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People can use abstract rules to flexibly configure and select
actions for specific situations, yet how exactly rules shape actions
toward specific sensory and/or motor requirements remains un-
clear. Both research from animal models and human-level theories
of action control point to the role of highly integrated, conjunctive
representations, sometimes referred to as event files. These rep-
resentations are thought to combine rules with other, goal-
relevant sensory and motor features in a nonlinear manner and
represent a necessary condition for action selection. However, so
far, no methods exist to track such representations in humans
during action selection with adequate temporal resolution. Here,
we applied time-resolved representational similarity analysis to
the spectral-temporal profiles of electroencephalography signals
while participants performed a cued, rule-based action selection
task. In two experiments, we found that conjunctive representa-
tions were active throughout the entire selection period and were
functionally dissociable from the representation of constituent
features. Specifically, the strength of conjunctions was a highly
robust predictor of trial-by-trial variability in response times and
was selectively related to an important behavioral indicator of
conjunctive representations, the so-called partial-overlap priming
pattern. These results provide direct evidence for conjunctive rep-
resentations as critical precursors of action selection in humans.
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Flexible, goal-directed action requires the use of abstract rules
that can be applied to a range of specific situations. However,

we know little about how such rules connect with lower-level
sensory or response representations as a specific action is plan-
ned and executed. In traditional stage-based processing models,
rules or task sets regulate the flow of information from stimulus
to response in the form of a cascade of relatively independent
processing steps (1–5). In contrast, recent results from research
in nonhuman primates suggest a critical role of neurons with
nonlinear, mixed selectivity response properties that integrate
various aspects (i.e., rules, stimuli, and responses) in a conjunc-
tive manner (6, 7). Similarly, some cognitive psychologists have
proposed––mostly on the basis of behavioral results––that as a
necessary step for action selection, relevant features, including
rules, need to be combined into highly integrated conjunctive
representations, referred to as event files (8–11). However, no
direct, neural-level indicator of event files exists, making it dif-
ficult to bridge the gap between theories about integrated rep-
resentations in human action selection and the literature on
mixed selectivity neurons in animal models.
Currently, the main signature of event files is an indirect,

behavioral aftereffect known as the partial-overlap priming cost
(Fig. 1A): When either all or none of the action-relevant features
repeat across consecutive trials (e.g., both rule and response
either repeat or change), performance is relatively fast. In con-
trast, when only some but not all features overlap across trials
(e.g., response repeats, but rule changes), response times (RTs)
and/or errors increase. According to event file theory, entire event
files can be easily repeated or replaced; however, when an over-
lapping feature needs to be extracted from a recently activated

event file, RTs or error costs increase, leading to the partial-
overlap priming pattern.
There is also neuroimaging evidence on how the partial-

overlap cost pattern is expressed neuroanatomically (12, 13)
and in evoked electroencephalography (EEG) components (14).
However, given that partial-overlap costs are an aftereffect of
event file formation, this pattern provides no information about
how conjunctive representations versus their constituent features
behave during response selection and whether they are indeed a
critical precursor of successful action. Moreover, partial-overlap
costs can also be explained by alternative models, such as in terms
of interactions between distinct hierarchical levels of control (15)
or as an indirect consequence of response inhibition (16).
To evaluate the hypothesized role of conjunctive representa-

tions, we used the EEG signal to decode information about action-
relevant representations in a time-resolved manner (17–19) while
participants selected responses on the basis of randomly cued action
rules (11) (Fig. 1 A and B). By definition, conjunctive representa-
tions are correlated with the representations of constituent features.
To tease apart these correlated representations, we used repre-
sentational similarity analysis (RSA) (20, 21). Standard RSA re-
quires information about the similarity of the multivariate neural
signals across conditions (e.g., based on correlations); however, this
cannot be computed on the level of individual trials. Therefore, we
performed RSAs using confusion profiles that resulted from an
initial step of decoding each of the possible action-relevant con-
stellations on the level of individual trials and time points (Fig. 1 C
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and D; Methods). This two-step procedure allowed us to examine
the roles of conjunctive and constituent representations in pre-
dicting trial-by-trial variability in performance.
In two experiments in humans, our results provide temporally

precise evidence for the activation of conjunctive representations
during action selection. Consistent with findings from mixed selec-
tivity neurons and event file theory, conjunctions were robust and
unique predictors of variability in performance and were specifically
related to the pattern of partial-overlap priming effects.

