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Abstract

Ebstein anomaly (EA) is a rare heart defect in which the tricuspid valve is malformed and

displaced. The tricuspid valve abnormalities can lead to backflow of blood from the right

ventricle to the right atrium, preventing proper circulation of blood to the lungs. Although

the etiology of EA is largely unresolved, increased prevalence of EA in those with a family

history of congenital heart disease suggests EA has a genetic component. Copy number

variants (CNVs) are a major source of genetic variation and have been implicated in a

range of congenital heart defect phenotypes. We performed a systematic, genome-wide

search for CNVs in 47 isolated EA cases using genotyping microarrays. In addition, we

used a custom HaloPlex panel to sequence three known EA genes and 47 candidate EA

genes. We identified 35 candidate CNVs in 24 (51%) EA cases. Rare sequence variants in

genes associated with cardiomyopathy were identified in 11 (23%) EA cases. Two CNVs

near the transcriptional repressor HEY1, a member of the NOTCH signaling pathway,

were identified in three unrelated cases. All other candidate CNVs were each identified in

a single case. At least 11 of 35 candidate CNVs include genes involved in myocardial

development or function, including multiple genes in the BMP signaling pathway. We iden-

tified enrichment of gene sets involved in histone modification and cardiomyocyte differen-

tiation, supporting the involvement of the developing myocardium in the etiology of EA.

Gene set enrichment analysis also identified ribosomal RNA processing, a potentially

novel pathway of altered cardiac development in EA. Our results suggest an altered myo-

cardial program may contribute to abnormal tricuspid valve development in EA. Future
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studies should investigate abnormal differentiation of cardiomyocytes as a potential etio-

logical factor in EA.

Introduction

Ebstein anomaly (EA) is a rare but serious congenital heart defect (CHD) that was first described
in 1866 by Wilhelm Ebstein. EA is characterized by downward displacement of the tricuspid
valve resulting from incomplete separation of the tricuspid valve from the underlyingmyocar-
dium. Right ventricularmyocardium abnormalities along with patent foramen ovale, atrial septal
defect or right ventricular dilation are present in the majority of EA cases [1]. Although the prev-
alence of EA was reported in 1958 as 1–5 per 200,000 live births [2], more recent population
studies have reported a prevalence of 1 in 13,800–25,600 live births [3–5]. In addition to high
intrauterine mortality, 15–50% of neonates born with EA do not survive to age 10 years [1,6].

Although the etiology of EA is largely unresolved, familial recurrence [7] and identification
of genetic mutations that segregate with disease provide evidence for a genetic component.
Mutations in the sarcomeric protein, myosin heavy chain cardiac muscle beta (MYH7), have
been found in patients with EA associated with left ventricular non-compaction (LVNC);
mutations inMYH7 show autosomal dominant inheritance with variable penetrance in EA [8–
10]. Rare mutations in the cardiac transcription factors NK2 homeobox 5 (NKX2-5) and
GATA binding protein 4 (GATA4) have also been described in EA cases [11–13]. Large chro-
mosomal aberrations and copy number variants (CNVs) have been reported in a small number
of EA cases; previously reported variants include deletions at 1p36, 5q35, 8p23.1, 10p, 11q21-
23, 18q and duplications of 9p, 11q21-23, 15q, chromosome 18, chromosome 21 and 22q11.2
[3,13–26]. Overall, known genetic causes of EA account for a small proportion of all cases.
Here, we describe results from the first genome wide investigation of CNVs in a population-
based study of isolated EA cases.

Methods

Ethics Statement

The New York State Department of Health Institutional ReviewBoard (NYS DOH IRB) and
the National Institutes of Health Office of Human Subjects Research approved this study. Prior
to genotyping and analysis, specimens were assigned a random ID number and all personally
identifying data were removed. Raw data or genotypes are available upon request with proper
IRB approval.

Case Identification

Cases with isolated EA (no other major birth defects) were identified from among all 2,023,083
resident live births in NYS from 1998 through 2005 reported to the NYS CongenitalMalforma-
tions Registry (CMR). Reporting of selectedmajor birth defects, including EA, identified dur-
ing the first two years of life is mandated by NYS law. Methods for case ascertainment by the
NYS CMR have been describedpreviously [27]. In a query of the NYS CMR database, 117 EA
cases were identified using the expanded British Paediatric Association (BPA) code 746.200
and by searching for the text description “Ebstein”. EA cases known to have syndromes/chro-
mosomal abnormalities (N = 14), other CHDs (N = 37), other major defects (N = 14) or result-
ing from plural births (N = 1) were excluded from analysis, leaving 51 eligible EA cases.
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Among these 51 cases, those with commonminor CHDs including patent ductus arteriosus
(N = 11), patent foramen ovale (N = 5), bicuspid aortic valve (N = 1) or other minor birth
defects such as syndactyly of the toes (N = 1) were retained for analysis. We attempted to locate
archived newborn screening dried blood spots (DBS) for the 51 eligible EA cases along with
three unaffected live births to serve as controls. Sufficient material was available for 47 EA
cases, and none had beenmarked that the parents had refused use of the specimens for
research. Demographic data for all NYS live births delivered from 1998 through 2005 were col-
lected from birth records and compared with demographic data for the 47 EA cases using the
Pearson Chi-square test in SAS v9.2.

Genotyping

DNA was extracted from two 3-mm punches of the DBS [28]. A total of 47 EA cases, three
unaffected controls, 123 cases with other unrelated phenotypes [29], and one HapMap speci-
men were genotyped as a single batch. Specimens were genotyped at the Biomedical Genomics
Center Core Facility at the University of Minnesota using Illumina HumanOmni2.5–8_v1
bead arrays and the InfiniumHD assay protocol. Data were analyzed using Illumina GenomeS-
tudio v2011.1 with a genotype no-call threshold< 0.15.

Autosomal SNPs

Genotype clusters were defined based on the data generated in this project. Genotypes and clus-
ters were manually reviewed and cleaned by re-clustering, editing, and excluding where appro-
priate [30]. A total of 2,278,660 autosomal single-nucleotide polymorphisms (SNPs) and 57,201
sex chromosome SNPs passed quality control and were included in CNV analysis (total autoso-
mal SNPs on the array = 2,314,174; total sex chromosome SNPs on the array = 58,187). Among
the 2,278,660 autosomal SNPs, the mean specimen call rate among the 47 EA cases and three
controls was (± standard deviation, (range)) 99.7% ± 0.3 (98.3%-99.9%) and the mean log R
ratio deviation was 0.133 ± 0.030 (0.099–0.231). After cleaning, SNP genotype reproducibility
(based on two duplicates included among the 173 samples genotyped) was 100%.

