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Background. Co-exposure to environmental contami-
nants present in fish could mitigate the beneficial
effects of fish consumption and possibly explain
the lack of association observed for mortality in
some geographical regions.

Objective. To assess the independent associations of
dietary exposure to polychlorinated biphenyls
(PCBs) and long-chain omega-3 fish fatty acids
intake with cardiovascular and cancer mortality.

Methods. We used the prospective population-based
Swedish Mammography Cohort and the Cohort of
Swedish Men comprising 32 952 women and 36 545
men, free from cancer, cardiovascular disease and
diabetes at baseline in 1998. Validated estimates of

dietary PCBs and long-chain omega-3 fish fatty acids
[i.e. eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA)] intake were obtained via a food
frequency questionnaire at baseline. Information on
death was ascertained through register linkage.

Results. During a mean follow-up of 15.5 years, we
ascertained 16 776 deaths. We observed for car-
diovascular mortality, comparing extreme quintiles
in multivariable models mutually adjusted for
PCBs and EPA-DHA, dose-dependent associations
for dietary PCB exposure, hazard ratio (HR) 1.31
(CI 95%: 1.08 to 1.57; P-trend 0.005) and for
dietary EPA-DHA intake, HR 0.79 (CI 95%: 0.66 to
0.95; P-trend 0.041). For cancer mortality, no clear
associations were discerned.

Conclusion. The beneficial effect of fish consumption
on the cardiovascular system seems compromised
by co-exposure to PCBs – one likely explanation for
the inconsistent associations observed between
fish consumption and mortality.

Keywords: all-cause mortality, long-chain n-3
polyunsaturated fatty acids (LC n-3 PUFAs), nutri-
tional epidemiology, polychlorinated biphenyls
(PCBs), specific mortality.

Introduction

Epidemiological studies elucidating the beneficial
effects of fish consumption in relation to mortality
have not revealed a clear picture. While Asian
studies generally reported inverse associations
[1, 2], some Western studies found no association
[3, 4] or even a higher risk of mortality associated
with high fish consumption [5–7]. This heterogene-
ity was reflected in the most recent meta-analysis

(including 14 prospective observational studies) [8],
which, overall, reported no meaningful association
between fish consumption and mortality. However,
in the analysis by region, while Asian studies
revealed a linear inverse association, Western stud-
ies advocated a nearly U-shaped association, with a
nadir at fish consumption of ~20 g day�1 for both
total and cardiovascular (CVD) mortality [8]. This
summarized evidence agrees with our previous
results indicating a U-shaped association between
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fish consumption and mortality in a large Swedish
population-based cohort [5], which was the driving
force behind the present work.

Fatty fish is the exclusive natural food source of
long-chain x-3 polyunsaturated fatty acids (x-3
PUFAs), mainly eicosapentaenoic acid (EPA) and
docosapentaenoic acid (DHA) [9]. The beneficial
role of x-3 PUFAs on blood lipids, cardiac electro-
physiology, endothelial function and blood pres-
sure has been consistently reported [10]. On the
other hand, polychlorinated biphenyls (PCBs),
dioxin-like compounds (DL-Cs) and methylmer-
cury (MeHg) are identified as the most critical
contaminants bioaccumulating in fish [11]. In
addition to be classified as carcinogenic [12], PCBs
are implicated in CVD development [13–17] and in
its risk factors, such as hypertension [18], obesity
and diabetes [19]. Biomarkers of DL-C, which
include dioxin-like PCBs, were associated with
higher rate of mortality in US populations [20–
22]. However, any potential confounding by a
healthy diet, fish or EPA-DHA intakes was not
considered. MeHg was not associated with CVD in
a large US population [23], but in a Nordic popu-
lation after adjustment for EPA-DHA [24].

We hypothesize that high exposure to certain
environmental contaminants present in fish, par-
ticularly PCBs, could mitigate the beneficial effects
mainly by EPA-DHA [25] – being a feasible expla-
nation for the observed higher risk associated with
high fish consumption in Western countries. Thus,
the purpose of the present study was to elucidate
the independent associations between dietary PCB
exposure and EPA-DHA intake in relation to CVD-
and cancer-specific mortality in two large popula-
tion-based cohorts of men and women, accounting
for MeHg exposure.