Results
We conducted two experiments that we report together. In Ex-
periment 1, we used the spatial rules task with three different
rules (Fig. 1 A and B), which did not allow us to differentiate
between different types of conjunctions (i.e., S-R conjunctions
vs. rule-S-R conjunctions). In Experiment 2, we used an ex-
panded task space with four different rules (Fig. 1 E and F),
which included conjunctions that share the same S-R pairs but
have different abstract rules (11). This allowed us to dissociate

conjunctions that integrate rules (i.e., rule-S-R conjunctions)
from rule-independent conjunctions (i.e., S-R conjunctions).

Behavior. For all analyses, error trials, posterror trials, and trials
in which RTs were larger than 99.5% of each individuals’ RT
distributions were excluded. In both experiments, and consistent
with previous work (11), we observed partial-overlap costs in
RTs and errors as a function of the different trial-to-trial tran-
sitions (Fig. 2): In Experiment 1, when either rules and responses
repeated or when both changed, responses were fast and accu-
rate, whereas costs emerged in the case of partial updates of
either rules or stimuli/responses. In Experiment 2, the repetition
of rule-S-R settings produced RT and error benefits, whereas
any partial updates (including S-R repetitions with rule changes)
generated costs. Results of our statistical analyses are provided
in SI Appendix, Tables S1 and S2.

Tracking Representational Dynamics. To directly assess the role of
conjunctive representations during action selection, we used
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Fig. 1. (A) Event files and partial-overlap priming pattern. Shown are two examples from simplified situations with two possible action rules and response
options, along with the idealized data pattern. The trial n-1 event file is shown as the yellow oval, the trial n event file as the green oval. In the first example,
consecutive event files do not overlap, which, just as when there is complete overlap (not shown), allows efficient performance. In the second example, the
response representation overlaps but the rule does not, leading to partial-overlap costs––just as would be the case with rule overlap but nonoverlapping
responses (not shown). Note that examples of all possible trial-to-trial transition types in the current paradigm are embedded in Fig. 2. (B) Sequence of trial
events in the rule selection task. (C) Spatial translation rules mapping specific stimuli to responses in Experiment 1 (horizontal, vertical, and diagonal rules).
Two different cue words were used for each rule. Responses were made on four keys, each spatially compatible with one of the four possible stimulus lo-
cations. (D) Schematic steps of the representational similarity analysis. For each sample time (t), a scalp-distributed pattern of EEG power (Methods) was used
in a first step to decode trial-specific rule/stimulus/response configurations, producing classification probabilities for each of the possible configurations. In the
second step, these classification profiles for each trial and time point were simultaneously regressed onto model vectors for the potentially relevant rep-
resentation. The figure shows all possible vectors as model matrices (the x-axis represents the correct constellations for the decoder to pick, and the y-axis
represents the “confidence” with which each constellation is predicted). For each specific trial, the “vertical” vectors corresponding to the relevant action
constellation are picked as predictors; that is, the red boxes show all four vectors for one specific action constellation, where the shading of matrix elements
indicates the predicted classification probabilities, with darker shadings representing higher probabilities. Note that the conjunction matrix arises from multi-
plying corresponding elements of the constituent feature matrices with one another. The idealized classification profile represents an example in which a unique
conjunction and rule information are expressed as a peak at the correct label of the S-R mapping and some confusion with incorrect instances of the same rule
(i.e., horizontal). The coefficients associated with each predictor (i.e., in terms of t values) reflect the unique variance explained by each of the constituent features
and their conjunction. (E) Spatial translation rules mapping specific stimuli to responses in Experiment 2. A word or symbol was used as a cue for each rule. As
described in Methods, to achieve complete orthogonalization, rule-S-R constellations were divided into two groups of eight constellations each (G1 and G2) that
were separately analyzed and then averaged. (F) Models for the RSA used within each of the two 8-constellation groups in Experiment 2.
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time-resolved RSAs on the level of single trials (Figs. 3A and
4A). In agreement with previously reported results (17, 19), the
cascade of decoded representations unfolded consistently with
the expected flow of information. The rule was activated during
the prestimulus phase, followed by strong expression of the
stimulus and finally by the response. Critically, over and above
these constituent features, the conjunctive representations were
active during the entire poststimulus period (Figs. 3A and 4A) in
both experiments. In Experiment 2, rule-S-R conjunctions were
more strongly expressed than rule-independent S-R conjunc-
tions. In addition, in both experiments, conjunctions emerged in
tandem with (in Experiment 1) or clearly before (in Experiment
2) response activation (SI Appendix, Fig. S8). Consistent with
event-file theory, this temporal pattern suggests that conjunc-
tions arise during response selection and not just as a response-
selection aftereffect.
Note that the expression of conjunctions was statistically ro-

