0023, n =51 days in monkey E and P=0.0117, n =51 days
in monkey F). This suggests that monkeys choose a learning
strategy that is highly cost-effective.

Movements are optimized within chunks. We have shown that
monkeys learn by navigating an efficiency-computation trade-off
cost-effectively although they use different learning strategies
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chunks for each degenerate set is indicated in the header of each plot. The red fit line is the fixed effect model that is identical for each set and the yellow fit

line is the mixed effect model that is unique to each set.

(Fig. 5). Efficiency improvements can be achieved in two ways.
First, the motor system could be optimizing movements within
chunks. Second, by exploiting the fact that many chunk structures
share the same computational complexity (Fig. 6a), the motor
system could swap chunk boundaries in a manner that
preferentially selects high-efficiency chunks for a given cost. To
distinguish between these possibilities, we analysed whether
movement efficiency improves without changing computational
complexity, and whether chunk structures within a given
complexity are preferentially selected for their efficiency.

First, we analysed improvements in efficiency for trials with
matched computational complexity. We identified degenerate
sets—which we define as the set of all chunk structures with
identical complexity—as follows. Denoting a chunk structure as
M,-M;-...-M, where M; is the number of elements in the j-th
chunk out of k chunks, the complexity is identical for all possible
chunk structures that only differ by a permutation of {M;}. That
is, any two movements have the same computational complexity
as long as they contain chunks with the same numbers of
elements in each chunk (for example, 3-2-3-2, and 3-3-2-2
(Fig. 6a). We determined if efficiency was optimized without
changing computational complexity by analysing how normalized
squared jerk changes with learning for chunk structures within
each degenerate set.

We found that efficiency increased over time within degenerate
sets (Fig. 6b). For the eight most frequently occurring degenerate
sets (among 42), comprising over 70% of all trials, we quantified the
rate at which squared jerk changed with time. We used a nonlinear
mixed effects model to separate out the ‘random effect’ arising from
the degenerate set, and the ‘fixed effect’ of interest: squared jerk as a
function of repeats (see Online Methods). We found a significant
effect of learning on squared jerk (z-test; z=-6.1; P<107,
n = 12,699 trials for monkey E; z-test; z=-9.0; P<107'%, n = 7,576
trials for monkey F). Thus, monkeys are capable of optimizing
efficiency without altering the complexity of chunks.

The optimization of efficiency at fixed computational complex-
ity does not rule out the possibility that the monkey may swap
chunk boundaries to select more efficient chunks within
degenerate sets, for example, 2-2-3-3 instead of 3-3-2-2. If
fixed-complexity efficiency gains were indeed being achieved
through this strategy, we should observe a greater prevalence of
higher-efficiency chunk structures among all possible chunk
structures for a majority of degenerate sets. To test this, we
performed a ranking analysis as follows. For each degenerate set
(described above), we estimated the frequency of prevalence of
each chunk structure in the learning task. If chunks are indeed
selected for their efficiency, we should expect that this frequency
distribution within a degenerate set must be positively correlated
with efficiency. We found no such evidence (Spearman’s rank
correlation across n =42 degenerate sets, p = -0.13 for monkey E;
p =-0.20 for monkey F; P> 0.05 for both). This suggests that the
observed efficiency gains without an increase in computational
complexity result from optimization of trajectories within chunks.

Discussion
In this study, we proposed that the observed discretization of
compound movements into chunks emerges from the trade-offs
between different goals of the motor system: maximizing
movement efficiency and minimizing computational complexity.
By operationalizing the definitions of efficiency and computa-
tional complexity in a simple model, we showed that chunking is
a potential strategy of the motor system to produce efficient
movements while keeping computational complexity tractable.
We found evidence that overall computational complexity is kept
in check over the course of learning largely due to the
optimization of movements within chunks. Thus, chunking is a
cost-effective strategy of learning to make efficient movements.
One strategy for improving efficiency at a fixed complexity is
for the animals to progressively switch to chunk structures having
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the same computational complexity (that is, the same number of
chunks and the same chunk lengths up to a permutation) but
higher efficiency (for example, 3-3-2-2 versus 2-2-3-3).
However, we found no evidence that either animal did anything
more sophisticated than optimizing trajectories within chunks.
Although selecting chunk structures for efficiency within a
degenerate set is an attractive strategy, having to search across
chunk structures of equivalent complexity requires prior knowl-
edge or internal models of efficiency, which animals may not
possess. Further, re-learning a new chunk structure from one trial
to the next might impose extra costs on working memory. Finally,
any reduction of computational complexity gained by practicing
one particular structure will probably not transfer to the new
more efficient chunk. Thus, optimizing within chunks, even when
better, unexplored chunk structures exist, might be a simple and
effective strategy.

