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Abstract: Gut microbiota are reported to be associated with many diseases, including cancers. Several
bacterial taxa have been shown to be associated with cancer development or response to treatment.
However, longitudinal microbiota alterations during the development of cancers are relatively unex-
plored. To better understand how microbiota changes, we profiled the gut microbiota composition
from prostate cancer-bearing mice and control mice at five different time points. Distinct gut micro-
biota differences were found between cancer-bearing mice and control mice. Akkermansiaceae was
found to be significantly higher in the first three weeks in cancer-bearing mice, which implies its role
in the early stage of cancer colonization. We also found that Bifidobacteriaceae and Enterococcaceae were
more abundant in the second and last sampling week, respectively. The increments of Akkermansi-
aceae, Bifidobacteriaceae and Enterococcaceae were previously found to be associated with responses
to immunotherapy, which suggests links between these bacteria families and cancers. Additionally,
our function analysis showed that the bacterial taxa carrying steroid biosynthesis and butirosin and
neomycin biosynthesis were increased, whereas those carrying naphthalene degradation decreased
in cancer-bearing mice. Our work identified the bacteria taxa altered during prostate cancer progres-
sion and provided a resource of longitudinal microbiota profiles during cancer development in a
mouse model.

Keywords: gut–cancer axes; 16S rRNA; time-series; amplicon sequencing; microbiota comparison;
hormone

1. Introduction

Prostate cancer is the second leading cause of death in the male population [1]. Al-
though the pathogenesis of prostate cancer is strongly linked to its dependence on androgen
hormones, the discovery of other risk factors involved in cancer development, progression,
or resistance to therapies is of particular interest. The tumor microenvironment mediates
tumor growth, cancer progression, invasion, and therapeutic resistance [2]. A variety of
inflammatory cell types have been proposed to mediate changes in the microenvironment
of prostate cancer, among them are macrophages and T cells, particularly IL-17-secreting
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Th17 cells [3–5]. On the tests of prostate and colon cancer in animal models, these cell types
were found to promote carcinogenesis or tumor progression via STAT3 activation [3,6].

Many factors have been proposed as triggers of prostate inflammation, including
viruses, bacteria, hormones, urinary reflux, and diet [7]. Human bodies contain trillions of
bacteria that outnumber normal cells by up to 10 to 1, where the largest numbers of bacteria
actually exist in the gut. The microbiota is composed of commensal bacteria and other
microorganisms that lived on the epithelial barriers of the host [8]. The most extensively
studied microbiome is the gut microbiome that performs some vital functions such as
hydrolysis of dietary compounds, vitamin production, control of pathogen colonization,
and protection from systemic infection [9]. Microbiota and host animals form a complex
symbiotic relationship, which confers benefits to the host’s health and modulates host
metabolism, inflammation, and immunity. Since information on the normal composition
and functions of the microbiota has already been gained in the gastrointestinal and gen-
itourinary systems, attention is now focused on the alteration in its composition when
specific diseases arise, including cancer [10].

Increasing evidence suggests that the microbiota is involved in the tumor microenvi-
ronment and may play a role in the tumorigenesis process. Intestinal microbiota may have
both an anti-tumoral [11–13] and a pro-tumoral effect [14–17]. The microbiota can influence
cancer development and progression because of its potential to modulate inflammation and
genomic stability of host cells [6]. The dysregulation of bacterial sensing and homeostasis
between host and microbiome, also known as dysbiosis, may aggravate the tumor-elicited
systemic inflammation and the oncogenesis of various types of cancer [18].

Where stomach cancer, colorectal carcinoma, and gallbladder carcinoma were associ-
ated with the local effects of the gastrointestinal microbiota, thymic lymphoma, mammary
carcinoma, pancreatic cancer, prostate cancer, and ovarian cancer are found to be associated
with the systemic effects of microbiota through the translocation of bacteria, bacterial
toxins, cytokines, endocrines, or the migration of innate and adaptive immune cells that
promote tumor oncogenesis from initiation to progression [8]. Likewise, recently, the mi-
crobiome has been suggested to modulate the efficacy of anti-cancer treatments such as
chemotherapy, radiotherapy, immunotherapy, and hormonal therapy. Many anti-cancer
therapy-promoting effects are mediated by immune system priming and by augmenting
the immune response against tumor cells assisted by the effect of the microbiome [9].

