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Abstract: Slip-resistant footwear can prevent fall-related injuries on icy surfaces. Winter footwear
slip resistance can be measured by the Maximum Achievable Angle (MAA) test, which measures
the steepest ice-covered incline that participants can walk up and down without experiencing a slip.
However, the MAA test requires the use of a human observer to detect slips, which increases the
variability of the test. The objective of this study was to develop and evaluate an automated slip
detection algorithm for walking on level and inclined ice surfaces to be used with the MAA test
to replace the need for human observers. Kinematic data were collected from nine healthy young
adults walking up and down on ice surfaces in a range from 0° to 12° using an optical motion capture
system. Our algorithm segmented these data into steps and extracted features as inputs to two linear
support vector machine classifiers. The two classifiers were trained, optimized, and validated to
classify toe slips and heel slips, respectively. A total of approximately 11,000 steps from 9 healthy
participants were collected, which included approximately 4700 slips. Our algorithm was able to
detect slips with an overall F; score of 90.1%. In addition, the algorithm was able to accurately classify
backward toe slips, forward toe slips, backward heel slips, and forward heel slips with F; scores of
97.3%, 54.5%, 80.9%, and 86.5%, respectively.

Keywords: fall prevention; footwear; slips; slip detection; stride segmentation; inclined surface;
winter; ice; machine learning; slip classification

1. Introduction

Falls are consistently among the most common causes of workplace injury [1]. They
account for approximately 20% of the cost of all lost time injuries [2]. In 2019, US businesses
spent over $10 billion on worker compensation claims for fall-related injuries and these
costs are increasing [3]. During the winter, ice-covered walkways and stairs have been
shown to increase the risk of slip and fall accidents [4,5]. According to the Canadian
Institute for Health Information, falls on ice are the second most common cause of serious
traumatic injuries, after motor vehicle collisions [6]. Although same-level falls on ice rarely
cause immediate life-threatening injuries, they often result in injuries to the head, back, or
lower extremities [7]. These falls can have particularly damaging effects on older adults
either due to an injury triggering a downward spiral in health or from inactivity resulting
from a fear of falling [8].

1.1. Slip-Resistant Footwear

Slip-resistant footwear can prevent falls on icy surfaces [9-13]. However, assessing
the slip resistance on icy surfaces remains challenging. The current industry standard for
measuring footwear slip resistance is a mechanical test developed by the SATRA Technology
Centre and is recognized by ASTM International [14]. This method measures the coefficient
of friction by applying a specified normal force pressing the test footwear onto a test
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surface and then moving the test surface horizontally at a set constant speed using the
SATRA STM 603 Slip Resistance Testing machine. Unfortunately, this test has been found
to have poor ecological validity [15-17] likely because it is unable to simulate the complex
dynamics of human walking. Ecological validity for a test refers to whether the test results
are representative of performance in real-life settings [18]. Recently, our team at the KITE
Research Institute (Toronto Rehabilitation Institute, University Health Network) developed
the human-centered Maximum Achievable Angle (MAA) test, which involves participants
walking up and down ice-covered inclines while wearing test footwear in a simulated
winter environment [15,16]. The slip resistance of the footwear is defined by the maximum
slope angle (measured in degrees) that the participant can walk up and down without
slipping [15]. Our testing has shown that the MAA test is able to identify differences in slip
resistance performance that the SATRA test is unable to find [19]. In fact, our findings have
shown that slip resistance varies widely among commercially available winter footwear and
that a new generation of slip resistant winter footwear that incorporates composite materials
performs much better than most other footwear available on the market [20,21]. These
advance materials have also been shown to perform better than conventional footwear in
real-world conditions [13]. A field study with 110 home healthcare workers found that the
group wearing footwear that performed well on the MAA test reported nearly 80% fewer
falls compared to a matched group wearing their own footwear [13]. The MAA test has
also been used to evaluate how quickly these advanced composite materials lose their slip
resistance performance, highlighting a potential limitation of this technology [22].

These findings are driving greater interest in the MAA test. However, there is one
major limitation to this test method, which is that it relies on the subjective assessment of a
human observer to determine when a participant has experienced a slip. These observers
likely introduce variability in the results based on differences in vigilance and/or skill. We
also suspect that MAA test observers disproportionally identify larger slips because these
are easier to see. The addition of an automated slip detection system would make the MAA
test more objective and accurate.