The model assumes that the movement time between targets is
the same. We made this simplifying assumption due to the
practical concerns of limiting the number of free parameters. This
is a reasonable assumption for a structured laboratory task such
as reaching between points, but we do not know how well this
would generalize to a more complex natural movement sequence
with different speed-accuracy requirements. Extending the
model’s capabilities to handle more natural movements is an
important future direction.

Our modelling of the computational complexity is based on the
underlying assumption that each unit of computation is allocated
towards optimizing trajectories between chunk boundaries as
opposed to planning suboptimal trajectories over longer horizons
with fewer boundaries. Although these assumptions may be an
oversimplification, there are no known studies quantifying the
relative effort for the nervous system to optimize a trajectory with
respect to executing it. Addressing these limitations by developing
better metrics for computational complexity or by experimentally
measuring it would be important avenues of future work.

The literature on discrete sequence learning has suggested that
as behaviours become more automatic, they become cheaper to
plan and execute'>!>16, Indeed, it is possible that the nervous
system has strategies to make costs cheaper through extensive
learning. For instance, parts of the optimal solution might already
be stored or indexed, which, over time, would render costs of
computation lower?>. This may allow a strategy where over time
longer trajectories are optimized at the same real cost as the
de novo cost of shorter trajectories. Further, these savings in
computational cost may also go hand in hand with efficiency
gains in encoding long chunks into memory, which can be
reorganized to make the retrieval cost of long movement chains
smaller. Thus, further work is required to understand how to
compare the relative difficulty of computing optimal control with
those underlying attention and memory, and how this effort
changes with time.

One apparently counterintuitive finding in our results is that
computational complexity increases with learning. This observa-
tion goes against our everyday intuition that habitual movements
feel cognitively effortless. However, here we use a restrictive
definition of computational complexity: the cost of computing the
control sequence for producing a desired movement trajectory.
The brain has to compute a control sequence for virtually all our
movements, and it is currently unresolved as to whether such
control is computed by a conscious cognitive system, or whether
it is computed by a motor system whose activity is inaccessible to
cognitive systems. Recent work in movement chunking!® suggests
that the computation of control for everyday movements occurs
at a level below conscious awareness. Therefore, even if
computational complexity increases as movements become
habitual, they are likely to feel cognitively effortless, and the

observed increase in complexity with learning can coexist with
the effortlessness of habitual movements.

Our model suggests that efficient control trajectories can be
obtained with a divide-and-conquer strategy. If each chunk is an
independently optimized trajectory, then the task of computing
a motor command is reduced to a set of yes or no decisions
(2N-1 HALT or VIA points for N movement elements), and the
computation of locally optimal trajectories. Thus, our model
reconceptualizes motor control as having a novel decision-
making component; that is, movements are not inherently
discrete due to a command-generating mechanism, but rather
due to decisions regarding how to structure locally efficient
movements, and learn cost-effectively. This is similar to the
strategy used in optimal control when choices of contact points
are considered?®. Such strategies that use hybrid optimization
can allow highly efficient approximate solutions for complex
problems.

One of the key challenges of modelling movement sequence
learning in an optimal control setting is to be able to explain why
animals do not perform the optimal trajectory in a single shot. As
such, it is useful to point out that optimal control theory specifies
the necessary and sufficient conditions for a desired behaviour
through a cost. However, the theory as applied to biological
motor control does not concern itself with the algorithms that
describe how optimal control is learned. Indeed, future work in
this direction will help integrate principles of optimal control
theory with theories of motor learning and may potentially
provide normative models of how chunk structures must evolve
with learning.

The significant trial-to-trial variability of chunk structures that
persists well after extended practice deserves further examination,
particularly because it diverges from the typical notion of chunks
in the literature as relatively robust!>!°. This observation suggests
that although chunks may develop with learning, they need not be
used in each trial and new chunk structures can be developed
even after extended practice. Therefore, in future work it would
be important to develop a better understanding of the contexts in
which the control for a movement sequence is computed online
in each trial, and the contexts in which the control is stored and
reproduced.

Chunks play a key role in the ability of the nervous system to
efficiently learn, store and recall motor procedures such as
walking, speaking or playing musical instruments®2. Moreover,
impairments in initiation and completion of sequential
movements are a key factor of several neurological disorders
involving the basal ganglia such as Parkinson’s or Huntington’s
disease?*2°~31, Chunking is also widely observed while learning
new compensatory movements in patients recovering from
stroke>32. One potential interpretation of these disorders under
our framework is that the mechanism underlying chunking is
affected by the disorder, and local optimization needs to be re-
learned as a result. In this view, the high-level goal of
rehabilitation may be recast as a set of interventions that
effectively help to re-learn local optimization. Therefore,
understanding the relationship between chunking and
movement disorders is important for movement rehabilitation.