bust even though we accounted for subject-specific differences in
RTs between action constellations. Thus, decoding results can-
not be explained in terms of unspecific difficulty differences
between action constellations (SI Appendix, Figs. S1 and S2). In
Experiment 2, we observed that the rule representation di-
minished after stimulus onset (Fig. 4A). Excluding conjunction
models restored the poststimulus rule representation, suggesting
that the rule-S-R conjunction model captures the same variance
as explained by the rule model in this phase of action selection
(Fig. 4A, Inset).

Do Conjunctions Uniquely Predict Trial-To-Trial Performance Fluctuations?
To test the prediction from event-file theory that conjunctive repre-
sentations are critical for action selection, we regressed trial-to-trial
variation in RTs onto the strength of each expressed representation.
Using multilevel modeling, we performed these analyses for each
time point and with all predictors entered simultaneously. The

resulting “impact trajectories” are shown in Figs. 3B and 4B. Statis-
tical results for a priori selected time intervals are summarized in SI
Appendix, Tables S3 and S4; SI Appendix, Figs. S3 and S4 provide
corresponding results from standard decoding analyses. Note that
negative t values indicate that stronger representations lead to faster
responses. Consistent with the prediction from event file theory,
conjunctive representations were the dominant predictors of perfor-
mance in both experiments. In Experiment 2, both rule-S-R con-
junctions and S-R conjunctions explained substantial independent
variability in trial-to-trial RTs (Fig. 4B), with a slight edge for the rule-
specific conjunctions. Taken together, these results indicate that
conjunctive representations emerge during response selection and
predict upcoming behavior over and above the influence of the
constituent features.

Are Conjunctions Related to Partial-Overlap Costs? To directly con-
nect the EEG-decoded conjunctive representations with the theo-
retical event file construct, we examined how these representations
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relate to the partial-overlap priming pattern. As shown in Figs. 3C
and 4C, the strength of decoded conjunctions expresses the partial-
overlap pattern in both Experiments 1 and 2. Conjunctive repre-
sentations were particularly strong in those transitions in which
RTs were fast (i.e., when either everything repeated or everything
changed; see Fig. 2). In Experiment 1, conjunctive representations
showed the partial-overlap pattern in the expected direction during
the early phase (b = 0.024, SE = 0.010, t(20) = 2.58) but not in the
late poststimulus phase (b = 0.004, SE = 0.010, t(20) = 0.39), and
none of the constituent features showed the critical interaction
pattern (all t(20) <0.21). In Experiment 2, only the strength of
rule-S-R conjunctions showed the partial-overlap costs (b = 0.021,
SE = 0.009, t(21) = 2.22) for the early selection phase (b = 0.021,
SE = 0.009, t(21) = 2.24) and the late selection phase (Fig. 4C).
None of the constituent features (all t(21) < 0.72) or S-R conjunc-
tions showed such an effect (b = 0.012, SE = 0.009, t(21) = 1.27 for
the early selection phase; b = 0.007, SE = 0.010, t(21) = 0.72 for the
late selection phase).
Another important prediction that can be derived from the

event file model is that strong conjunctions should be particularly
difficult to “unbind” on the subsequent trial. Thus, the stronger
the conjunction on trial n-1, the larger the partial-overlap costs
on trial n should be. Our results, shown in Figs. 3D and 4D,
confirm this prediction for both experiments. A stronger con-
junctive representation in trial n-1, late in the selection period,
led to greater RT partial-overlap costs on trial n (b = 0.025, SE =
0.011, t(20) = 2.25). Importantly, this pattern was unique for
conjunctive representations and was not found for any of the
constituent representations (all t(20) < 0.05). In Experiment 2,

only rule-S-R conjunctions significantly modulated RT partial-
overlap costs on the next trial (b = 0.031, SE = 0.011, t(20) = 2.81)
(Fig. 4D). Again, this pattern was absent for S-R conjunctions or
any other of the constituent representations (all t(21) <0.38).
Thus, it is specifically the highest-order, rule-S-R conjunctions
that relate to the partial-overlap cost pattern. Overall, the be-
havior of decoded conjunctive representations was highly con-
sistent with predictions from the event file model.