1.2. Existing Automated Slip Detection Methods

A number of methods for detecting slips have been described in the literature. Several
studies have focused on the use of inertial measurement units (IMUSs) to detect heel slips
occurring on a straight and level path, neglecting toe slips that occur at toe off [23-25].
An IMU is a portable electronic device that measures and reports a body’s specific force,
angular rate, and magnetic field using a combination of accelerometer, gyroscope, and
magnetometer. Trkov et al. developed an algorithm using a set of five IMUs attached
to the lower limb [25]. It detected slips based on how fast the shank pivoted after heel
contact. It had a fast slip detection time of 59 ms, but no numerical accuracy in detection
of slips vs. non-slips was reported. Hirvonen et al. used a waist-worn IMU to detect
sudden movement caused by a person’s effort to regain balance [23]. However, it was
only able to detect slips with slip distance greater than 5 cm. Lincoln et al. developed an
insole sensor system with 90% slip detection accuracy using simple acceleration and force
thresholds [24]. The major limitation of their investigation was that it was only tested with
one participant. Another study presented a slip and trip detection method using a smart
phone placed in the participant’s pocket with data collected in a simulated construction
environment [26]. It has shown slip detection accuracy as high as 88%, but neither the
types nor sizes of slips detected were discussed. Okita et al. developed an algorithm for
slip detection in robots using IMUs [27,28]. Unscented Kalman filter (UKF) was formulated
based on a simple dynamic model as a block on a slope without translation. It estimated
foot kinematics using IMU measurements. Then, a binary Bayes filter used the error from
UKEF to estimate the probability of gait and slip states. When tested in a level walking
with human subjects, a false negative rate of 35% and a false positive rate of 41% were
reported for slip detection [27,28]. A more recent study by Wu et al. developed a deep
three-dimensional convolutional neural network to detect slips that occurred on inclined
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ice surfaces using a GoPro camera [29]. The machine learning model was trained and
tested with 360 video clips that consisted of 180 slips and 180 normal steps. The overall slip
detection accuracy was 86% with sensitivity and specificity of 81% and 91%, respectively.
However, it does not differentiate different types of slips and has small slip sample size.
Therefore, the existing findings on slip detection methods are limited and the potential for
use with the MAA test remains unclear as there have been limited investigations involving
slip detection on inclined surfaces.

1.3. Objective

To address this gap, the objective of the present study is to evaluate the ability for a
machine learning algorithm trained using data from an optical motion capture system to
detect and classify slips occurring during inclined walking on icy surfaces as part of the
MAA test.

2. Materials and Methods
2.1. Data Collection

Nine healthy young adults (6 males, 3 females) were recruited to participate in this
study. The demographic information of each participant is listed in Table 1. Their average
age, height, and weight were 27 £ 6 years old, 1.76 & 0.05 m, and 73 =+ 10 kg, respectively.
To meet the inclusion criteria, they needed to be able to walk up and down slopes ranging
from 0° to 15° independently for 45 min. Exclusion criteria included musculoskeletal
disorders, cardiopulmonary disorders, orthopedic disease, and any other condition that
would impair mobility.

Table 1. Participants” demographic information.

Participant ID Gender Age Height (cm) Weight (kg)
1 M 36 177 85
2 M 32 175 49
3 M 20 170 73
4 F 21 179 73
5 F 34 168 68
6 M 29 175 73
7 M 22 183 80
8 F 23 179 84
9 M 24 175 75

It is difficult to perform sample size calculations for machine learning projects like
this one since the sample size depends on various factors, such as complexity of the model,
number of input features for the model, strength of the features, etc. We relied on a
commonly accepted rule of thumb to collect 10 times more slips per participant than the
number of features of interest [2]. Since we planned to extract 36 features to train our
classifiers, we would need 360 slips per participant. We chose a relatively small sample
(n =9) for this initial proof-of-principle study to determine if these methods were feasible
before collecting data from a larger, more representative sample.

Data collection was done in WinterLab, a winter environment simulation laboratory
that is located at the KITE Research Institute, Toronto Rehabilitation Institute—University
Health Network. The laboratory contains a 4.5 m by 4.6 m ice floor that is approximately
2.5 cm thick. This ice floor was cooled using glycol tubes to 0.5 £ 1.0 °C and the ambient
air temperature was maintained at 8.0 £ 2.0 °C for the duration of the data collection
sessions. WinterLab was mounted on an electrical screw jack platform capable of tipping
and maintaining the entire lab at a slope between 0° and 15° in one-degree increments, as
shown in Figure 1 below.
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Figure 1. WinterLab shown at a tipped angle.

All participants wore a safety harness attached with a fixed line from the upper back
to a passive low-friction overhead trolley. Participants were asked to walk up and down a
variety of icy slopes while wearing three different models of footwear. The three footwear
models were selected to have a range of different MAA scores (based on previous testing)
as shown in Table 2. Data were first collected from participants wearing the footwear
with the lowest MAA score. Participants switched to the footwear with the next lowest
MAA score when they were no longer able walk up the slopes with the first pair without
slipping. Participants also walked along a 0° slope (level surface) using all three footwear
models. At each slope angle, each participant was asked to perform five walking trials.
Each trial consisted of a participant walking up and down the ice-covered walkway at their
self-selected pace.