The role of the microbiota in promoting the status of chronic inflammation and its
implication in prostate cancer development has been suggested [19]. The discovery of a
urinary microbiome composed of many different microorganisms supports this hypothesis
because the prostate is exposed to many inflammatory stimuli derived from the bacteria
in the surrounding environment [19]. Although it is difficult to confirm in human pa-
tients, Poutahidis et al. found that in a B6 ApcMin/+ mutant mouse model, the infection
of intestinal Helicobacter hepaticus can trigger systemic elevations in pro-inflammatory cy-
tokines (Eotaxin, IL-3, TNF-αalpha, and IL-1α) and enhance the prostatic intraepithelial
neoplasia and micro-invasive carcinoma [20]. Sfanos and colleagues sequenced 16S rDNA
amplicon of fecal microbiota from 30 subjects including healthy male volunteers and men
with biochemically recurrent, localized, and metastatic prostate cancer [20]. The results
showed a higher abundance of Akkermansia muciniphila and Ruminococcaceae spp. in the
gastrointestinal microbiota of men being treated with oral androgen receptor axis-targeted
therapies. This implied an intricate connection that may exist between microbiota and
hormones in those cancers deeply influenced by hormones levels, such as prostate cancer,
that recognize androgen hormones for guiding its development, treatment, and resistance
to therapies [21].

Recent progress suggests that metastasis-initiating cells (MIC) with stem-like and
immune-evasive properties can sustain through cancer therapy and bolster metastasis
progress, which includes three distinct phases of dissemination, dormancy, and coloniza-
tion [22]. MICs shuttle between quiescent and proliferative states during dormancy, at
which stage the proliferative cells are continually eliminated by environmental fitness and
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niche-specific or systemic immune defenses. The outbreak of seeded MIC from metastatic
dormancy relies on the dynamic equilibrium of various barriers and adaptations and can
be triggered by oxidative stress, nutrients, and immune suppression signals [23]. Although
the cause–effect relationship between gut microbiota and disease progression of cancer
metastasis remains unclear, the dysbiosis induced by the gut microbiome mentioned above
may promote the tumor-instigated inflammation and form potential tripartite interactions
among the host immune system, the disseminated tumor, and the gut microbiome.

To delineate the role of the gut microbiome in the tripartite interaction, we studied the
in vivo metastatic progression of human prostate cancer in the NOD-SCID mouse model
and compared the 16S rRNA marker gene of gut microbiota between tumor-bearing and
control (healthy) mice accordingly with a time-series progression of tumor development.
The goal of this study is to identify potential marker bacterial taxa correlated with prostate
cancer and characterize microbiome composition as an independent variable of metastasis
in animals.

2. Results

To understand the alteration of gut microbiota in prostate cancer-bearing mice, fe-
cal samples were collected from non-obese diabetic severe combined immunodeficient
(NOD-SCID) mice. The injected tumor cells can be detected in the lung at the 4th week
with IVIS imaging, hence we collected fecal samples on the 4th, 5th, 6th, 7th, and 8th
week after seeding of prostate cancer cells (Figure 1). For each time point, we collected
samples from three control tumor-free mice (designated ‘TF’) and three cancer-bearing mice
(designated ‘T’). The microbiota profiles were established based on 16S rRNA amplicon
sequencing data with QIIME2 (Appendix A Table A1). A total of 976 amplicon sequence
variants (ASVs) and 235 taxa were identified in 30 samples.
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Figure 1. Tumor-specific bioluminescent images in representative mice. Groups of NOD-SCID mice
(N = 5, age of eight weeks) were inoculated with 3 × 105 cells of metastatic human prostate cancer
22Rv1-M4 cells vs. mock control (PBS). Based on the housekeeping expression of the luciferase 2
(Luc2) reporter gene in the tumor cells, in vivo bioluminescent imaging of tumors was captured and
quantified using an IVIS Lumina XRMS System weekly as marked.
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2.1. Longitudinal Microbiota Profiles in Cancer-Bearing (T) and Tumor-Free (TF) Mice