Discussion
We tested whether integrated, conjunctive representations be-
tween task-relevant features emerge during action selection, as
predicted from results with mixed selectivity neurons (6) and by
event file theory (8, 9). In our paradigm, action settings had to be
updated flexibly for each trial, creating unique constellations
among rules, stimuli, and responses. We combined a standard
linear decoding approach with a subsequent time-resolved RSA
to track the emergence of conjunctive representations and their
constituent features over time and for each individual trial.
The time course of decoded information showed a highly

plausible cascade of action representations (rule, stimulus, and
then response). Most critically, we found robust evidence for
conjunctive representations, emerging shortly after stimulus on-
set and persisting until response execution. Analyses with
response-locked EEG data fully confirmed this pattern of results
(SI Appendix, Fig. S8). The fact that conjunctive representations
were continuously present from stimulus processing to response
execution is consistent with their role in translating sensory codes
into response codes based on the current task rules.
Even though conjunctive representations were on average less

strongly expressed than those of constituent features, they were
statistically highly robust (Figs. 3B and 4B and SI Appendix, Fig.
S10). Moreover, conjunctive representations were strong and
unique predictors of trial-by-trial variability in RTs, over and
above other constituent features. These results are difficult to
reconcile with traditional stage theories (1–5) and hierarchical
control models (15, 22), in which information flows in a strict
feed-forward manner and thus allows no integrated representa-
tions to emerge. This is all the more remarkable given that our
task design, with explicitly cued rules that appear before each
stimulus, should have been clearly compatible with a hierarchical
selection architecture (e.g., first selection of rule, then of rule-
specific S-R link). Instead, our results indicate that action selec-
tion is established by tying together the disparate task-relevant fea-
tures from the entire selection event into a common representation.
In Experiment 1, conjunctions could entail any pairwise or

complete combination of rule, stimulus, or response features; in
Experiment 2, we were further able to dissociate between rule-
specific rule-S-R conjunctions and rule-independent S-R con-
junctions. The fact that in Experiment 2, both rule-S-R and S-R
conjunctions emerged is an important finding in its own right,
suggesting that integrated representations that match the con-
tingencies in the environment develop in parallel on different
levels of specificity. This combination of both rule-specific and
rule-independent representations can account for previous
findings showing that S-R associations learned within one rule
can transfer to another rule, albeit in a limited manner (11, 23).
A key behavioral indicator of event files is the partial-overlap

priming pattern (Fig. 1A) (11, 24). In both experiments, this
pattern was apparent not only in RTs and errors (Fig. 2), but also
in the strength of conjunctions (Figs. 3C and 4C). More impor-
tantly, the strength of conjunctions in trial n-1 predicted the size
of partial-overlap costs in trial n (Figs. 3D and 4D), suggesting
the tighter the integration between action features, the harder it
is to “unbind” the features to integrate them into a new conjunction.
Importantly, only conjunctions, and not the basic features, showed
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such a relationship with the partial-overlap pattern, thereby func-
tionally dissociating conjunctions from their constituent codes. The
results of Experiment 2 also indicated that specifically, rule-S-R
conjunctions were related to the partial-overlap cost, but S-R con-
junctions were not. It is noteworthy that the conjunctions in Experi-
ment 1 (where we were not able to distinguish between S-R and
rule-S-R conjunctions) showed a similar priming pattern as the
rule-S-R conjunctions in Experiment 2, suggesting integration of not
just stimuli and responses, but also of rules in both experiments.
While our results provide temporal and functional information

about specific representations, they are relatively silent about the
underlying neural mechanisms or their neuroanatomic location.
We had no strong a priori predictions about frequency bands
that might contain conjunction-specific information and used a
broad spectrum of frequencies for decoding. In post hoc analy-
ses, we found that the pattern of EEG responses underlying
conjunctive representations is idiosyncratic (SI Appendix, Fig.
S5) but is most strongly expressed in the delta-band frequency
signal (SI Appendix, Figs. S6 and S7). This latter result is gen-
erally consistent with previous evidence showing that decision-
relevant representations can be decoded from oscillations in the
delta band (25).
Regarding the question of neuroanatomic location, research

with animal models points to the hippocampus as being partic-
ularly critical for representing highly contextualized, conjunctive
information (6, 26–28). There is also some evidence from human
neuroimaging work that implicates the hippocampus in re-
trieving incidentally learned associations between actions and
their consequences, albeit using paradigms that involve learning
across longer time frames (29, 30). In addition, single-neuron
electrophysiological work with nonhuman animals indicates
that neurons coding task-relevant features are distributed across
the frontal and parietal cortices (31, 32). A large proportion of
recorded neurons in these areas integrate multiple features in a
nonlinear manner (6, 33). Such heterogeneous neural responses
allow efficient linear readout of information to downstream
neurons and can also code conjunctive information in a high-
dimensional format (34). In human neuroimaging work, at-
tempts to decode high-level, task-relevant representations in
frontal areas have proven more challenging (35).
An important finding from the research on mixed selectivity