Table 2. Footwear models used for data collection.

Footwear Model MAA Score Range of Slopes Covered
Canadian Tire Woods Snow Peak 0° 0° to 4°
Boots (1871132)
Mark’s WindRiver Canmore 40 0° 3° to 7°
(SCPEWRF16-5224) !
Mark’s WindRiver Mallory 11° 0°,8° to 11°

(5DQEWRFWb5134)

Reflective markers were placed in clusters of three or four markers on the anterior,
posterior and lateral aspects of the footwear, shown in Figure 2. A 14-camera passive
motion tracking system (Raptor-E, Motion Analysis, Rohnert Park, CA, USA) utilizing
Cortex (5.2.0.1518, Motion Analysis, CA, USA) software was used to track the positions of
the reflective markers with a sampling frequency of 150 Hz.

Figure 2. Reflective marker clusters were place on the anterior, posterior and lateral aspects of each
pair of test footwear.
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2.2. Data Analyses

After filling gaps in the motion capture marker trajectories using the Cortex software,
the kinematic data were fed into the slip detection algorithm developed in MATLAB
(R2014a, MathWorks, Natick, MA, USA), shown in Figure 3 below. They were first filtered
in the signal preprocessing stage, then broke down into different signal segments that
correspond to different steps. A set of 36 features were extracted from each step. The
selected subset of the 36 features were input to both toe slip classifier and heel slip classifier.
Both classifiers were 3-class linear Support Vector Machine (SVM) classifiers, but they were
trained and optimized for different slips. The toe slip classifier classified the input step
as forward toe slip, backward toe slip, or step with no toe slip. The heel slip classifier
classified the input step as forward heel slip, backward heel slip, or step with no heel slip.

Kinematic Signals

Signal Preprocessing

Stride Segmentation

Feature Extraction & Selection

Toe Slip Classifier | Heel Slip Classifier

Slip Classification

Figure 3. Overview of the slip detection algorithm developed and evaluated in this study.

For overall binary slip detection, the algorithm used the output from both toe slip and
heel slip classifier. A slip was detected if the step was classified as either toe slip or heel
slip. In other words, a step was only classified as step without slip if it was classified as
step with no toe slip and step with no heel slip.

2.3. Signal Preprocessing

The marker position data were filtered using a fourth-order, zero-lag, dual-pass But-
terworth filter with a 12 Hz cut-off frequency and differentiated to obtain the velocity
signals. Finally, a participant-centric frame of reference was applied to all data such that
the forward movement of the participants along the anterior-posterior axis was defined to
have positive velocity.

2.4. Stride Segmentation

O’Connor et al. reported a segmentation algorithm that identified toe off and heel
contact using the vertical velocity of the foot [30]. For toe off, it searched for the largest
peak in vertical velocity within the order of one typical gait cycle (0.8 s). For heel contact, it
searched for series of troughs in the signal using a 0.08-s window. The heel contact was
identified as the second largest trough with height below 35% of the range of heel heights
encountered during the trial and that occurred between the current stride’s toe off and next
heel contact.
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Like O’Connor’s algorithm, the stride segmentation algorithm in this study searched
for series of peaks and troughs in the vertical velocity of the foot. However, toe off and heel
contacts were identified with different sets of constraints and combinations of the following
signals, shown in Figures 4 and 5, respectively:

e  Vertical heel marker and toe marker velocities;
e  Angle between foot and floor (foot angle);
Angular velocity of the foot.
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Figure 4. Changes in the vertical heel marker velocity over sample steps with toe off (TO) and heel
contact (HC) times shown as dashed vertical lines.
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Figure 5. Changes in foot angle and its angular velocity over sample steps with toe off (TO) and heel
contact (HC) times shown as dashed vertical lines. The foot angle signal shown does not start at 0°.
This offset angle is the result of toe markers and heel marker not being at the same height.

Details of the toe off and heel contact event identification are described in Sections 2.4.1
and 2.4.2, respectively. Data that include incomplete strides or movements where the
participant was changing direction were discarded.
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2.4.1. Toe Off

To identify the toe off events, our algorithm firstly searched for the largest peak in the
heel vertical velocity signal with several empirically defined constraints. The threshold for
the peaks were 0.13 m/s or greater and they were separated by 90 frames (equivalent to
0.6 s). Toe off was empirically defined as occurring five frames (0.03 s) after the largest peak.