We have proposed an explanation for the discrete nature of
movements based on the goals of the motor system. Although
earlier studies have considered how the goals of the motor system,
including effort and efficiency, might influence motor adaptation
and learning®*~3°, the interplay between computational
complexity and efficiency needs further examination. The
neural substrates and mechanisms subserving the motor
system’s goals are only beginning to be understood. Recent
neurophysiology studies have shown that the basal an%lia are
critical for learning to perform sequences of actions®>3~47, Since
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basal ganglia and inferior frontal gyrus circuits have been
implicated in se(;uencing cognitive actions, chunking of
motor sequences!3>30~44 and regulating the efficiency of move-
ment*>~47, they may have a potential role in computing the trade-
off between computational cost and efficiency needs. The exact
way in which they do so is unknown, however. Discovering their
role in shaping the motor system’s goals is a promising direction
for future neurophysiological experiments.

Methods

Experiments. All animal procedures were approved by the Institutional Animal
Care and Use Committee and complied with the Public Health Service Policy on
the humane care and use of laboratory animals. Two female non-human primates
(Macaca mulatta), aged 6.5 and 5 years, weighing 6.5 and 5.7 kg, respectively,
executed multiple trials of the same five-target sequence of centre—out reaches
using a joystick whose position was mapped to an on-screen cursor. Starting from
the centre, the monkeys had to reach to an outer target at a radial distance of
~7cm. After capturing the outer target with the cursor, they had to return to the
centre target, after which a drop of food reward was delivered and the next outer
target was shown (Fig. 1a). Although it might have been ideal to reward the
monkeys at the end of each sequence just once, we found that in practice they were
more willing to work if rewarded at the end of each out-centre return reach. This
centre-out—centre pattern was repeated five times through the entire sequence.
Each centre and outer target was visually cued as soon as the previous target was
captured. The sequence was executed in a single trial and the inter-trial interval
varied between 1 and 2s. Both monkeys performed their respective sequences over
multiple days (monkey E: 51 days, 41,865 trials; monkey F: 51 days, 28,951 trials).
We measured the position of the arm (joystick) at 1,000 Hz. We discarded trials in
which monkeys did not complete the entire sequence. We also discarded outliers of
squared jerk, larger than 0.2 cm?s~© (504 trials in monkey E and 260 trials in
monkey F), which was very close to the 95-percentile threshold in both monkeys.

Detecting chunk boundaries. We detected chunk boundaries (that is, HALT
points) for each trial based on local minima of speed trajectories that dropped
below an adaptive threshold (5% of the peak speed of that trial). If more than one
local minimum was detected in between two local maxima that exceeded a
threshold (25% of the peak speed of that trial), we only retained the lowest
minimum among these local minima.

To compute the speed trajectory itself, we smoothed x and y positions using a
finite-impulse response low-pass filter having a 100-ms support, and then took the
finite-difference derivate to calculate x and y velocities. The speed was computed as
the square root of the sum of squares of x and y velocities.

Quantifying efficiency and computational complexity. To quantify movement
efficiency, we calculated sum of the squared jerk for each trial. Monkeys completed
the sequences in shorter durations with learning, and the expected increase in sum
squared jerk from faster movements scales as a fifth power of increase in duration.
Since we were interested in decreasing trends in jerk that could not be predicted by
duration changes alone, we stretched the duration of every trial to be exactly 5s.
We then computed jerk as the sum of squares of the third derivatives of x and y
positions. Before taking each derivative, we smoothed the kinematic estimates
(position, velocity and acceleration) using a finite-impulse response low-pass filter
having a 100-ms support.

To quantify computational complexity, we exploited the idea that the
complexity of the search space grows exponentially with the planning horizon'®.
We defined the computational complexity of optimizing an n-element chunk to be
proportional to exp(n). Thus, for a sequence comprising K chunks (as inferred by
our chunk boundary detection method), each of length 1y, n,, ..., ny, we defined
the complexity as C = Zle exp(nk). To improve the interpretability of this
metric, we scaled complexity to units of chunk length and used log(C) as a measure
of complexity.

Minimum-jerk modelling. We used a minimum-jerk trajectory framework to
formally test the hypothesis that movements are optimized within chunks. Squared
jerk is a measure of optimality in the context of movement efficiency, and optimal
control trajectories between two points are defined as those that minimize the
jerk?%2L Tt can be shown using the calculus of variations that the integral of
squared jerk over the duration of a movement can be minimized by a polynomial
function of duration whose sixth derivative is zero!®!°, Thus, in the simplest case
of a straight reach between two points, minimum-jerk optimization is a simple
constrained-optimization problem in which the movement trajectory is modelled
as a fifth-order polynomial of the duration!®1°, We used a more advanced variant
of this method?! that maximizes the smoothness of a trajectory given a set of initial
conditions—the start and end positions and velocities, as well as the set of all points
that must be traversed at specified times.