In all the samples, the most abundant phyla were Bacteroidetes followed by Firmicutes,
which is consistent with previous mouse gut microbiota studies (Figure 2a) [24]. Even
though the phylum-level distributions were similar between T and TF groups, there were
more Verrucomicrobia in T compared with TF, especially from the 4th to 6th week. The
distributions are more diverse in the lower taxonomy levels. At the genus level, the top
five most abundant taxa bar plots showed the relative abundance varied widely across the
samples (Figure 2b). It is worth mentioning that the genus Akkermansia, which belongs to
the phylum Verrucomicrobia, showed a higher abundance in group T.
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Figure 2. Relative abundance of identified taxa at (a) the phylum level and (b) the genus level. The top five most abundant
taxa from all samples were plotted and all the other taxa were grouped as “others”. Taxa that cannot be assigned to a
phylum or a genus with SILVA database were assigned to “Unassign”. A2 genus represents a group of uncultured bacteria
identified in mouse gut microbiota under Lachnospiraceae. The sample IDs consist of the group, mouse ID, and sampling
time, e.g., TF1.W4 is the sample collected from mouse #1 in the TF group in the 4th week.
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2.2. Distinct Microbiota Compositions in T and TF Groups

We examined whether there was a difference between the longitudinal microbiota
profiles in T and TF groups. We compared the alpha diversity and beta diversity between
these two groups and between samples collected at different time points. We found signifi-
cant differences in microbiota composition between the two groups. We also identified a
significantly different abundance of families, Akkermansiacease and Enterococcaceae, in T and
TF groups.

2.2.1. No Significant Difference in Alpha Diversity Indexes between T and TF Groups

To explore the biodiversity within samples, we first compared four alpha diversity
indexes, richness, Shannon index, evenness, and Faith PD from the 4th to 8th week. The
alpha diversity was reported to be lower in the gut microbiota of patients diagnosed with
prostate cancer [20]. However, we did not observe a statistically significant difference
(Figure 3), which may result from the fact that that only three fecal samples in each group at
each time point were examined. We further compared the alpha diversity indexes between
T and TF groups, without separating them into different time points, and still found no
significant difference.
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Figure 3. Comparisons of Alpha diversity indexes between TF and T groups at different time points.
(a) Richness. (b) Shannon index. (c) Evenness. (d) Faith’s PD. Each box displays the alpha diversity
distribution for three samples. There is no significant difference between TF and T at all five time
points for all alpha diversity indexes (Wilcoxon rank-sum test).
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2.2.2. Separation of T and TF Groups in Beta Diversity

We found a significant difference between T and TF groups based on the beta diversity
matrices, which suggests their microbiota compositions are significantly different. Princi-
pal coordinates analysis (PCoA) analysis based on Jaccard and Bray–Curtis dissimilarity
matrices both showed that samples from the T group were separated from the TF group
(Figure 4a,b). Notably, we found that samples collected at the same time also showed a
tendency to cluster together. Jaccard and Bray–Curtis distance clearly distinguished the
two groups. We also examined the dissimilarity distance within and between T and TF
groups and found significantly higher dissimilarity distance between groups than within
groups (Figure 4c,d).
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Figure 4. Beta diversity analysis of gut microbiota from T and TF groups. PCoA plots derived from (a) Jaccard distances
and (b) Bray–Curtis distances show the separation of the two groups. The percentage of variation explained in PCoA plots
is noted in parentheses at the x and y axes. The distribution of Jaccard (c) and Bray–Curtis (d) beta-diversity distances
within and between T and TF groups reveal significantly different microbiota compositions between the two groups. The
distances within TF and T groups are noted as TF and T, respectively, while the distance between TF and T groups is noted
as B. p values derived from Wilcoxon rank-sum test are shown above the bars.
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We further examined whether this kind of dissimilarity was valid at all time points
and whether there was a clear separation between T and TF groups (Figure 5a,c). Even
though we constantly detected higher intergroup divergence than intragroup divergence,
we obtained 14 significant adjusted p values out of 20 comparisons from all five time points
(Figure 5b,d). Not all the comparisons were significant as expected, since we only had three
samples in each group for each time point. Our results suggested that after the prostate
cancer cells were seeded in mice, the gut microbiota may start to diverge and become
meaningfully different as early as the 4th week.
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Figure 5. Beta diversity analysis for gut microbiota from two groups at different time points. PCoA plots derived from
(a) Jaccard distance and (c) Bray–Curtis distance for the five time points show the separation between T and TF groups.
The distribution of Jaccard (b) and Bray–Curtis (d) beta-diversity distances within and between T and TF groups reveals
the difference between T and TF at different time points. The distances within TF and T groups are noted as TF and T,
respectively, while the distance between TF and T groups is noted as B. p values derived from Wilcoxon rank-sum test are
shown in the bar plots.
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2.3. Detection of Different Abundant Bacteria Family between T and TF Groups