2.4.2. Heel Contact

Figure 6 illustrates the heel contact identification process flow. The criterial for identi-
fying heel contact was empirically determined based on pilot testing.

Heel marker Search for heel vertical velocity
kinematic data local minima with the following
criteria:
1. Smaller than —0.135 m/s
2. Separated by 96 frames
3. Occurred within 180
frames after toe off

Event B is set as the closest
local minima in angular
velocity that are Set Event A as when heel vertical

L.

Smaller than —75°/s velocity increased to —0.015 m/s

2. After and within 15

frames of Event A

Computer angle between foot
and the floor for Event A and B

Is the foot angle at Event A
greater than1°?

Yes

Is the foot angle at
Event A 3° smaller No—
than that at Event B?

\ 4

Set Event B as heel contact Set Event A as heel contact

> End <

Figure 6. Heel contact event detection process flow chart.

After toe off and heel contact were identified, these events were used to find the start
and end of the complete strides. The start of a complete stride was defined as the midpoint
between the toe off of the current stride and the heel contact of the previous stride. The
end was defined as the mid-point between the heel contact of the current stride and the toe
off of the next stride.
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It was important to identify toe off and heel contact accurately, since these events
were used to extract many of the features described in the next section. One-hundred
non-slip-steps and 100 slip-steps were randomly selected to be evenly distributed among
the nine participants. Using the MATLAB random number generator, 11 non-slips-steps
and 11 slip-steps were randomly selected from each of the 9 participants. The last 100th
non-slip-step and slip-step were randomly selected from any of the participants. The timing
of toe off and heel contact identified by the algorithm were compared with those identified
manually by viewing the motion capture data frame-by-frame.

2.5. Feature Extraction and Selection

A number of features were extracted from the anterior-posterior (AP) velocity and
vertical velocity of the heel and the toe, as well as the position signals for each step. Figure 7
compares the velocity signal profile of a normal step to the different types of slips. The
arrows in Figure 7 highlights the key differences between slips and normal steps. Typically,
the most distinct differences in velocity signals were found before or during toe off for
both backward and forward toe slips when comparing to normal steps. For backward and
forward heel slips, they occurred after heel contact.
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Figure 7. Velocity signal profiles of a normal step and the different types of slips observed. (A) Normal
step. (B) Backward toe slip. (C) Forward toe slip. (D) Backward heel slip. (E) Forward heel slip.
(F) Forward heel slip variant. The toe off (TO) and heel contact (HC) are shown as dashed vertical
lines. The arrows indicate the key features of each slip.
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A list of all features and their description are listed in Table 3. A subset of these
features, noted in Table 3, were found to be useful and were input into the classifiers in the
next step.

Table 3. List of features for each classifier.

Feature Number

Feature Description

32

33 12

34 12

351

362

Number of negative peaks separated by 100 ms in heel vertical velocity
Number of positive peaks separated by 100 ms in heel vertical velocity
Number of positive peaks separated by 7 ms in toe vertical velocity between toe off and heel contact
Difference of the number of positive peaks and negative peaks separated by 7 ms in toe vertical velocity between toe
off and heel contact
Heel AP velocity at heel contact
Time it takes heel AP velocity to reach zero after heel contact
Area of the heel AP velocity from heel contact to the point where velocity reaches zero
Area of the negative peak in heel AP velocity immediately after heel contact
Area of the negative peak in heel AP velocity after heel contact that is different from the peak in Feature 8
AP displacement of the heel between heel contact and mid-stance
Number of positive peaks in heel AP velocity after heel contact
Velocity of the largest positive peak in heel AP velocity after heel contact
Area of positive peaks in heel AP velocity after heel contact
Area of positive peaks in heel AP and medial-lateral velocity after heel contact
Sum of Feature 7 and Feature 10
Difference between Feature 13 and Feature 8
Binary feature that describes whether the foot comes to a full stop after heel contact. The criteria for full stop are that
its absolute acceleration needs to be smaller than 0.5 m/s? and its absolute velocity needs to be smaller than 0.01 m/s.
Number of positive peaks in heel vertical velocity before toe off
Number of positive peaks in toe vertical velocity before toe off
Number of positive peaks in heel AP velocity before toe off
Number of positive peaks in toe AP velocity before toe off
Maximum velocity of the largest positive peak in heel AP velocity before toe off
Maximum velocity of the largest positive peak in toe AP velocity before toe off
Heel AP velocity at Tyeer—o ¢
Toe AP velocity at Tiee;—off
Number of negative peaks in toe AP velocity before toe off
Width of the largest negative peak in toe AP velocity before toe off
Maximum velocity of the largest negative peak in toe AP velocity before toe off
Area of all negative peaks in toe AP velocity before toe off
Number of positive peaks in heel AP velocity after Tnaxvelocity
Sum of the curvature values between Tje;—off and Taxvelocity
Tinaxvelocit
(1)
t=Theel—nff
Mean of the curvature values between Tjee;off and Tiaxvelocity