Methods

Study population

The present study included participants from the
Swedish Infrastructure for Medical Population-
based Life-course and Environmental Research
(SIMPLER), specifically the SwedishMammography
Cohort (SMC) and the Cohort of Swedish Men
(COSM). Participants from the SMC were recruited
between 1987 and 1990 and included women born
between 1914 and 1948 and residing in central
Sweden (n = 90 303)and74%responded. In1997,a
detailed questionnaire was sent to all participants
still alive and living in the study area and 39 227

responded (70%). Likewise, participants from the
COSM were recruited 1997 and included men born
between 1918 and 1952 and residing in central
Sweden (48 850 responded, 49%). The completed
1997 questionnaires were used for the baseline
exposure assessment in both men and women.

For the present study, we excluded individuals who
had a previous diagnosis of cancer (n = 1743 ♀ and
n = 2592 ♂), CVD (n = 2478 ♀ and n = 5690 ♂) or/
and type2diabetes (n = 1417♀andn = 3285♂), and
those with extreme energy intakes (�3 standard
deviations of mean log-transformed energy intake;
n = 386 ♀ and n = 385 ♂). We also excluded those
women (n = 8) who died between the administration
of the SMC baseline questionnaire (September
1997) and the start of the follow-up (1 January
1998). Hence, the final study population involved
32 952 women and 36 546 men (Fig. 1). The study
was approved by the Regional Ethical Review Board
at Karolinska Institutet (Stockholm, Sweden), and
all participants gave their informed consent.

Assessment of dietary PCB, long-chain x-3 fatty acids and
covariates

A validated semi-quantitative 96-item food fre-
quency questionnaire (FFQ) was used to assess
average intake, over the preceding year, of fish and
other foods. Participants could choose from eight
predefined consumption categories (never, 1–3/
month, 1–2/week, 3–4/week, 5–6/week, 1/day, 2/
day and 3/day).

Daily dietary intakes of PCBs (ng day�1), MeHg
(µg day�1) and the marine x-3 PUFAs, EPA-DHA
(g day�1), were estimated by multiplying their
average concentration in various foods (obtained
from the Swedish National Food Agency’s food
control and monitoring programmes, Swedish
Environmental Protection Agency and the Swedish
food composition database) with the respective
consumption frequency and age and sex-specific
portion size. The dietary exposure to PCBs was
based on concentrations of the PCB-153 congener
[26], which is the most abundant congener in food
and therefore a very good indicator of both total
PCBs and dioxin-like PCBs in food as well as in
human serum [11, 27]. Fish, including shellfish,
contributed to about 2/3 of the total dietary PCB
exposure in the cohorts. Estimation of dietary
MeHg exposure was based on fish only as it is
practically the only source of dietary MeHg. In
order to ensure that the associations were
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independent of the total energy intake, estimated
dietary PCB, MeHg and EPA-DHA intakes were
adjusted for total daily energy intake using the
residual-regression method [28]. The Spearman
correlation coefficients (q) were 0.91 between quin-
tiles of EPA-DHA and PCBs, 0.62 between EPA-
DHA and MeHg and 0.64 between PCBs and MeHg.

The FFQ-based dietary estimate of PCB exposure
has been extensively validated against serum con-
centrations of PCB congeners (PCB-118, PCB-138,
PCB-153. PCB-156 and PCB-180) in a representa-
tive subsample of the SMC cohort ranged from q
0.30 to 0.58] [26]. Likewise, the FFQ-based dietary
intake of EPA-DHA has also been validated against
adipose tissue concentrations of EPA and DHA
[r = 0.32 and 0.48, respectively, for concurrent

exposure, and q = 0.21 and 0.33, respectively, for
past exposure (6 years prior to sampling)] [29].
FFQ-estimated fish consumption has been shown
to correlate well with hair mercury concentrations
in a Swedish population (q = 0.75; P < 0.001) [30].