Given our hypothesis that the desire for efficiency influences chunk structure in
movement sequences, we operationally defined each chunk as an optimal-control

10

trajectory that minimized squared jerk. We applied this framework to compute a
model trajectory for each possible chunk structure. We allowed the transition
between each element (in our case, from a centre-out to an out-centre reach, or
vice versa) to be either a VIA point or a HALT point. For our 10-element sequence,
this resulted in 9 binary parameters and 2° =512 possible chunk structures.

For initial conditions, we assumed zero velocities at the beginning and at the
end of each sequence. We also assumed that the hand started and finished at a
centre target at (0, 0), and traversed through outer targets at a radial distance of
7 cm from the centre. We further assumed that each centre-out or out-centre
reach was executed in exactly 0.5s; thus, the entire reach sequence would last 5.
With these assumptions, we precomputed the locally optimal hand trajectory for all
512 possible chunk structures. Each of these trajectories is associated with a
computational cost and efficiency. By plotting these against each other and
computing the convex hull, we computed the Pareto frontier representing the
trade-off between computational cost and efficiency.

To fit minimum-jerk models to data, for each trial, we inferred chunk
boundaries from local minima of speed profiles (see above). Given these chunk
boundaries, we fit a minimum-jerk trajectory for each chunk. We then assessed the
goodness of fit of the model using the Pearson’s correlation coefficient between
speed trajectories of the model and the data.

Calculating the cost-effectiveness of learning paths. We contend that based on
the known ways in which organisms improve efficiency over time, moving along
the Pareto frontier in the efficiency-computation space produces the least cumu-
lative cost of computation over the course of learning. To demonstrate this, we
performed a simulation.

First, we parameterized the efficiency improvements with time. It is widely
known that organisms improve efficiency exponential over time. Let us assume
that this exponential improvement starts from zero efficiency and ends at unity
efficiency from time zero to time unity following the form:

Efficiency(t) = exp(Ct) — exp ( ~ tlog (ﬁ))

where 0 < C<¥%: produces exponential improvements. Further, let us assume that
the efficiency—computation space can be traversed using a similar exponential
form, where complexity depends on efficiency as follows:

Complexity (Efficiency) = exp(C, Efficiency) — exp < — Efficiency log (ﬁ))
xp(C, —

where C, defines whether the curve would follow along the Pareto frontier
(0<C.<¥%) or away from it (C,>%). We can define the cumulative complexity
over time as

Complexity of learning = / Complexity (Efficiency(t))dt

Assuming an exponential improvement in efficiency over time and using numerical
integration, the cumulative complexity of learning is minimized when the
efficiency—computation space is traversed close to the Pareto frontier (Fig. 4).

Efficiency changes for fixed computational complexity. To examine how effi-
ciency improves when computational complexity does not change, we defined sets
of degenerate chunk structures that have the same complexity (Fig. 6a). We
selected the eight most frequently observed sets that covered >70% of all analysed
trials, for further analysis. For these eight sets, we fit a hierarchical exponential
mixed effects model with the fixed effect capturing squared jerk as a function of
repeats and the random effect capturing the differences across the eight degenerate
sets. We then tested the fixed effect for statistical significance using a z-test on the
exponential parameter b of the exponential model: jerk = a.exp(b.repeat).

Quantifying the cost-effectiveness of learning. To statistically test whether
monkeys followed a cost-effective learning strategy as opposed to a random
strategy, we performed Monte Carlo simulation. Given the efficiency of a naive
monkey (efficiency on day 1), the number of days of learning and an efficiency goal
(of -0.01 cm? s ~©), we simulated a random walker to transition through the space
of complexity. At each day (step), the state of the random walker could transition
from one point in the complexity space to another, based on a transition prob-
ability distribution that was estimated by fitting a Gaussian to the empirical dis-
tribution of change in complexity from one day to the next. By simulating 5,000
random walkers, we built a distribution of learning paths for the null hypothesis
that the monkeys only care about efficiency without concern for minimizing
computational complexity over the course of learning. To make the null dis-
tribution generalizable across the data from both monkeys, we computed the
average complexity per day for each path in the distribution. By comparing true
behaviour against this null distribution, and assigning a percentile score for the
actual learning paths adopted by each animal, it was possible to quantify the
cost-effectiveness of their respective learning strategies.

Data availability. All relevant data will be provided on request.
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