Tmaxmlouity

7 ¥ k()

maxvelucztyiThecl—nff t=Theel f
— “heel—o
Sum of the curvature values between Tiaxvelocity and Theel—off Of the next step

Thcvl—uff of next step
k()
t=T,

maxvelocity

Mean of the curvature values between Taxpelocity and Theer—o f¢ Of the next step

Thacl—u[f of next step
T, p— ; x(t)
heel—of f of next step ™ ! maxvelocity

r:Tmaxvelnrity

Area between the heel AP velocity curve and a straight line drawn from the point before Traxpetocity Where the heel AP
velocity is zero to Taxoelocity

Area between the heel AP velocity curve and a straight line drawn from Tinaxpelocity to the point after Taxpelocity Where
the heel AP velocity is zero

1 Feature selected for toe slip classifier. 2 Feature selected for heel slip classifier.

Feature 31 and 34 calculated curvature values based on the equation below:

o = —2° (1)

(1+ v(t)'2>%
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where x represents the curvature at frame t and v represents the heel AP velocity at frame ¢.
Couple time points during a step were also used to compute the features. Ty, sy indicates
when the velocity of the foot is zero right before heel off in the gait cycle. It is empirically
determined that Tj,; o ff 0ccurs when the heel AP acceleration reaches 0.5 m/ s? and the
heel AP velocity drops below 0.1 m/s. Tiyaxelocity is when the heel AP velocity reaches its
maximum value.

Visual inspection of histograms showing the distribution of feature values was used
for feature selection. A sample histogram is shown in Figure 8. The x-axis is the range
of feature values. A bin size of 50 was used to generate the points on the line. The y-axis
shows the count normalized to the population of the specific class. This histogram shows
the distribution of negative AP velocity peaks before toe off for the three classes in the
toe slip classifier. Thus, there are three colors, corresponding to each class. The blue line
represents the normal step (NS) class, the red line represents the backward toe slip (BTS)
class, and the green line represents the forward toe slip (FTS) class. The more overlaps
between distributions of feature values, the less useful that feature is for distinguishing the
different classes. Features where the overlapping areas between all combinations of the
classes were equal to or greater than 75% were discarded.

I
——————— BTS
FTS
5025+
T
3
2 02
o
o
g o015
5 017
z e ‘.
0.05 | )
0 b===——p=-—- . , /«-&_ﬂ",
15 -1 0.5 0

Velocity (m/sz)
Figure 8. Sample histogram of a feature, negative AP velocity peaks before toe off.

2.6. Slip Classification

Different selected features were normalized and input into the two classifiers in the
algorithm. Toe slip classifier was trained to classify toe slips specifically, whereas the heel

slip classifier only classified heel slips. Together, the algorithm was able to classify slips as
one of four types of slips:

Backward toe slips (classify by toe slip classifier);
Forward toe slips (classify by toe slip classifier);
Backward heel slips (classify by heel slip classifier);
Forward heel slips (classify by heel slip classifier).

A backward toe slip was defined as a backward movement of the foot before toe off.
Similar to the findings by Powers et al. and Yamaguchi et al., it was characterized by a
negative AP velocity of the toe before toe off [31,32]. Forward heel slips were defined by
forward movement of the foot after heel contact and was characterized by a positive AP
velocity of the heel after heel contact [33]. In some cases, more than one classifier may have

identified a slip on the same step, such as backward toe slip and backward heel slip both
occurred in one step.
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Based on the characteristics of the extracted features, we believed that the data are
linearly separable and thus a linear kernel would perform well. In pilot testing, we
compared performance of different kernels (linear, polynomial with degree of 2 to 4, and
radial basis function kernel). Linear SVM had the best overall performance and least time
to train. Further pilot testing was undertaken to compare between multi-class logistic
regression, multi-class linear SVM, and artificial neural network (ANN) with one hidden
layer and linear SVM was selected based on its performance.

2.6.1. One-versus-Rest Multiclass Classification

One-versus-Rest approach was used to implement the 3-class linear SVM classifiers. In
this approach, it splits the multi-class classification into one binary classification per class.
For example, one of the binary classifiers for toe slip classifier would be trained to classify
a step without toe slip vs. backward and forward toe slip. Thus, there were three binary
classifiers for both toe slip and heel slip classifiers. Each individual binary classifier output
a probability-like score and the one with the largest score was used for the prediction.