As a measure of a healthy dietary pattern, the FFQ
was also used to create a modified Mediterranean
diet score (ranging from 0 [lowest adherence] to 8
[highest adherence]), based on intake of seven
different food groups [fruits and vegetables,
legumes and nuts, whole grain/fibre-rich foods,
fermented dairy foods, fish, red and processed
meat (as a negative component), and olive/rape-
seed oil] and alcohol in moderation (10–30 g day�1

for men and 5–15 g day�1 for women), as described
in detail elsewhere [31]. The self-administered
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questionnaire inquired about education, cigarette
smoking, weight and weight loss, waist circumfer-
ence, height, physical activity, family history of
myocardial infarction, drugs and dietary supple-
ment use, and alcohol consumption.

Case ascertainment

Information on death and causes of death was
ascertained through linkage to the Swedish Cause
of Death Register at the National Board of Health
and Welfare. In Sweden, 93% of deaths are
reported within 10 days, and 100% are reported
within 1 month [32]. The cause of death was coded
using the International Classification of Diseases,
10th Revision (ICD-10).Cause-specific mortality
was ascertained for CVD (codes I00-I78) and
cancer (codes C00-C97).

Statistical analyses

Person-time of follow-up was calculated for each
participant from 1 January 1998 until death or end
of follow-up in 31 December 2014 whichever
occurred first. Associations between dietary expo-
sures and CVD- and cancer-specific mortality were
assessed using Cox proportional hazards regres-
sion, with attained age as the time scale, reporting
hazard ratios (HR) and 95% confidence intervals
(CI). All analysis were stratified by sex (i.e. by
cohort SMC/COSM).

Associations were evaluated using cohort-specific
quintiles of the exposures. All models were
adjusted for the following baseline potential con-
founders: attained age (years), education level (≤12
or >12 years), waist circumference (♀ <80, 80–87,
≥88 cm; ♂ <94, 94–102, >102 cm), hypertension
(yes/no), hypercholesterolaemia (yes/no), weight
loss >5kg within 1 year (yes/no), leisure-time
inactivity (≤2 or >2 h day�1) and daily walking/
cycling (≤40 or >40 min day�1), family history of
myocardial infarction before the age of 60 years
(yes/no), smoking status (current, former, never),
use of aspirin (yes/no), energy intake (continuous,
kcal day�1), Mediterranean diet score, dietary
MeHg exposure (quintiles) and, in women, also for
parity and use of hormone replacement therapy
(yes/no). In an additional model, we further
adjusted for either dietary exposure of EPA-DHA
or PCB in quintiles, as appropriate. Given that
frying of fish may depress the beneficial effects of
fish consumption [2], we also took the cooking

method of fish into consideration. Because addi-
tional adjustment for categories of fried fish con-
sumption (five groups; ≤1, 2, 3–4, 5, ≥6
servings month�1) did not affect any estimation
these results are not shown.

We fitted the multivariable-adjusted models
including the missing values – below 3% for all
covariates with the exception of waist circumfer-
ence (15%) and daily walking/cycling (14%) – in a
separate category. The adequacy of proportional
hazards assumption was checked by using
Schoenfeld residuals, and no evidence of departure
from this assumption was observed for the main
exposures.

To test for linear trends (P-trend) across increasing
categories of PCB/EPA-DHA exposures, the med-
ian concentration within each quintile and cate-
gory of sex was included and treated as a
continuous variable in the model. Likewise,
restricted cubic splines with 3 knots of the distri-
bution (at the 10th, 50th and 90th percentiles of
the distribution) were used to flexibly model the
dose-response associations and allow for non-lin-
earity. Furthermore, all spline models were repli-
cated to evaluate associations in terms of survival
time, using quantile regression for survival data to
estimate differences in median age at death over
levels of dietary PCB exposure and EPA-DHA
intake [33]. Lastly, the potential interactions
between dietary PCB and EPA-DHA exposures
was tested using the likelihood ratio test, compar-
ing Cox models with and without interaction term
(for interaction on the multiplicative scale) and
using survival percentiles comparing quantile
regression models with and without interaction
term (for interaction on the additive scale). All
analyses were run in Stata version 14.0 (StataCorp
LP, College Station, TX, USA), with statistical
significance set at the two-sided 0.05 level.