neurons is that the degree of nonlinear information coded in
these neurons is functionally distinct from the representation of
linear features. For example, nonlinear responses were found to
be highly robust in correct trials but were largely missing in error
trials, whereas simple linear information was equally present on
correct and error trials (6, 7, 36). This pattern is consistent with
our finding that the strength of conjunctive representations
uniquely predicts trial-by-trial performance beyond the pre-
dictive strength of constituent, simple features (Figs. 3B and 4B).
As mentioned earlier, further evidence for a functional dissoci-
ation comes from our finding that only conjunctive representa-
tions, and not the representations of constituent simple features,
express the partial-overlap priming pattern (Figs. 3 C and D and
4 C and D).
Our results regarding the relevance of conjunctions for both

efficient action selection and the partial-overlap priming pattern
directly confirm the predictions derived from event file theory.
Therefore, they provide an important missing link between two
distinct lines of research: the relatively abstract event file con-
ceptualization, designed to explain the architecture of human
action selection, and the recent progress in characterizing the
format of representations arising from mixed-selectivity neurons.
For example, from the herein-established relationship between
the partial-overlap pattern and the neural signature of event
files, we can derive the testable prediction that the partial-

overlap pattern should also be selectively expressed in the ac-
tivity of mixed-selectivity neurons in animal models. In addition,
our present results raise an array of new questions about the
functional properties of conjunctive representations; we do not
know how these representations are constrained by capacity
limitations (37), how they respond to distracting information (7),
to what degree they allow integration of action outcomes or goals
(38), or how they change through experience (11) (SI Appendix,
Fig. S9). The EEG decoding approach used here provides the
tools to address these and related questions in human participants.

Methods
Additional information on the study methodology is provided in SI Appendix.

Participants. Forty-four individuals participated after providing written in-
formed consent following the protocol approved by the University of Ore-
gon’s Human Subjects Committee in exchange for remuneration of $10/h
and additional performance-based incentives. Participants with a predefined
criterion of >35% of trials with EEG artifacts were eliminated from further
analysis, leaving 20 out of 22 participants for Experiment 1 and 21 out of 22
participants for Experiment 2.

Stimuli, Tasks, and Procedure. Participants performed a cued rule-selection
task in which one of the preinstructed action rules was randomly selected to
determine possible S-R mappings on a trial-by-trial basis (11) (Fig. 1B). Based
on the cued rule, participants responded to the location of a circle (1.32°
radius) that randomly appeared in the corner of a white frame (6.6° off-
center) by selecting one of the four response keys that were arranged in a
2 × 2 matrix. Each action rule specified four S-R links using a simple spatial
transformation rule; for instance, the “vertical” rule mapped the top-left
circle to the bottom-left response. To ensure that decoding of rule in-
formation was not driven by superficial, perceptual aspects, we used two
cues for each rule, a pair of verbal cues in Experiment 1 and symbol/word
pair in Experiment 2 (Fig. 1 C and E), which appeared in either even or odd
trials to prevent immediate cue repetitions. In Experiment 1, “vertical,”
“horizontal,” and “diagonal” rules were used (i.e., a 66.6% switch rate). In
Experiment 2, for different rules, “vertical,” “horizontal,” “clockwise,” and
“counterclockwise” rules were used (i.e., a 75% switch rate). This specific set
of rules ensured that each S-R link occurred in two different rules (e.g., a
top-left circle leads to a bottom-left response in both the vertical and the
clockwise rule), allowing us to attempt to decode both rule-S-R conjunctions
and rule-unspecific S-R conjunctions in Experiment 2 (Fig. 1 E and F).

We presented two practice blocks and 200 experimental blocks per ex-
periment. Participants were instructed to complete as many correct trials as
possible within each 16-s block. Trials that beganwithin the 16 swere allowed
to be completed.