Sex Chromosome SNPs

SNPs on the X chromosome were clustered using female subjects only and SNPs on the Y chro-
mosome were clustered using male subjects only. SNPs in pseudoautosomal region (PAR) 1 or
2 or in the X-chromosome-transposed region (XTR) were clustered using both males and
females. Clusters were reviewed and edited, as described above for autosomal SNPs.

CNV Calling and Annotation

Autosomal CNVs were called using Illumina's cnvPartition algorithm v3.1.6 and PennCNV
v2011/05/03 [31]. For both algorithms, data were GC-wave adjusted, and the minimum num-
ber of consecutive probes required for a CNV call was three. The confidence threshold for
CNV calling was set to the default value of 35 for cnvPartition and to 10 for PennCNV. For
PennCNV calls, the PennCNV function clean_cnv.pl was run with default parameters to
merge adjacent CNV calls. Extended regions of copy-neutral homozygosity�1 Mb and sex
chromosome CNVs were called using cnvPartition. Autosomal CNV call files were annotated
using custom C++ programs as previously described [32] to: 1) compare concordance between
calling algorithms, 2) count overlapping EA cases and controls, 3) determine overlap with an
in-house database of unrelated birth defect case and control CNVs, 4) assess overlap with com-
mon HapMap3 copy number polymorphisms [33] and CHOP CNV blocks [34], 5) and
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identify intersecting transcripts and genes. Transcripts included full-length coding transcripts
and full-length non-coding transcripts with a well characterized biotype downloaded from
GENCODE (version 19, accessed via UCSC genome browser May 2014) [35]. Genes were
defined as those included in the Consensus CDS project (CCDS; release 15, accessed via UCSC
genome browser June 2014). CNVs were checked for overlap with previously reported EA
genes,NKX2-5,GATA4, andMYH7 [10,13]. Sex chromosome CNVs were called with cnvPar-
tition and were manually annotated.

Candidate Gene Identification

Additional EA candidate genes were identified by searching the disease term ‘Ebstein Anomaly’
in the PhenoDigm database (original query October 2013, same gene list retrievedMarch
2016), which identifies potential gene-disease associations using phenotype information from a
variety of model organisms [36]. Coordinates (hg19) for human orthologs of mouse and zebra-
fish genes reported by PhenoDigm as associatedwith EA were obtained using the Ensembl Bio-
Mart tool [37] and checked for overlap with all CNVs, as described above.

CNV Selection and Prioritization

Candidate autosomal CNVs were selected if they met the following criteria: at least 10 probes,
at least 25 Kb in length and less than 35% overlap with: common HapMap3 copy number poly-
morphisms, common CNV blocks identified in the CHOP CNV database, controls in this proj-
ect (of the same CNV type), other cases with unrelated birth defects and controls that we
previously genotyped. The UCSC genome browser [38] was used to filter out CNVs that had
substantial overlap with multiple Database of Genomic Variants (DGV) [39] entries (of the
same CNV type, release date– 2014/10/16). Sex chromosome CNVs that were at least 25 Kb in
length were manually reviewed for overlap with control subjects, other birth defect cases and
CNVs catalogued in DGV.

Log-R ratio (LRR) and B-allele frequency (BAF) plots across each candidate CNV region
were manually reviewed to subjectively assess the quality and validity of generated CNV calls
using the Illumina Genome Viewer in Genome Studio.

CNV Validation

A subset of the most biologically interesting candidate CNVs were validated in the laboratory
using two to three quantitative real-time PCR (qPCR) TaqMan assays (Applied Biosystems,
Carlsbad, CA) per region. For detailed information see CNVValidation in S1 Methods.

Sequencing. Mutations in 50 genes were screened using a custom Agilent HaloPlex panel.
Genes sequenced include: three genes previously associated with EA (NKX2-5,GATA4, and
MYH7), six sarcomere genes, seven genes from candidate EA-associated CNVs identified in
this study, 14 highly ranked PhenoDigm [36] genes from regions where one or more EA cases
had loss of heterozygosity, nine genes in a critical region for EA identified via linkage study in a
canine model [40], six cardiomyopathy genes that are associated with sarcomeric function or
LVNC and five genes from a literature review (panel designed using SureDesign, see S6 Table
for complete gene list). Sanger sequencing was used to validate potentially pathogenic variants
called in HaloPlex data. For detailed information see Sequencing in S1 Methods and S4 Table.

PhenogramViz CNV Ranking

To validate our CNV selection criteria, PhenogramViz (v0.1.2), a tool for clinical interpretation
of CNVs [41], was used to rank the CNVs of all subjects. PhenogramViz utilizes phenotypes
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and leverages integrated cross-species phenotype ontology to rank the potential pathogenicity
of CNVs an individual carries. ‘Ebstein’s anomaly of the tricuspid valve’ was used as the pheno-
type term. All PennCNV calls that contained at least 10 probes and were at least 25 Kb in
length, all cnvPartition autosomal calls at least 25 Kb in length and all cnvPartition sex chro-
mosome calls at least 25 Kb in length that were not copy-number 2 in PAR or XTR regions
were ranked using default parameters.

Gene Set Enrichment Analysis

Three gene lists were generated from GENCODE [35] genes (version 19, accessed via UCSC
table browser October 2015) in candidate CNV regions: (1) using all candidate EA-associated
CNVs identified in this study; (2) using only candidate EA-associated deletions identified in
this study; and (3) using only candidate EA-associated duplications identified in this study.
Three known EA genes:MYH7,GATA4 and NKX2-5were added to each list. Lists were then
separately used as input into Enrichr [42] and results were exported. Tables were filtered to
exclude: gene sets with adjusted P� 0.05, gene sets that were enrichedwith only the three
known disease genes, gene sets that were enrichedwith gene(s) from a single CNV or gene sets
that were generated from cell lines not applicable to EA (for example gene sets generated in
cancer cell lines). To avoid redundant results, gene sets that were enrichedwith genes from lists
(2) or (3) were excluded if they were also enriched with genes from list (1). After filtering/
excluding enriched gene sets, similarities were calculated and visualizedwith the Enrichment
Map Cytoscape app [43] using an overlap coefficient cutoff of 0.5. Connected subclusters were
arranged using a degree-sorted-circle layout, scaled to allow label visualization and manually
annotated.