Results

During a mean follow-up of 15.5 years (person-
time-at risk 1 073 479 years), 16 776 total deaths
(6338 due to CVD and 5421 to cancer) were
ascertained (Fig. 1). The average age (years) at
death was 81 (�9) for women and 78 (�9) for men.
Table 1 depicts age-standardized baseline charac-
teristics of the study population by quintiles of
dietary PCB exposure. The median (5th-95th per-
centiles) of dietary PCB exposure was 165 (70–370)
ng day�1 in women and 231 (87–531) ng day�1 in
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men. The corresponding results for EPA-DHA were
288 (87–689) mg day�1 and 395 (99–971)
mg day�1, respectively. Both women and men in
the highest quintile of dietary PCB exposure had a
higher dietary intake of both EPA-DHA and higher
exposure to MeHg compared with those in the
lowest quintile. The other baseline characteristics
were generally similar between categories of dietary
PCB exposure.

After multivariable-adjustment and taking into
account EPA-DHA intake in the model, the highest
PCB-exposed participants (women and men) had a
significant 20% higher risk of death than those
least exposed (HR 1.20; CI 95%:1.07 to 1.34; P-
trend = 0.001). The corresponding HR for CVD-
specific deaths was 1.31 (CI 95%:1.08 to 1.57; P-
trend = 0.005). For EPA-DHA intake (taking into
account dietary PCB exposure), the HR for all death
was 0.88 (CI 95%: 0.78 to 0.98; P-trend = 0.23)
and for CVD-specific death 0.79 (CI 95%: 0.66 to
0.95; P-trend = 0.041) (Table 2), Fig. 2).

Dietary PCB was not associated with a higher
cancer-specific mortality (HR 1.10; CI 95%:0.90 to
1.35; P-trend = 0.4). EPA-DHA intakes were, how-
ever, significantly associated with lower cancer
mortality up to the mid-quintile but not at higher
intakes (Table 2). There was no evidence of inter-
actions by sex or between dietary PCB and EPA-
DHA exposures. We observed no associations
between dietary MeHg exposure and mortality
(Table S1).

Compared to the lowest quintile of dietary PCB
exposure, the highest quintile was associated with
a lower median age at death of approximately
9 months and, similarly, the highest quintile of
EPA-DHA intake was associated with a higher
median age at death of approximately 6 months
(data not shown). The corresponding shapes of the
difference in median age at death over levels of
dietary PCB and EPA-DHA exposures are repre-
sented by spline models evaluating associations in
terms of survival time (Fig. 3).

Discussion

In these two large population-based cohorts with
long follow-up, dietary PCB exposure was dose-
dependently associated with increased CVD mor-
tality, whereas the intake of EPA-DHA was dose-
dependently associated with lower CVD mortality.
No association was discerned between PCBTa
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exposure and cancer mortality, while some indica-
tion of a u-shaped association was observed for the
EPA-DHA intake. These results suggest that the
high content of PCBs in certain fish species could
explain, at least in part, the increased mortality
observed at high fish consumption (right end of the
U-shaped association) in certain areas of the world.

Several mechanisms related to the pathogenesis of
CVD and other metabolic disorders may be trig-
gered by PCBs. Experimental evidence reveals that

PCBs induce chronic inflammation and dysfunc-
tion in the vascular endothelium, via expression of
several inflammatory markers [34–36] and increas-
ing cellular oxidative stress [37]. Likewise, some of
these effects are suggested to be induced through
epigenetic regulation such as histone modifications
[36] or altered expression of miRNAs, which is
associated with cardiac injury and inflammation
[38]. In accordance, a growing number of observa-
tional studies in general populations have linked
PCB exposure to different cardiometabolic risk

Fig. 2 Cohort-stratified hazard ratios (HR) of cardiovascular and cancer death as a function of dietary PCB and EPA-DHA
intakes. Data were fitted using Cox proportional hazard regression evaluated with restricted cubic splines with three knots
of the distribution (at the 10th, 50th and 90th percentiles of the distribution) Participants with an exposure above the 95th
percentile are not included. Dashed lines represent 95% CIs. The histograms show the distributions of dietary PCB exposure
and dietary EPA/DHA intake. Models adjusted for attained age (years), education level (≤12 or >12 years), waist
circumference (<80, 80–87, ≥88 cm), hypertension (yes/no), hypercholesterolaemia (yes/no), weight loss >5 kg within
1 year (yes/no), leisure-time inactivity (≤2 or >2 h day�1) and daily walking/cycling (≤40 or >40 min day�1), family history
of myocardial infarction before the age of 60 years (yes/no), smoking status (current, former, never), use of aspirin (yes/no),
energy intake (continuous, kcal day�1), Mediterranean diet (9-score), parity (0, 1–2, ≥ 3 child), use of hormone replacement
therapy (yes/no) and dietary methylmercury exposure (quintiles) and, respectively, for EPA-DHA intake (quintiles) or dietary
PCB exposure (quintiles).
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factors including hypertension [18], type 2 diabetes
and obesity [19], as well as to CVD [13, 15, 16, 39,
40]. This human evidence is supported by animal
data [37, 41, 42].