EEG Recording and Processing. EEG activity was recorded from 20 tin elec-
trodes using the International 10/20 system and preprocessed to remove
artifacts (SI Appendix, EEG Recording and Processing). Furthermore,
temporal-spectral profiles of single-trial EEG data were obtained via com-
plex wavelet analysis (39) by applying time-frequency analysis (1 to 35 Hz) to
preprocessed EEG data (SI Appendix, Time-Frequency Analysis). This analysis
resulted in a frequency band-specific power estimate at each sample point.
As in our previous work (17), to prepare training data for the decoding
analyses, we averaged five different frequency bands: 1 to 3 Hz for the delta
band, 4 to 7 Hz for the theta band, 8 to 12 Hz for the alpha band, 13 to 30 Hz
for the beta band, and 31 to 35 Hz for the gamma band. Within individuals,
frequency-specific power values were z-transformed across electrodes in
each sample to remove the effects that uniformly influenced all electrodes.
While we had no a priori predictions about the role of specific frequency
bands in representing different action-relevant representations, we present
post hoc analyses probing the relevance of each frequency band in SI Ap-
pendix, Figs. S6 and S7.

Representational Similarity Analysis. To obtain information about the
strength of each feature and conjunction on the level of individual trials and
time points, we used a two-step procedure. First, we performed a linear
decoding analysis to discriminate between all 12 different action constella-
tions in Experiment 1 or all 16 constellations in Experiment 2. This analysis
was conducted for each time point and used the average power of rhythmic
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EEG activity within the predefined frequency bands (delta, theta, alpha,
beta, and gamma), generating 100 features (5 frequency bands × 20 elec-
trodes) to train decoders. Following cross-validation, this decoding step
yielded a vector of “confusion profiles” of classification probabilities for
both the correct and all possible incorrect classifications and for each time
point and trial (Fig. 1D). As a second step, we applied RSA (20) to each profile
of classification probabilities to determine their underlying similarity struc-
ture for each time point and trial. Specifically, we regressed the classification
probability vector onto model vectors as simultaneously entered predictors,
which were derived from a set of RSA model matrices (Fig. 1D).

Each model matrix represented a potential underlying representation. In
Experiment 1, we constructed RSA models for the rules, stimuli, responses, and
conjunctions (Fig. 1D). In Experiment 2, we used separate matrices for the rule-
specific S-R conjunction model (rule-S-R conjunction) and the rule-independent
S-R conjunction model (S-R conjunction) (Fig. 1F). Complete orthogonalization
of basic features could be established within each of two equal-sized sub-
spaces but not across the entire space of action constellations. Specifically, one
subspace (G1 in Fig. 1E) contained constellations with stimuli at the top-left or
bottom-right corner (leading to a bottom-left or bottom-right response for all
rules), whereas the second subspace (G2 in Fig. 1E) contained trials with stimuli
at the left-bottom or top-right corner (leading to a top-left or bottom-right
response). Within each subspace, conjunctions were defined by the combina-
tion of four rules (vertical, horizontal, clockwise, and counterclockwise), two
stimulus positions, and two responses, ensuring that each S-R link could occur
in the context of two different action rules.

Multilevel Modeling. For the results shown in Figs. 3C and 4C and in Figs. 3D
and 4D, we used multilevel linear modeling to analyze within-subject

variability in RSA scores as a function of trial-to-trial transition variables
(Figs. 3C and 4C), or in RTs as a function of trial n-1 RSA scores and
trial-to-trial transition variables (Figs. 3D and 4D). In each case, subject-
specific intercepts and slopes were included as random effects. Log-
transformed RTs as dependent variables were prewhitened by linear and
quadratic trends of experimental trials and blocks. We performed statistical
tests for a priori selected time intervals: cue-to-stimulus period from the
onset of cue to the onset of stimulus (−300 to 0 ms for Experiment 1
and −500 to 0 ms for Experiment 2), early poststimulus period (0 to 300 ms of
the poststimulus segment for both experiments), and late poststimulus pe-
riod (300 to 600 ms of the poststimulus segment for both experiments). We
predicted trial-to-trial RTs/RSA scores in the current trials with EEG signals
from prestimulus and early poststimulus periods to capture processing be-
fore response execution (SI Appendix, Fig. S8 presents results using signals
aligned to the response onsets). The late poststimulus interval was used to
assess how partial-overlap costs are modulated by the strength of action
representations developed during selection in n-1 trials (Figs. 3D and 4D). In
addition, to visualize the impact of different decoded features on RTs across
time, we ran fixed-effect models plus random intercepts at each sample
point, but without random slopes (Figs. 3B and 4B).

Data Availability. All data and analysis scripts related to this paper are
available in Open Science Framework (40).
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