Results and Discussion

Case Identification

Using BPA code 746.200 and text field descriptions, 117 EA cases were identified in the NYS
CMR database from among 2,023,083 NYS live-births, resulting in a birth prevalence of 1 in
17,300. Of the 117 EA cases, 51 were isolated (see methods), resulting in a birth prevalence of 1
in 39,700 live births with isolated EA.

As shown in Table 1, none of the characteristics examined (maternal age, infant sex, mater-
nal race/ethnicity, maternal education, parity, smoking during pregnancy, prenatal maternal
bodymass index) were statistically different between EA cases and controls.

CNV Identification

Among the 47 EA cases genotyped, cnvPartition called 1,772 CNVs, and PennCNV called
3,982 CNVs. After applying selection filters, 120 autosomal CNVs and 87 sex-chromosome
CNVs were called by one or both algorithms. After manual review and exclusion for substantial
overlap with DGV entries, 46 CNV calls in 27 EA cases remained. Upon manual review of LRR
and BAF plots, six CNVs in one subject were excluded (duplications/deletions not supported
by plot inspection). Two CNVs on the Y chromosome of one male EA case were excluded
because they were in genomic regions with sparse representation on the array. After all exclu-
sions, 38 candidate CNVs in 26 EA cases fulfilledour selection criteria. Three of the 38 CNVs
were recurrent and 35 were each found in a single EA case. Twenty-six EA cases (55%) carried
at least one candidate CNV (Table 2). Seventeen of 20 CNVs selected for validation were con-
firmed by qPCR, showing the expected copy number for all qPCR assays spanning each region.
Two recurrent and one CNV found in a single EA case failed to validate and were considered
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false positive CNV calls. None of the 17 CNVs that validated were found in 190 control speci-
mens (S3 Table).

PhenogramViz CNV Ranking

PhenogramViz was used to rank genes included in all CNVs carried by each individual, based
on phenotype, predicted haploinsufficiency and overlap with known benign or pathogenic
CNVs. This analysis was carried out post-hoc, and was used to assess our candidate CNV filter-
ing and prioritizationmethods. Our selection criteria yielded candidate CNVs that were also
highly ranked by PhenogramViz (i.e., they included genes likely to be relevant to EA). Of the
38 candidate CNVs identified, 32 were ranked in the top five most likely pathogenic for EA in
that individual (S1 Table). Furthermore, 19 of 38 CNVs had a haploinsufficiency score greater
than zero, an indication that the CNV overlaps dosage sensitive genes [44]. Overall, the Pheno-
gramViz results suggest that our selection criteria successfully limited our analysis to CNVs
predicted to be pathogenic.

Table 1. Characteristics of isolated EA cases compared to NYS live births.

Characteristic NYS Live Births (n = 2,023,049)a Ebstein Cases (n = 51)b P Value

Maternal Age (years) (n = 2,022,740) (n = 51) 0.88

<20 157,085 (7.8) 3 (5.9)

20–34 1,480,911 (73.2) 38 (74.5)

�35 384,744 (19.0) 10 (19.6)

Maternal Race/Ethnicity (n = 2,017,837) (n = 51) 0.85

Non-Hispanic White 1,051,561 (52.1) 29 (56.9)

Black 361,836 (17.9) 8 (15.7)

Hispanic 437,846 (21.7) 10 (19.6)

Asian 135,374 (6.7) 4 (7.8)

Other 31,220 (1.6) 0 (0)

Maternal Education (years) (n = 1,997,267) (n = 51) 0.91

<12 384,781 (19.3) 11 (21.6)

12 594,659 (29.8) 15 (29.4)

>12 1,017,827 (51.0) 25 (49.0)

Parity (n = 2,023,049) (n = 51) 0.34

Nulliparous 846,801 (41.9) 18 (35.3)

Multiparous 1,176,248 (58.1) 33 (64.7)

Maternal Smoking (n = 2,023,049) (n = 51) 0.82

No 1,842,757 (91.1) 46 (90.2)

Yes 180,292 (8.9) 5 (9.8)

Prepregnancy Maternal BMI (kg/m2) (n = 979,285) (n = 25) 0.66

<18.5 40,332 (4.1) 0 (0)

18.5–24.9 523,438 (53.5) 14 (56.0)

25–29.9 182,264 (18.6) 6 (24.0)

�30 233,251 (23.8) 5 (20.0)

Case Sex (n = 2,023,035) (n = 51) 0.28

Male 1,036,825 (51.3) 30 (58.8)

Female 986,210 (48.8) 21 (41.2)

Numbers in parentheses represent percentages, unless otherwise indicated. BMI = Body Mass Index.
a—Demographic variables were not available for all subjects.
b—Includes three isolated Ebstein cases not genotyped.

doi:10.1371/journal.pone.0165174.t001
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Table 2. Candidate EA-associated CNVs identified in this study.

CNV

#

Study

ID

Race/

Ethnicity

Type

(CN,Sex)

Locus Coordinates

(hg19)

~Size

(Kb)

Select GENCODE-V19 Transcripts Overlapped*

2RV C12 NHB Dupl 8q21.13 83,573,868–

83,964,230

390 CTD-2272D18.1;RP11-653B10.1;RP11-731N10.1

2RV C47 Asian Dupl 8q21.13 83,848,688–

83,981,829

133 CTD-2272D18.1;RP11-731N10.1

4 C43 NHW Dupl 1p36.12 21,002,613–

21,037,639

35 KIF17

5V C4 NHB Dupl 1p34.1 44,195,344–

44,428,902

234 ARTN;IPO13;RP11-7O11.3;ST3GAL3

6VL C34 NHW Dupl 1p34.1 46,058,525–

46,101,490

43 CCDC17;GPBP1L1;NASP

7 C43 NHW Dupl 2p23.1 30,656,586–

30,735,763

79 LCLAT1

8V C22 NHW Het Del 2q23.1–

24.1

149,164,048–

156,511,426

7,347 ARL5A;ARL6IP6;CACNB4;EPC2;FMNL2;GALNT13;KCNJ3;