Early cohort studies with high PCB-exposed work-
ers (through inhalation or skin absorption)
reported elevated mortality from CVD [43, 44] and
less consistent from cancers [45–48]. In the general
population, mortality risk in relation to back-
ground-PCB exposure has only been addressed
by three American prospective studies. Biomarkers
of DL-Cs were associated with a significant 19 %
increased risk of total mortality and, albeit non-
significant, comparable risk of CVD and cancer
mortality [21]. The PCBs were, however, not clearly
associated with increased either total or cause-
specific mortality in the other two studies [20, 22].
These studies did not account for fish, x-3 PUFAs
intakes or a healthy diet.

There is scarce evidence on PCB-carcinogenic-
ity among nonoccupationally exposed popula-
tions. Although biologically plausible, the PCB
classification into group 1 by the IARC was based
on the risk of melanoma mainly in workers highly

exposed to PCBs, as the evidence on both non-
Hodgkin lymphoma and breast cancers is limited
and for other cancers sites inconclusive [49]. While
we previously observed association between diet-
ary PCB exposure and incidence of malignant
melanoma and high-grade and fatal prostate
cancer in our cohort [50], there were mainly null-
associations in relation to the development of
female hormone-related cancers [51, 52]. Thus,
the null association between dietary PCB exposure
and cancer mortality it is not surprising.

In contrast, EPA-DHA, which have an essential
function for the metabolism, are identified as the
major profit of ingesting fish-derived nutrients. The
claimed cardio-protective effects of EPA-DHA
appear not to be through a single mode of action
but to a synergism between multiple mechanisms
involving the improvement of inflammation,
endothelial function, arterial compliance (elastic-
ity) [53] as well as its capacity to diminish the
oxidative stress [54]. Scientific research from ran-
domized controlled trials (RCT) on EPA-DHA sup-
plementation has shown that EPA-DHA also
decrease triglycerides, increase HDL cholesterol
and LDL particle size (which may be less
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family history of myocardial infarction before the age of 60 years (yes/no), smoking status (current, former, never), use of
aspirin (yes/no), energy intake (continuous, kcal day�1), Mediterranean diet (9-score), parity (0, 1–2, ≥ 3 child), use of
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intake (quintiles) or dietary PCB exposure (quintiles).
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atherogenic), reduce heart rate and blood pressure
and inhibit platelet function [55, 56]. Likewise,
there is a biological rationale for the protective role
of EPA and DHA in the genesis of cancer [57–59].

Our findings are, however, in keeping with a meta-
analysis [60] involving over 30 thousand deaths
events from 11 prospective studies including gen-
eral population from USA and Asia, where both
dietary and circulating x-3 PUFAs showed to be
significantly associated with reduced risk of all-
cause mortality. Whether these contrasting find-
ings to the null effects observed in x-3 PUFAs
supplemental RCTs [61], indicate confounding by
other dietary or non-dietary factors, or that other
components of fish are responsible for the observed
associations, is not known. Regarding our results,
the EPA-DHA intake displayed a u-shaped ten-
dency for cancer mortality, while for CVD mortality
there was a clear dose-dependent protective asso-
ciation.