2.6.2. Leave-One-Subject-Out Cross Validation

Leave-one-subject-out cross validation (LOSOCV) was used to measure the perfor-
mance of both linear SVM classifiers. In this method, one participant was reserved as a
test set to provide an unbiased evaluation of the classifier. It tested whether the classifiers
could maintain similar performance when encountering a new participant with different
gait pattern. The remaining data were divided into a training and validation set at 80:20
ratio. They were used for training each of the linear SVM classifiers while tuning model
hyperparameters. This process was repeated so that the data from each participant were
used as the test case once.

2.6.3. Handling Imbalanced Data

Since there were significantly more non-slips than slips in the collected data (Table 4),
the training and validation data set were imbalanced. This could lower the SVM classifiers
performance on detecting slips. Thus, a random under-sampling approach was used to
address this issue. In this approach, a subset of training and validation datasets were
randomly selected, containing a similar ratio of non-slips and different types of slips. It
was repeated 10 times, so that each classifier was trained and tested 10 times to obtain the
average performance.

Table 4. Number of slips collected by type and participant, identified through visual inspection.

Participant ID Backwe?rd Toe Forwaf'd Toe Backwa.rd Heel Forwar.d Heel

Slip Slip Slip Slip
1 210 3 55 224
2 173 46 139 160
3 289 36 255 370
4 114 7 100 110
5 293 30 184 210
6 305 6 168 279
7 245 33 114 258
8 317 60 191 249
9 173 11 226 194

Total 2119 232 1432 2054
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2.6.4. Performance Evaluation Metrics

The classifier performance was evaluated with the following:

tp (class = a)

Precision (class = a) = tp (class = a) + fp (class = a) @
N tp (class = a)

Recall (class = a) = tp (class = a) + fn (class = a) ©

Fy score (class = a) = 2 % precision (class = a)  recall(class = a) (4)

precision (class = a) + recall(class = a)

where tp represents the true positives, fp represents the false positives, fn represents the
false negatives, and a represents a class predicted by the 3-class linear SVM classifier. Each
class of the 3-class linear SVM classifier or type of slips would have a precision, recall, and
F; score.

2.6.5. Overall Slip Detection

The overall slip detection was merely a logical operation on the output of both toe
slip and heel slip classifiers. It was determined based on the condition below where V
represents “inclusive or” operation.

Slip = backward toe slip V forward toe slip V backward heel slip V forward heel slip ®)
The F; score for the overall slip detection performance was also evaluated.

2.6.6. Sensitivity Analysis

Since the extracted features were based on toe off and heel contact, it is important to
evaluate whether toe off and heel contact timing detection errors affect the toe slip and
heel slip classifier performance. For these selected 200 steps in Section 2.4, their toe off
and heel contact timings were varied independently by —15 to +15 frames in intervals
of 1 frame. This was to simulate errors in detection. Features were then extracted based
on these modified timings and fed into the trained and optimized toe slip and heel slip
classifier. The F; scores were then calculated and compared with the F; score without
introduction of the errors.

3. Results
3.1. Types of Slips

A total of approximately 11,000 steps were collected from nine participants. These
included approximately 4700 slips distributed across slopes from 0° to 12°, shown in
Figure 9. These were categorized into four types of slips (Figure 7): backward toe slips,
forward toe slips, backward heel slips, and forward heel slips. The number of each type of
slip collected per participant is shown in Table 4. The total number of slips in Table 4 is
greater than 4700 because some steps included both toe slips and heel slips.

3.2. Stride Segmentation Performance

The error in toe off detection timing was 0.9 ms with the limits of agreement of
—24.6 and 26.3 ms (Figure 10). For heel contact detection, the error was 2.4 ms and the
limits of agreement were —28.2 and 32.9 ms (Figure 11). The sensitivity analysis showed
that errors in toe off detection timing did not affect toe slip classification and heel slip
classification and error in heel contact detection did not affect toe slip classification. At
the lower limit of agreement of error in heel contact detection, heel slip classification only
decreased by 4%.
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Figure 9. The distribution of different slips recorded across different slopes.
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3.3. Slip Detection Performance

The selected features for each of the toe slip and heel slip classifiers are noted in Table 3.
As mentioned in Section 2.6, LOSOCV was done to evaluate the accuracy of each classifier
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model where at each iteration, one subject’s entire data were left out of the training set and
used as the test sequence to measure the accuracy of the classifier. The results of LOSOCV
for toe slip SVM classifier are shown in Figure 12 and Table 5. The F; scores for non-toe
slips and backward toe slips were consistently above 93% for all participants. However, the
classification of forward toe slips was poor and fluctuates among participants. The average
F1 score for the toe slip classifier was 85.7%.