KIF5C;LYPD6;LYPD6B;MBD5;MIR4773-1;MMADHC;NEB;NMI;

PRPF40A;RBM43;RIF1;RN7SL124P;RNA5SP107;RND3;RPRM;

SNORD56;STAM2;TNFAIP6

9V C20 NHW Dupl 2q33.1–

33.2

203,134,839–

203,796,988

662 BMPR2;CARF;FAM117B;ICA1L;NOP58;RN7SL40P;RN7SL753P;

RP11-686O6.1;RP11-686O6.2;WDR12

10 C14 NHW Het Del 3p26.2 3,804,555–

3,830,671

26 SUMF1

11V C2 HW Het Del 3p21.1 53,406,740–

53,491,422

85 SNORA26

12 C23 NHB Het Del 4q13.1 60,249,365–

60,294,193

45 -

13V C47 Asian Dupl 4q26 120,028,773–

120,162,705

134 MYOZ2;RP11-455G16.1;USP53

14 C10 NHW Dupl 4q35.1–

35.2

187,078,181–

187,190,810

113 CYP4V2;F11;FAM149A;KLKB1

15 C34 NHW Dupl 5q22.1 110,417,428–

110,444,810

27 CTC-551A13.2;WDR36

17 C13 NHW Het Del 6p25.3 1,831,050–

2,175,663

345 GMDS

18V C20 NHW Dupl 6q22.1 118,039,508–

118,237,605

198 SLC35F1

19 C6 NHW Dupl 6q24.3 148,005,232–

148,138,720

133 RP11-307P5.1;RP11-307P5.2

20V C43 NHW Het Del 6q25.1 151,427,385–

151,655,101

228 AKAP12;RN7SKP268;RNU6-1247P;RNU6-300P;RNY4P20;RP1-

292B18.4;RP1-297M16.2

21V C26 NHB Het Del 8p23.1 9,258,509–

9,298,347

40 RP11-115J16.2

22V C38 HW Dupl 8q11.21 48,170,319–

48,204,412

34 SPIDR

23 C3 NHW Het Del 8q21.12 79,775,378–

80,038,602

263 AC009941.1

24V C42 NHB Het Del 9p24.1 7,658,764–

7,889,991

231 RP11-77E14.2;TMEM261

25V C34 NHW Dupl 10q24.33 105,157,553–

105,215,741

58 CALHM1;CALHM2;PDCD11;RP11-225H22.4;RP11-225H22.7

26 C46 HW Dupl 10q25.1 108,765,792–

108,793,878

28 SORCS1

27 C34 NHW Het Del 11p13 35,538,329–

35,611,601

73 PAMR1;RP5-945I17.2

(Continued )
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Sequencing Results

Fifty genes, includingNKX2-5,GATA4 andMYH7which have been previously associated with
EA, were sequenced in all 47 EA cases. Filtering criteria differed between the three genes previ-
ously associated with EA and 47 candidate EA genes on the panel (details shown in S3 Fig). For
the three previously associated genes, filtering resulted in 20 potentially pathogenic variants in
13 EA cases. Of the 20 variants, 13 had an allelic balance<0.25 (heterozygous variants are
expected to have a 1:1 ratio of reference to alternate alleles; i.e., an allelic balance of 0.5). The 13
variants with low allelic balance were not expected to validate, and were indeed ruled out by
Sanger sequencing.Of the seven variants with expected allelic balance (0.40–0.85), six validated
by Sanger sequencing and are shown in Table 3.

Filtering variants in the remaining 47 genes resulted in 36 potentially pathogenic variants in
18 EA cases. Twelve variants in 11 EA cases were validated by Sanger sequencing and are
shown in Table 4. Of the 36 variants tested, 24 did not validate by Sanger sequencing; again,
the variants that did not validate had low allelic balance (average 0.27). All variants shown in
Tables 3 and 4 are rare or absent from the Exome Aggregation Consortium (ExAC) database,
which contains variants frommore than: 30,000 European individuals, 8,000 South Asian indi-
viduals, 5,000 African American individuals, 5,000 Latino individuals and 4,000 East Asian

Table 2. (Continued)

CNV

#

Study

ID

Race/

Ethnicity

Type

(CN,Sex)

Locus Coordinates

(hg19)

~Size

(Kb)

Select GENCODE-V19 Transcripts Overlapped*

28 C15 Asian Dupl 11q13.3 69,239,611–

69,434,379

195 AP000439.1;AP000439.2;AP000439.3;AP000439.5

29 C30 HW Dupl 12p12.1 22,608,226–

22,649,460

41 C2CD5;RP11-359J14.2

30 C35 NHW Dupl 12q13.12 50,893,815–

50,995,674

102 DIP2B

31 C4 NHB Dupl 13q21.32 67,843,475–

67,900,578

57 -

32V C4 NHB Dupl 13q22.2 76,247,612–

76,281,850

34 LMO7;RP11-29G8.3

33V C9 NHW Dupl 16p13.2 9,041,214–

9,295,696

254 C16orf72;RP11-473I1.10;RP11-473I1.5;RP11-473I1.6;RP11-

473I1.9;RP11-77H9.8;USP7

34 C36 NHW Het Del 16q23.2 80,245,950–

80,316,836

71 RP11-525K10.3

35V C3 NHW Het Del 19q13.41 52,932,290–

52,984,708

52 ZNF534;ZNF578

36 C14 NHW Dupl (3,

F)

Xp22.33 902,677–

1,262,175

359 RP11-309M23.1

37V C25 NHW Dupl (3,

F)

Xp11.3 44,381,642–

44,872,791

491 DUSP21;FUNDC1;KDM6A;RN7SL291P;RNU6-523P

38 C42 NHB Del (0,M) Xq11.1 61,726,006–

62,027,422

301 -

Subjects not carrying a candidate EA-associated CNV are excluded from the table. Coordinates shown are from pennCNV calls, except for sex-

chromosome CNVs, which are from CNVpartition calls. Abbreviations: NHW—Non-Hispanic, White; NHB—Non-Hispanic, Black; HW—Hispanic, White; CN

—Copy number; F—Female; M—Male (only listed for sex-chromosome CNVs).
L–One additional subject was found to have extended loss of heterozygosity across candidate region.
R–Recurrent CNV (two cases).
V–CNV validated by qPCR.