The regional differences observed between fish
consumption and mortality [8, 62] could partly be
due to geographical variation in type of seafood
consumed – with differences in nutrient and con-
taminant content – and in local contamination.
Japan/Korea/Philippines followed by the Nordic-
Baltic countries and South-East Asia have the
largest seafood consumption [8]. Japan has the
highest EPA-DHA intake followed by Nordic coun-
tries according to an exposure assessment from the
Global Environment Monitoring System [63]. In the
Nordic-Baltic countries, while pelagic marine
fishes are the most consumed, the intake of crus-
tacean and cephalopods is limited. In Asiatic
countries, however, the crustacean and cephalo-
pods contribute to more than 40% to the total
seafood consumption followed by freshwater
fishes. Because pelagic marine fishes have the
highest fat content, they also have the highest
concentration of fat-soluble nutrients (e.g. EPA-
DHA and vitamin D) as well as lipophilic contam-
inants such as PCBs and DL-Cs. Freshwater fish
can be high in PCBs and DL-Cs depending on the
industrial contamination. On the other hand, high
MeHg is mainly found in those fish species being at
the top of the aquatic trophic chain (such as shark,
tuna or swordfish) or freshwater predatory fishes
(such as pike and pike perch in Sweden). Thus,
even at a similar amount of seafood consumption,
the exposure profile to seafood-derived contami-
nants will vary depending on the type of fish. While
Japan seems to have higher MeHg and lower PCB

intakes, the Nordic–Baltic countries apparently
have lower MeHg and higher PCB intakes [8]. Thus,
it may be more be difficult to reach the desired
intake levels for EPA-DHA in this population,
without exceeding the potential negative conse-
quences of the dietary PCB exposure.

Fish can be also a potential source of human
exposure to other toxic environmental contami-
nants such as polychlorinated dibenzofurans,
polycyclic aromatic hydrocarbons (mostly smoked
fish), polybrominated diphenyl ethers, chlorinated
pesticides, or per- and polyfluorinated alkyl sub-
stances [25, 64]. Future studies further consider-
ing the overall impact of the co-exposure of these
different contaminants present in fish is necessary
to be able to make a rigorous real assessment of the
risk-benefit of fish consumption.

Strengths of the present study include its large
sample size providing statistical power and the
prospective population-based design, which avoids
reverse causation bias. The availability of informa-
tion on demographics, risk factors and lifestyle
prospectively collected allowed us to adjust for
multiple covariates, minimizing confounding. In
addition, the practically complete follow-up
through computerized linkage to the Swedish
Cause of Death Register minimized possible bias
due to differential loss to follow-up. Importantly,
dietary PCBs and EPA-DHA exposures were vali-
dated against serum and adipose tissue concen-
trations, respectively. Adequate validity is essential
to ensure that the potential recall bias and mea-
surements errors derived from self-reported dietary
intakes are as low as possible.

Limitations should be reflected. Exposures were
measured at baseline, assuming that dietary
habits remained the same over the entire period.
Dietary variations over time would increase expo-
sure misclassification during follow-up. Also, mis-
reporting of dietary intake (measurement error)
cannot be ruled out, contributing to the exposure
misclassification. The exposure misclassification is
most likely nondifferential, potentially leading to
attenuated risk estimates, although risk estimates
biased away from the null cannot be excluded. The
observational design cannot ignore residual con-
founding by unknown or unmeasured factors
including other contaminants also present in fish.
Yet, results were robust to adjustment for multiple
major risk factors. Due to strong confounding, the
associations were only observed after mutual
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adjustments for PCBs and EPA-DHA, raising the
issue with collinearity. It is known that multi-
collinearity can cause unstable estimates and
inaccurate variances which affects confidence
intervals and hypothesis tests. There were, how-
ever, no indications of inflated confidence intervals
or unstable risk estimates in the present study,
implying no major effect of collinearity. This con-
clusion was further supported by recent simula-
tions indicating that for models properly specified,
collinearity (unless extreme; q > 0.999) does not
have to induce any measurable bias [65]. Finally,
we could not distinguish between dioxin-like and
nondioxin-like PCBs and either them from other
contaminants present in the same foods such as
polychlorinated p-dioxins and furans, which have
also been associated with CVD.

Conclusion

In this prospective assessment in Swedish middle-
aged and elderly men and women, high dietary PCB
exposure was associated with increased CVD mor-
tality and EPA-DHA intake with decreased CVD
mortality. This counteraction may explain the
increased mortality observed at high fish consump-
tion (right end of the U-shape) in certain areas of
the world and the net benefit of fish consumption
may depend on the PCB contamination.
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