To get a clear picture of alteration in gut microbiota, we investigated the different
abundant taxa at each sampling time point with ANCOM and LEfSe [25,26]. The increase in
Akkermansiaceae in the T group was supported by both tools. The significant increases in the
Akkermansiaceae family in the T group at the 4th and 6th week were supported by ANCOM
(Figure 6a,b). In LEfSe analysis, we found that the Akkermansiaceae family had significantly
higher abundance in the T group at the 4th, 5th and 6th weeks with LDA scores higher
than 4. Interestingly, we found the most abundant Akkermansiaceae in the 4th week in the
T group and the abundance gradually decreased to the level of the TF group (Figure 6e).
The average percentages of Akkermansiaceae were 19.7%, 8.3%, and 6.5% for the 4th, 5th,
and 6th weeks, respectively. In addition to Akkermansiaceae, we also found a significant
increase of Bifidobacteriaceae and Enterococcaceae in the 5th and 8th week (Figure 6c,d) with
moderately enriched LDA scores (>3), respectively. Even though the relative abundance of
Enterococcaceae was low (~0.5%), it was constantly detected in all three fecal samples taken
at the 8th week (Figure 6f).
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Figure 6. Comparison of microbiota profiles at the family level with ANCOM showed that Akkermansiaceae and Enterocaceae
had significantly higher abundance in the T group at (a) week 4, (b) week 6, (c) week 5, and (d) week 8. The relative
abundance of (e) Akkermansiaceae and (f) Enterococcaceae family at weeks 4, 5, 6, 7, and 8 in group T and group TF.
Akkermansiaceae was more abundant at weeks 4, 5, and 6 while Enterococcaceae was more abundant at week 8 in group T.
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2.4. Correlation between the Abundance of Bacteria Families

We also explored the correlations between the abundance of bacteria families. We
found three significantly positively correlated pairs, Bifidobacteriaceae and Lactobacillaceae;
Muribaculaceae and Akkermansiaceae; Saccharimonadaceae and Lachnospiraceae. Among them,
both Bifidobacteriaceae and Lactobacillaceae are well-recognized probiotic bacteria and their
abundancies were frequently found positively correlated with each other [27]. Similar to
Akkermansiaceae, Muribaculaceae was also found moderately enriched in group T in LEfSe
analysis at the 5th, 6th, and 8th week with LDA score > 3. On the other hand, Lactobacillaceae
showed significant negative correlations with Ruminococcaceae and Lachnospiraceae. Bifdobac-
teriaceae showed significant negative correlations with Bacteroidaceae and Lachnospitaceae.
Additionally, Barnesiellaceae was found to be statistically significantly negatively correlated
with Akkermansiaceae and Lachnospiraceae (Figure 7).
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for the abundance of paired bacteria families were calculated from all 30 samples and only family pairs with significant
correlations are shown (BH adjusted p-value < 0.05).
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2.5. Function Prediction for Microbiota in T and TF Groups

The metabolic pathways for microbiota profiles from the two groups predicted with
PICRUSt2 disclose three distinct KEGG pathways, steroid biosynthesis, butirosin and
neomycin biosynthesis, and naphthalene degradation (Figure 8) [28,29]. Previous studies
have shown that gut microbiota metabolizes and catabolizes sex hormones, affecting the
levels of the hormones or their precursors in the host [30–32]. The higher abundance of
steroid biosynthesis pathways suggests abnormal plasma levels of sex hormones, including
androgen, which has been implicated in the development of the prostate gland and prostate
cancer [33,34]. Hence, the enriched steroid biosynthesis pathway in the T group is especially
noteworthy. The other two altered pathways, butirosin and neomycin biosynthesis and
naphthalene degradation, have also previously been shown to be altered in gastric, bladder,
colorectal, and ovarian cancers [35–38].
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3. Discussion

The increased abundance of Akkermansiaceae in prostate cancer-bearing mice between
the 4th and 6th week suggests a link between Akkermansiaceae and the early stage of
injected cancer cell colonization. However, A. muciniphila, the most well-studied member
of Akkermansiaceae, has probiotic properties and is usually found to be inversely related to
human diseases such as obesity, diabetes, inflammation, and metabolic disorders [39–42].
Nevertheless, several studies suggest that an increase in Akkermansia in cancer patients may
serve as a potential biomarker. For example, Akkermansia is more abundant in microbial
extracellular vesicles from blood samples in pancreatic cancer patients [43]. Previous
studies also suggested links between A. muciniphila and the development of colon cancer.
Being a mucin-degradation bacterium [44], A. muciniphila, has the potential to induce
colonic inflammation and cancer development [45]. Colonization of A. muciniphila is also
significantly associated with increased tumor development in the mouse model and may
promote tumorigenesis in human colon cancer [46–48].