*–Transcripts/genes in bold were listed as potential EA-associated genes in the PhenoDigm database (henceforth, ‘PhenoDigm genes’).

doi:10.1371/journal.pone.0165174.t002
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individuals [45]. In addition, all variants in Table 4 are predicted loss of function, high impact
or predicted pathogenic by multiple algorithms (details shown in S3 Fig).

As shown in Table 5, three cases without a candidate CNV carried heterozygous missense
MYH7mutations that could be pathogenic. CaseC19 carries aMYH7 variant (p.Arg243His)
that is considered pathogenic. This variant was originally reported in an individual with hyper-
trophic cardiomyopathy (HCM), has subsequently been reported in multiple individuals with
left ventricular non-compaction (LVNC) and the arginine 243 position is highly conserved
across species (ClinVar RCV000158756.1). CaseC37 carries a variant of uncertain significance
(VOUS) inMYH7 (p.Glu1455Lys). This variant has not been reported in any databases
searched and the glutamic acid residue at 1455 is conserved across multiple species, including
primates, chicken and zebrafish. CaseC41 carries aMYH7VOUS (p.Gln163Pro); this variant
is absent from control databases and has been reported in an individual with LVNC [46].

Table 3. Rare sequence variants validated in known EA genes.

Coordinates (hg19) Gene Transcript Coding DNA Change AA Change rsID ExAC MAF1 StudyID

chr5:172,661,963 NKX2-5 ENST00000329198 c.124G>C p.Ala42Pro rs113818864 1.58E-04 C46

chr14:23,886,518 MYH7 ENST00000355349 c.4363G>A p.Glu1455Lys N/A N/A C37

chr14:23,888,685 MYH7 ENST00000355349 c.3853+7C>T N/A rs45467397 2.29E-03 C26

chr14:23,900,793 MYH7 ENST00000355349 c.732+1G>A N/A rs730880850 N/A C30

chr14:23,900,798 MYH7 ENST00000355349 c.728G>A p.Arg243His rs267606910 8.24E-06 C19

chr14:23,901,862 MYH7 ENST00000355349 c.488A>C2 p.Gln163Pro N/A N/A C41

All variants are hetertozygous.
1—ExAC v0.3.1 global minor allele frequency.
2—SureCall called a homozygous variant, Sanger sequencing revealed a heterozygous variant.

doi:10.1371/journal.pone.0165174.t003

Table 4. Rare sequence variants validated in candidate EA genes.

Coordinates (hg19) Gene Transcript Coding DNA Change AA Change rsID ExAC MAF1 StudyID

chr2:179,446,303 TTN ENST00000589042 c.66692G>A p.Arg22231His rs200971254 3.76E-04 C7

chr2:179,575,832 TTN ENST00000589042 c.28131C>A p.Asn9377Lys rs72648997 4.23E-05 C4

chr2:179,664,6262 TTN ENST00000589042 c.593_595delAAG2 p.Glu198del2 rs771898264 1.49E-04 C4

chr2:203,420,616 BMPR2 ENST00000374580 c.2228A>G p.Tyr743Cys rs148257675 3.30E-05 C18

chr4:47,647,166 CORIN ENST00000273857 c.1889G>A p.Cys630Tyr rs373155410 8.25E-06 C47

chr12:114,793,401 TBX5 ENST00000310346 c.1493C>A p.Ser498Tyr N/A N/A C45

chr14:23,856,987 MYH6 ENST00000356287 c.4505G>A p.Arg1502Gln rs199936506 1.81E-04 C14

chr14:23,862,177 MYH6 ENST00000356287 c.3195G>C p.Gln1065His rs267606904 2.31E-04 C31

chr17:37,821,6493 TCAP ENST00000309889 c.37_39delGAG3 p.Glu13del3 rs397516862 N/A C2

chr17:39,921,023 JUP ENST00000310706 c.1100G>T p.Arg367Leu N/A N/A C36

chr19:11,152,089 SMARCA4 ENST00000358026 c.4373C>T p.Thr1458Ile N/A N/A C1

chr19:52,941,827 ZNF534 ENST00000332323 c.1153C>G4 p.His385Asp rs201395526 5.48E-04 C11

All variants are heterozygous.
1—ExAC v0.3.1 global minor allele frequency.
2—SureCall called this variant chr2:179664623:GTACTT>G. Sanger sequencing revealed SureCall’s call is incorrect. The variant in the table was called by

Indelligent v.1.2 and then manually annotated.
3—SureCall called this variant chr17:37821643:TCGGA>T. Sanger sequencing revealed SureCall’s call is incorrect. The variant in the table was called by

Indelligent v.1.2 and then manually annotated.
4—SureCall called a homozygous variant, Sanger sequencing revealed a heterozygous variant.

doi:10.1371/journal.pone.0165174.t004
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Three EA cases were found to harbor both a sequence variant in a known EA gene and a can-
didate CNV (Table 5). EA caseC26 carries aMYH7 variant in the splice region (c.3853+7C>T)
and CNV #21. However, considering the low prevalence of EA and the minor allele frequency in
ExAC (0.002), it is unlikely that MYH7 c.3853+7C>T alone causes EA. EA caseC30 also carries
aMYH7 variant (c.732+1G>A) in a canonical splice donor position that has not been reported
in the normal population, was reported in an individual with LVNC and in a separate family co-
segregated with LVNC in four individuals (ClinVar SCV000054831.2 & SCV000208693.1). It is
more likely that the true cause of EA in caseC30 is theMYH7 splice variant, and that CNV #29

Table 5. Candidate EA-associated genetic variants identified in each EA case.