100
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Figure 12. LOSOCYV for toe slip classifier. NTS represents non-toe slips, BTS represents backward toe
slips, and FTS represents forward toe slips.

Table 5. Toe slip classifier performance.

Non-Toe Slip Backward Toe Slip Forward Toe Slip Average
Precision 99.2% 95.9% 45.2% 80.1%
Recall 96.7% 99.0% 82.2% 92.6%
Fq score 98.0% 97.3% 54.7% 85.7%

For the heel slip SVM classifier, its LOSOCV results are shown in Figure 13 and Table 6.
Its performance was relatively consistent across participants, except for backward heel slip
classification of Participant 4. The average F; score for the heel slip classifier was 87.5%.
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Figure 13. LOSOCYV result for the heel slip classifier. NHS represents non-toe slips, BHS represents
backward toe slips, and FHS represents forward toe slips.
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Table 6. Heel slip classifier performance.

Non-Heel Slip Backward Heel Slip Forward Heel Slip Average

Precision 93.7% 77 4% 90.6% 87.2%
Recall 93.6% 86.4% 83.8% 87.9%
F1 score 93.6% 80.9% 86.5% 87.5%

For overall slip detection performance, the precision, recall, and F; score were 89.1%,
91.5%, and 90.1%, respectively.

4, Discussion
4.1. Types of Slips

Four types of slips were observed in this study:

Backward toe slips;
Forward toe slips;
Backward heel slips;
Forward heel slips.

O O O O

Of these, forward heel slips are considered the most hazardous [31,34]. Heel slip
occurs in the early stance phase when the weight is transferred to the leading limb. It
causes the base of support to move away from the center of mass, causing instability of
the body. However, toe slips, which occur in the late stance phase, happen when the
weight transfer is almost complete and the body is relatively more stable. It is important
to differentiate between the toe and heel slips because this information may be useful for
helping footwear manufacturers redesign their footwear appropriately.

Backward toe slips occurred most often when participants ascended the icy sloped
walkway. Higher shear forces were generated for push-off in order to overcome the
additional work from gravity [35]. In contrast, forward heel slips occurred more frequently
when descending. Redfern et al. reported that the shear force near the heel contact phase
increases as the ramp angle increases for downhill walking [36]. This increased shear force
led to higher probability of forward heel slips. In addition, a variant of forward heel slip,
which was unseen in the literature, was identified (Figure 7F). The AP velocity signal was
similar to a normal step; it had no local maxima after heel contact but generally had higher
AP heel velocity at heel contact. The slip motion blend in with the motion expected from a
normal step. This type of slip may occur when participants perceived that they were about
to slip forward in a known slippery environment. Thus, they intentionally let the slip to
occur, moved with the slip, and then tried to stop the motion gradually slow. Additional
studies are needed to investigate further and explain its occurrence.

Redfern et al. also reported rearward motion of the foot upon heel contact, which was
classified as backward heel slip in this study. Compared to downhill walking, it was more
likely to occur during uphill walking because the leading foot also needed to push back to
propel the body up and forward, like lagging foot during toe off.

To the best of author’s knowledge, no study has reported on forward toe slip, which
is a forward movement of the foot before toe off. Compared to a normal step, its AP heel
velocity has one or more local maxima before toe off. In some cases, these local maxima
might not be very distinguishable from the main maxima. Forward toe slip had a rare
occurrence of approximately 2% on ice and it always occurred on the lagging foot, following
forward heel slip of the leading foot during downhill walking. This may explain why it is
not reported in the literature since it may be considered as a consequence of the forward
heel slip.

4.2. Stride Segmentation Performance

The stride segmentation block of our algorithm was shown to be accurate and robust.
The systematic error and the limits of agreement for both toe off and heel contact were
less than 1 and 5 frames, respectively. A sensitivity analysis showed that heel contact and
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toe off timing detection errors did not have an impact on toe slip and heel slip classifier,
respectively. This performance was expected because almost all selected features for the toe
slip classifier are derived near the toe off event but not the heel contact event (Table 3). We
also expected similar performance for the heel slip classifier, where the selected features are
derived near the heel contact event. We calculated a 4% decrease seen in heel slip classifier
performance when heel contact was detected at the lower limit of agreement. It is not likely
meaningful because only a small number of heel contacts is identified at the lower limit of
agreement in Figure 11.