It is worth noting that the abundance of Akkermansiaceae in cancer-bearing mice de-
creased gradually and then became indistinguishable from it in control mice. This kind
of dynamic change of the abundance of Akkermansiaceae may be related to the process of
prostate cancer colonization. The bacteria phylum Verrucomicrobia, to which Akkermansia
belongs, appears to contribute to inflammation in mice gut microbiota [45,49], and its
abundance increases along with chemokine/cytokine elevation in mucositis induced by the
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chemotherapeutic agent 5-Fu [50]. Additionally, extracellular vesicles from A. muciniphila
were shown to increase the number of M1-like macrophages that produce inflammatory
cytokines [51]. These dysregulations may contribute to shaping the metastatic niche for
prostate cancer cells. Our findings of the dynamical changes during cancer coloniza-
tion/development in gut microbiota also confirm that the time-series microbiota profiling
strategy provides the possibility to capture the important transient states.

The Enterococcaceae family is altered in the microbiota in patients associated with
many cancer types. For example, it was found to be more abundant in individuals with
colon polyps, a risk factor for colorectal cancer [52]. Along with Bifidobacteriaceae and
Enterobacteriaceae, Enterococcaceae was also found to be enriched with cholangiocarcinoma
caused by Southeast Asian liver fluke (Opisthorchis viverrini) [53]. Enterobacteriaceae, Pseu-
domonadaceae, Moraxellaceae, and Enterococcaceae were found to be increased in pancreatic
ductal adenocarcinoma tissues [54]. All these results suggest Enterococcaceae may play a
role in cancer development.

Notably, Akkermansiaceae, Bifidobacteriaceae, and Enterococcaceae were found to be
more abundant in cancer patients who responded to PD-1 therapy compared to non-
responders [55–57]. Even though the detailed mechanism is still unknown, the associations
between these taxa and immunotherapy responses suggest links between gut microbiota
and immune evasion of cancers. Here, our findings of increased abundance of Akkermansi-
aceae, Bifidobacteriaceae, and Enterococcaceae at different time points may provide hints for the
underlying mechanism and the time-series microbiota profiles during cancer colonization
could provide a resource for the cancer immunotherapy research community.

The relative abundances of Bifidobacteriaceae and Lactobacillaceae were found to be posi-
tively correlated with each other. These two families contain many well-known probiotic
species. For example, Lactobacillus and Bifidobacterium were found to be anti-tumorigenic
by deactivating microbial enzymes involved in the production of carcinogens in colon can-
cer [58]. Lactobacillus casei was reported to secrete ferrichrome, a metabolite that can trigger
JNK-mediated apoptosis of cancer cells in a mouse xenograft model [59]. Bifidobacterium
species were also found to be correlated with PD-L1 treatment response. A combination
of oral administration of Bifidobacterium and PD-L1 inhibitors activate T cells and block
the growth of melanoma in mice [60]. A mixture of Bifidobacterium longum BB536 and
Lactobacillus johnsonii La1 was also shown to decrease the concentration of pathogens and
adjust intestinal immunity in colorectal cancer patients [61]. Recently, the FDA approved
the first microbiome-based drug, SER-109, for treatment of recurrent Clostridium difficile
infection (CDI) [62]. The potential of using a mixture of these identified correlated bacteria
as a drug is worth further investigation.

The abundance of bacteria carrying genes involved in steroid biosynthesis in the
T group is noteworthy. The requirement of androgen, a steroid hormone, for prostate
cancer development has been known for half a century [34]. Studies in animal models have
demonstrated the contribution of gut microbiota in shaping hormone levels in blood [63,64].
The gut microbiota was thought to be involved in prostate cancer development through the
metabolism of these steroid hormones [65]. Moreover, androgen suppression therapy used
in prostate cancer treatment increases the abundance of A. muciniphila and genes involved
in steroid biosynthesis in gut microbiota [20]. Our findings support the role of the steroid
biosynthesis pathway of gut microbiota in prostate cancer.