Study ID Race/Ethnicity Candidate CNV(s) Candidate Sequence Variant

C1 NHW N/A SMARCA4—p.Thr1458Ile

C2 HW 11V TCAP—p.Glu13del

C3 NHW 23,35V N/A

C4 NHB 5V,31,32V TTN—p.Glu198del & TTN—p.Asn9377Lys

C6 NHW 19 N/A

C7 NHB N/A TTN—p.Arg22231His

C9 NHW 33V N/A

C10 NHW 14 N/A

C11 NHW N/A ZNF534—p.His385Asp

C12 NHB 2RV N/A

C13 NHW 17 N/A

C14 NHW 10,36 MYH6—p.Arg1502Gln

C15 Asian 28 N/A

C18 NHW N/A BMPR2—p.Tyr743Cys

C19 NHB N/A MYH7—p.Arg243His

C20 NHW 9V,18V N/A

C22 NHW 8V N/A

C23 NHB 12 N/A

C25 NHW 37V N/A

C26 NHB 21V MYH7 - c.3853+7C>T

C30 HW 29 MYH7 - c.732+1G>A

C31 Asian N/A MYH6—p.Gln1065His

C34 NHW 6V,15,25V,27 N/A

C35 NHW 30 N/A

C36 NHW 34 JUP—p.Arg367Leu

C37 NHB N/A MYH7—p.Glu1455Lys

C38 HW 22V N/A

C41 HW N/A MYH7—p.Gln163Pro

C42 NHB 24V,38 N/A

C43 NHW 4,7,20V N/A

C45 NHW N/A TBX5—p.Ser498Tyr

C46 HW 26 NKX2-5—p.Ala42Pro

C47 Asian 2RV,13V CORIN—p.Cys630Tyr

Subjects not carrying a candidate EA-associated CNV or candidate sequence variant are excluded from the table. Abbreviations: NHW—Non-Hispanic,

White; NHB—Non-Hispanic, Black; HW—Hispanic, White.
R–Recurrent CNV (two cases).
V–CNV validated by qPCR.

doi:10.1371/journal.pone.0165174.t005
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is a rare CNV not related to EA. Alternatively, both variants may be required for an EA pheno-
type. Finally, in EA caseC46we identified a heterozygous missensemutation (p.Ala42Pro) in
NKX2-5. This variant has previously been reported in an individual with EA, however the vari-
ant was also present in the individual’s unaffected father, which was attributed to incomplete
penetrance [12]. It is possibleNKX2-5 p.Ala42Pro does not contribute to EA in caseC46, or that
bothNKX2-5 p.Ala42Pro and CNV #26 are required for the EA phenotype.

In addition to the five EA cases with a MYH7 variant, other cases carry sequence variants in
genes associated with autosomal dominant cardiomyopathy. Two EA cases carrymissense
VOUS in myosin heavy chain cardiac muscle alpha (MYH6). EA case C14 carriesMYH6 p.
Arg1502Gln and EA case C31 carriesMYH6 p.Gln1065His.MYH6 p.Arg1502Gln has been
reported in multiple individuals with dilated cardiomyopathy (DCM), however it was also
identified in healthy family members of one proband [47,48].MYH6 p.Gln1065His has been
reported in an individual with hypertrophic cardiomyopathy (HCM) and was absent from two
unaffected family members [48]. EA case C2 carries a single amino acid deletion (p.Glu13del)
in the titin-cap (TCAP) gene that has previously been reported in two DCMprobands [49]. EA
case C36 carries a VOUS (p.Arg367Leu) in junction plakoglobin (JUP) that has not been
reported in the normal population databases searched. Dominant mutations in JUP have previ-
ously been reported to cause arrhythmogenic right ventricular cardiomyopathy [50]. In addi-
tion to being associated with cardiomyopathy in humans, both TCAP and JUP are in a critical
region for EA identified via linkage study in a canine model [40]. Finally, three VOUS in titin
(TTN)were found in two EA cases. Missense variants in TTN are challenging to interpret due
to a high prevalence of missense variants in the general population and TTNs potential role as
a DCMmodifier gene [51]. However, p.Arg22231His and p.Asn9377Lys are both in the C-
zone of the A-band in the TTN protein (Uniprot accession: Q8WZ42), a region that has been
shown to be enriched for missense variants in DCM cases [51].

Two EA cases have variants in genes that are unique to cushion formation in the atrioven-
tricular (AV) canal (mitral and tricuspid valves), but not in the outflow tracts (OFT) (aortic
and pulmonic valves) [52]. EA case C45 carries a missense T-box 5 (TBX5) variant (p.Ser498-
Tyr). No anomalies other than EA were reported to the NYS CongentialMalformations Regis-
try for case C45.EA case C1 carries a missense SWI/SNF related matrix associated actin
dependent regulator of chromatin subfamily a member 4 (SMARCA4) variant (p.Thr1458Ile).
SMARCA4 regulates cardiac growth and differentiation via cardiomyocyte proliferation [53].

Two sequence variants were detected in genes that were overlapped by CNVs in other EA
cases. One case (C11) carries a missense zinc finger protein 534 (ZNF534) variant (p.
His385Asp) and another case (C18) carries a missense bone morphogenetic protein receptor
type II (BMPR2) variant (p.Tyr743Cys).

CNV Analysis

One EA case (C26), carries a heterozygous deletion at 8p23.1 (CNV #21; Table 2). Deletions at
8p23.1 have previously been reported in EA [13] and other CHDs [54]. Haploinsuffiency of the
cardiac transcription factorGATA4 is thought to be responsible for CHD seen in individuals
with deletions at 8p23.1; however, the CNV identified in EA case C26 is 2.2 Mb from GATA4.
Individuals with other CHDs have been reported with 8p23.1 deletions that do not overlap
GATA4 [55]. As previously suggested, altered expression of GATA4 via positional effectsmay
underlie this association [13,55]. A heterozygousMYH7 variant (c.3853+7C>T) was also
detected in EA case C26; however, as discussed, it is unlikely that this variant is pathogenic.

Two EA cases (C12 and C47) had a duplication at 8q21.13 (CNV #2) that overlaps two large
intergenic non-coding RNAs (lincRNAs). Though not well studied, lincRNAs have been
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shown, in mice, to coordinate cell-type specific gene expression [56], including activation of a
gene regulatory network that includes cardiac transcription factors such as Nkx2-5,Gata4 and
Tbx5 [57]. The CNV #2 duplications are also 3 Mb upstream of an important cardiac transcrip-
tion factorHEY1 [58]. One additional 263 Kb heterozygous deletion at 8q21.12 (CNV #23 in
EA case C3) is 650 Kb downstream fromHEY1. In mice,Hey gene expression is required for
formation of the boundary between the chamber myocardium and the AV canal myocardium
[59]. Embryonicmyocardial cells can differentiate into AV canal cardiomyoctes or chamber
cardiomyocytes depending on the network of transcription factors expressed in each region.
HEY1 represses transcription by cardiac transcription factors GATA4 and GATA6 [58] and
represses AV canal gene expression in the chamber myocardium [60]. Although CNVs #2 and
#23 are distant fromHEY1, it is possible the CNVs affect expression. For example, significant
expression level changes have been observed for genes located up to 6.5 Mb from CNVs that
causeWilliams-Beuren syndrome, for example [61]. No expression quantitative trait loci
(eQTLs) forHEY1 have been reported in the Genotype-Tissue Expression (GTEx) browser
(accessedMarch 2016) in the regions of the CNV #2 duplications or the CNV #23 deletion.