4.3. Slip Detection Performance

The toe slip classifier average F; scores for non-toe slip (98.0%) and backward toe slip
(97.3%) were excellent. Non-toe slips were steps that do not have toe slips; it can be steps
with no slips, backward heel slips, or forward heel slips. The overall classifier performance
was brought down to 85.7% by poor detection of forward toe slips (54.7%). Compared with
other type of slips, there were much less data collected for forward toe slips. Collecting
additional data and generating new features may help increase its detection performance.
However, this type of slip was considered less important because it was extremely rare
and always associated with forward heel slip of the leading foot, which were identified
with much better accuracy (Table 6). It is more important to identify forward heel slip that
can potentially lead to a forward toe slip. Furthermore, part of the low detection accuracy
can be attributed to the errors in the ground truth since human observers had difficulty
distinguishing between a forward toe slip and abnormal swing or toe off.

The heel slip classifier performance was good and consistent across nine participants,
except for the backward heel slips which have the slip distance of less than 1 cm. The heel
slip classifier performance was lower than that of toe slip classifier without the forward
toe slip. This may be partly due the forward heel slip variant. Unlike typical forward heel
slips, it does not have one or more peaks in AP heel velocity after heel contact. Thus, less
useful information could be extracted from the selected features for classification of these
slips, resulting in lower classification performance.

The overall slip detection F; score was 90.1%, which was higher than that of both
classifiers. Some steps can have both toe slip and heel slip. As long as one of the classifiers
correctly predicts a slip occurred, the algorithm would correctly identify it as a slip. For
example, a step going uphill can have backward heel slip and backward toe slip. If the
output of toe slip and heel slip classifier are backward toe slip and heel slip classifies,
respectively, the final output of the algorithm is still a slip. Although the detection for
forward toe slip was poor, it did not limit the overall slip detection. With forward toe slips,
there was added forward momentum of the body resulting from the forward heel slip of
the contralateral foot, described previously. The additional momentum would likely cause
a forward heel slip in the same step, which was detected with a much higher accuracy.
The limiting factor in the overall accuracy of slip detection was the heel slip classifier
performance, which was lower than the toe slip classifier performance when forward toe
slip was excluded.

In addition, the algorithm performance would vary for slips with different slip dis-
tances. More specifically, the algorithm’s accuracy is expected to increase as slip distance
increases. The slip data in this study have slip distances ranging from below 1.5 cm to
above 6 cm. For slips with greater slip distances, they tend to be more severe slips with
greater changes in the velocity profiles compared to the normal steps. Smaller slips may
even be too difficult for the observer to reliably detect; slips smaller than 3 cm are not
as likely to result in a gait disturbance [33,37-39]. The F; score for overall slip detection
increased to 91.0%, if slips with less than 1.5-cm slip distance were excluded.

This study presented the first algorithm that can automatically detect and classify
four different types of slips: backward toe slips, forward toe slips, backward heel slips, and
forward heel slips. Compared to Wu et al.’s study, our algorithm reported higher slip overall
detection performance in F; score (90.1% vs. 79%) [29]. Although our study involved half
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the number of participants, our algorithm was trained and evaluated with 27 times more
numbers of slips. It has a relatively lower chance of overfitting. The advantage of Wu etal.’s
algorithm is that it uses GoPro camera video data. Motion capture system can only be set
up in in-door lab environment and is more difficult to acquire and set up compared to a
video camera. Our algorithm may be more suited for detailed analysis in a lab environment,
whereas Wu et al.’s algorithm may be extended to detection in an outdoor environment.

4.4. Limitations and Future Work

The main limitation of the present work is that our algorithm was trained and validated
on data from only nine young healthy participants. The algorithm should be trained
and tested with a larger number of participants and on a wider range of participants to
evaluate its generalizability. It is likely that slip detection accuracy will be lower for other
populations, such as older adults or mobility-impaired individuals. Future work will
include retraining and evaluating the algorithm with more diverse populations, as well as
comparing algorithm performance with manual observer for the MAA test. In addition, it
will also be important to determine how the performance of our algorithm changes when
detecting slips with different severities and how does it compare with a manual observer.

5. Conclusions

In this study, we presented an automatic slip detection algorithm with linear multi-class
SVM classifiers that was trained and validated on data from approximately 11,000 steps
from 9 healthy participants. Our algorithm was able to segment kinematic signals from
a motion capture system into series of steps regardless of slips. It was able to detect
slips with an overall F; score of 90.1% when using LOSOCYV. In addition, the algorithm
was able to accurately classify slips as toe slips with F; scores of 97.3% for backward toe
slips and 54.5% for forward toe slips, and heel slips with F; scores of 80.9% for backward
heel slips and 86.5% for forward heel slips. This study demonstrated promising results
for the algorithm with healthy young adults. The proposed algorithm can be applied to
detect slips in other lab settings with different floor conditions and footwear styles. Future
works can further evaluate and optimize the algorithm with older populations or mobility
impaired individuals.
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