EA case C47 had a 133 Kb duplication at 4q26 (CNV #13) in addition to the 8q duplication.
CNV #13 completely duplicates MYOZ2, a sarcomeric protein that is known to cause cardio-
myopathy familial hypertrophic type 16 (MIM #613838). In mice,Myoz2 overexpression pro-
tects against cardiac hypertrophy [62]; however, it is unknownwhether overexpression is
protective in humans or whether the duplication would cause overexpression.

CNV #33 fully overlaps C16orf72, a gene that is highly conserved across species and is not
fully duplicated by any CNV catalogued in DGV [39], which is comprised primarily of ‘healthy’
individuals. DECIPHER [63] and ISCA [64] contain CNVs that fully duplicate C16orf72; rele-
vant phenotypes from overlapping DECIPHER cases 251553 and 259192 include “Defect in
the atrial septum” and “Abnormality of the heart” in ISCA case nssv578696 (S2 Table). Since
CNV #33 is smaller than the CNVs in DECIPHER (254 Kb vs.>11 Mb), our data narrow the
critical region for genes effecting cardiac development in this region.

CNV #37 is a 491 Kb duplication at Xp11.3 that partially overlaps KDM6A, a lysine specific
demethylase. Haploinsufficiency of KDM6A is associated with Kabuki syndrome (MIM
#300867). EA has previously been reported in Kabuki syndrome cases [59]. To our knowledge,
there have been no reports of KDM6A duplications in Kabuki syndrome. However, depending
on the breakpoints, it is possible that the partial duplication causes haploinsufficiency of
KDM6A by altering the coding frame.

A large 7.3 Mb heterozygous deletion (CNV #8) at 2q23.1–24.1 was detected in a single EA
case (C22). In addition to EA, case C22 also had syndactyly of toes and bicuspid aortic valve.
There has been at least one previous report of an individual with CHD and a 2q23.1 microdele-
tion [65]. More than 50 transcripts are overlapped by the 2q23.1–24 deletion in EA case C22.
The highest scoring PhenoDigm gene in the region,Kcnj3, causes abnormal myocardial func-
tion in mice when knocked out [66]. TNFAIP6 and GALNT13, were also identified as potential
EA genes by PhenoDigm.TNFAIP6, is a member of the hyaluronan-binding protein family.
TNFAIP6 is expressed in both embryonic and adult cardiac fibroblasts (myocardium) [67], and
hyaluronic acid is a major component of the extra cellular matrix in endocardial cushions, the
precursors to AV valves [68]. GALNT13 is a glycosyltransferase enzyme responsible for the O-
linked glycosylation of mucins. SNPs in GALNT13 have been associated with increased tricus-
pid regurgitation jet velocity [69].

CNVs #20, #24 and #25 also implicate myocardial development in EA. CNV #20 is a 227 Kb
heterozygous deletion at 6q25.1 that overlaps AKAP12.Akap12 knockout mice show increased
cardiac contractility, possibly via increased phosphorylation ofMybpc3 [70]; in humans
MYBPC3mutations are known to cause cardiomyopathy (MIM #115197). CNV #24 is a 231 Kb
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heterozygous deletion at 9p24.1 that overlaps TMEM261.TMEM261 has been shown to interact
withMEF2C [71], which is a MADS-box transcription factor that, along with TBX5 and
GATA4, plays a role in cardiomyocyte differentiation [72]. Finally, CNV #25 is a 58 Kb duplica-
tion at 10q24.33 ~40 Kb upstream ofNEURL, which regulates JAG1 and thus theNOTCH1 sig-
naling pathway; NOTCH signaling regulates ventricularmyocardial development [59].

A novel 662 Kb duplication at 2q33.1–33.2 (CNV #9) was detected in a single EA case
(C20). CNV #9 fully duplicates multiple genes, including BMPR2. In heart development,
BMPR2 acts as a receptor for BMP2, BMP4 and BMP7, and has different spatial roles [52].
Deletion of Bmpr2 specifically in the endocardium of mice has been shown to result in abnor-
mal tricuspid and mitral valve formation [73]. Furthermore, the gene set ‘BMPR2—Kinase Per-
turbations from GEO’ was significantly enriched for genes overlapped by candidate CNVs
(P = 0.01). This finding indicates that a significant number of the genes overlapped by candi-
date EA CNVs show altered expression in GEO in experiments that perturbBMPR2 function.
As shown in S5 Table, 14 candidate CNVs contain genes whose expression is at least partially
controlled by BMPR2. Further evidence for the involvement of BMP signaling in the etiology
of EA comes from a study showing deletion of Bmpr1a in murine cardiac myocytes leads to
AV valve defects reminiscent of EA [74]. BMPR1A is a type I BMP receptor that forms a com-
plex consisting of two type II and two type I receptors which together, signal downstream to
activate SMAD transcriptional regulators. CNV #11 also implicates BMP/SMAD signaling in
EA. CNV #11 is a small 84.7 Kb heterozygous deletion at 3p21.1 between theDCP1A and CAC-
NA1D genes.DCP1A, is a SMAD4 interacting protein; SMAD4 is a downstream target of the
BMP signaling pathway involved in cardiac development [75]. In mice, myocardial deletion of
Smad4 has been shown to result in impaired trabeculation and thinning of ventricularmyocar-
dium [76].

Gene Set Enrichment Analysis

We utilized gene set enrichment analysis to discover shared pathways among all genes over-
lapped by the 36 candidate CNVs in Table 2. In total, 48 gene sets were significantly enriched
for genes overlapped by EA CNVs (corrected P< 0.05; S5 Table). Of the 48 enriched gene sets,
10 were enriched for genes overlapped by deletions, nine for genes overlapped by duplications
and 29 for genes from a combination of deletions and duplications.

One main connected cluster is formed from 31 of the enriched gene sets (Fig 1), each with
overlap with the genes in the ‘BMPR2—kinase perturbations from GEO’ gene set. In this main
cluster, three subclusters of substantially overlapping gene sets are formed. The abundance of
connections to the BMPR2 gene set provides additional support for the involvement of BMP
signaling in EA. Furthermore, a ‘cardiac morphology’ subcluster formed by five mammalian
phenotype gene sets (Fig 1) supports the involvement of the genes from candidate CNVs in the
development of EA. The most statistically significantmammalian phenotype, ‘abnormal car-
diac muscle tissue morphology’, specifically supports genetic involvement in the myocardial
pathology in EA. Indeed, altered Z-disks in the cardiomyocytes of individuals with EA led
Egorova et al. to suggest the presence of Z-disk gene mutations [77].

A ‘histone modification’ subcluster (Fig 1) is formed by two H3K27me3 gene sets, two
SUZ12 gene sets and theMTF2 gene set. The polycomb repressor complex 2 (PRC2) is a regu-
lator of transcriptional silencing during embryonic development. PRC2 modifies chromatin
structure by trimethylating lysine 27 on histone H3 (H3K27me3). SUZ12 is a component of
the PRC2, whileMTF2 recruits PRC2. In mice, overexpression of Suz12 leads to apoptosis of
cardiomyocytes and ventricular non-compaction [78]. The enrichment of gene sets related to
histone modification by genes in candidate CNVs suggests histone modification and thus
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chromatin structure, could play a role in the development of EA. An excess of de novo muta-
tions in genes involved in histone modification has been seen in severe CHD cases [79]. His-
tone modification is also involved in myocardial development and BMP signaling. In the AV
canal,Gata4 together with Bmp2/Smad signaling leads to H3K27 acetylation and thus AV
canal-specific gene expression. However, in the chamber myocardium, H3K27 deacetylation is
necessary to suppress the AV canal-specific gene expression [60].

A ‘rRNA processing’ subcluster (Fig 1), consists of two GO ribosomal RNA (rRNA) pro-
cessing gene sets, twoMYC gene sets, the CHD1 gene set, and the KLF4 gene set.MYC regu-
lates the efficiencyof rRNA processing [80] and CHD1 is required for polymerase I
transcription termination [81], which is the polymerase that transcribes rRNA. It is possible
these genes alter cardiac protein synthesis via rRNA processing. Although no definitive link

Fig 1. Functional clusters of gene sets enriched with genes in EA CNVs. Network of gene sets that are

enriched for genes in candidate EA-associated CNVs. Nodes are Enrichr gene sets that showed significant

enrichment of genes in EA-associated CNVs. Clustering was performed with Enrichment Map Cytoscape app to

identify enriched gene sets that significantly overlap. Subclusters were manually annotated. Edge weight

corresponds to the similarity coefficient between gene sets and node color corresponds to the corrected p-value.

Abbreviations: HESC—Human Embryonic Stem Cells, MESC–Mouse Embryonic Stem Cells, CHEA—ChIP

Enrichment Analysis, rRNA—Ribosomal RNA, GEO—Gene Expression Omnibus.

doi:10.1371/journal.pone.0165174.g001
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between rRNA processing and heart development has been reported, increasedMYC and
rRNA have been shown in human hearts after mechanical unloading [82]. The enrichment of
genes related to rRNA processing in candidate CNVs warrants further investigation.

The gene sets ‘POU5F1—CHEA (HESC)’ and ‘SOX2—CHEA (HESC)’ form a ‘differentia-
tion’ cluster (Fig 1). Both POU5F1 and SOX2 have been shown to be involved in cardiac devel-
opment via differentiation of stem cells to a cardiac cell lineage [83]. In embryonic stem cells,
POU5F1 inhibition prevents differentiation into cardiomyocytes [84]. In addition to the CNV
candidate genes identified in the POU5F1 and SOX2 gene sets, CNV #24 has a potential role in
cardiomyocyte differentiation (see above).

Strengths and Limitations

To our knowledge, our study is the first genome-wide study of CNVs in isolated EA cases. Our
study is population-based and derived from the large and diverse NYS population (>2 million
births in the study period). The NYS CMR has been shown to identify a large percentage of
diagnosed cases with reportable birth defects [27]. There are limitations as well. Cases are
reported by law, but detailedmedical information is not always available in the reports. More-
over, only live births are included and parental DNA was not available to determine if variants
identified occurredde novo. In addition, our sequence panel did not provide 100% coverage of
all targeted genes (S2 Fig); it is possible that regions missed on our panel contain sequence vari-
ants relevant to EA. Finally, our study cannot prove pathogenicity of observedCNVs/sequence
variants; follow-up studies using animal models or in vitro studies will be necessary to confirm
that the variants detected in cases contribute to EA.

Conclusion

The cause of the tricuspid valve abnormality in EA is uncertain. Both failure of the valve to
delaminate from the myocardium and abnormalities in myocardial development leading to
valve anomalies have been suggested [1,85–87]. Further, it has been suggested that EAmay be
a cardiomyopathy with valvular involvement rather than a primary valvular disorder [88].
Numerous candidate CNVs identified in this study contain genes linked to myocardial abnor-
malities or development. Our results suggest that unlike some other birth defects [89], EA is
not caused by large recurrent CNVs. However, we found rare, potentially pathogenic CNVs
carried by more than one-half of NYS EA cases. Our results support previous findings that
genetic factors related to EA are likely heterogeneous. Additionally, we have underscored the
potential role of histone-modifying genes in CHD and uncovered rRNA processing as a poten-
tial novel pathway involved in the etiology of EA. At least 11 of 35 candidate CNVs identified
contain genes related to myocardial abnormalities or development, which may contribute to
abnormal tricuspid valve development. This suggests that myocardial development may play
an important role in EA. Our results specifically highlight the importance of the BMP pathway
in altered myocardial development. Additionally, multiple genes within candidate CNVs and
gene set enrichment analysis suggest abnormal differentiation of cardiomyocytes should be
investigated as a potential etiological factor. Finally, 11 of 47 EA cases (23%) carry sequence
variants in genes associated with autosomal dominant cardiomyopathy; these results further
support the role of the myocardium in the pathogenesis of EA.
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