4. Materials and Methods
4.1. Experimental Design

All mice were maintained under the specific pathogen-free (SPF) conditions at Agri-
cultural Biotechnology Research Center Academia Sinica. Six male NOD-SCID mice were
kept with normal chow and autoclaved water and divided into TF and T groups (three
each). T group mice were seeded with 3 × 105 mCRPC 22Rv1-M4 [66] by tail vein injection
at eight weeks old and monitored via an in vivo imaging system (IVIS). Gut microbiota
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was derived from the fecal samples of the mice. Three fecal samples were collected from
each group every week from the 4th to the 8th week after the tumor inoculation.

4.2. Sample Collection and DNA Extraction

The fecal pellets were collected under SPF conditions and were kept in a centrifuge
tube at −80 ◦C for DAN preparation. Within one week after collection, bacterial DNA
was extracted from fecal samples using QIAamp® Fast DNA Stool Mini Kit (Qiagen,
Germantown, MD, USA) according to the manufacturer’s instruction.

4.3. 16S rRNA Gene Amplification and Sequencing

PCR reactions were used to amplify the targeted 16S rRNA region from DNA sam-
ples. The V3–V4 region of the bacterial 16S rRNA gene was amplified using 2.5 µL mi-
crobial DAN and forward primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R
(5′-GACTACHVGGGTATCTAATCC-3′). PCR reactions were performed in 12.5 µL 2xKAPA
HiFi HotStart ReadyMix (Sigma-Aldrich, St. Louis, MO, USA) at an annealing temperature
of 55 ◦C for 25 cycles. The 16S V3–V4 amplicon was purified of free primers using AMPure
XP beads (Beckman Coulter, Indianapolis, IN, USA) and eluted with 80% ethanol (EtOH).
The PCR amplicons were sequenced by Illumina MiSeq paired-end reads (Illumina, San
Diego, CA, USA).

4.4. Sequence Preprocessing and Taxonomy Classification

The sequence data were analyzed with QIIME 2 [67]. Raw paired-end 16S rRNA reads
(V3–V4 region) imported into QIIME 2 were first trimmed with primer sequences (–p-front-
f CCTACGGGNGGCWGCAG –p-front-r GACTACHVGGGTATCTAATCC). The sequences
were then trimmed by length and base quality, and subsequently merged into consensus
fragments using DADA2 with the parameter –p-trunc-len-f 283 –p-trunc-len-r 169 [68].
After dereplication, discarding the singletons, and removing chimera with DADA2, the
remaining sequences were ASVs. Database SILVA release 132 was used for taxonomic
classification of ASVs with QIIME2 [69]. Sequences that would theoretically be amplified
by primer set 341F/805R were extracted from the SILVA dataset and used for taxonomic
classifier training in QIIME2 (feature-classifier).

4.5. Diversity and Correlation Analysis

The ASVs were used for diversity analysis with the R package VEGAN or QIIME2 [67,70].
Specifically, rarefaction analysis and phylogenetic diversity were analyzed with QIIME2
and all the other diversity indexes were derived from package VEGAN. A non-parametric
statistical method, the Wilcoxon rank-sum test (also called Mann–Whitney test), was used to
compare alpha diversity indexes, richness diversity, Shannon diversity, Evenness diversity,
and Faith’s phylogenetic diversity (Faith PD) between groups [71,72]. To evaluate the sta-
tistical significance of beta diversity distances, Jaccard distances and Bray–Curtis distances
were first tested with permutational multivariate analysis of variance (PERMANOVA) [73].
The distance between each pair of samples from the same or different groups was then
tested with the Wilcoxon rank-sum test [72]. Correlation coefficients between the abundance
of bacteria taxa were conducted with the Spearman correlation. To correct for multiple tests,
all the resulting p values were further adjusted by BH correction [74].

4.6. Detection of Different Abundant Bacteria Families and Function Prediction

LEfSe (linear discriminant analysis (LDA) effect size) [26] and ANCOM (analysis of
the composition of microbiomes) [25] were applied to identify features (taxa) with different
abundances among group TF and T at different time points. Function prediction from
bacteria from 16S rRNA genes was conducted by PICRUSt2 (phylogenetic Investigation
of Communities by Reconstruction of Unobserved States) [29] with KEGG (Kyoto Ency-
clopedia of Genes and Genomes) database [28]. STAMP v2 [75] (statistical analysis of
taxonomic and functional profile) was used to identify the pathways with significantly
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different abundance. We compared the abundance of predicted functions between two
groups by White’s non-parametric t-test and applied BH correction to get the final BH
adjusted p-values [76].

5. Conclusions

This study provided time-series gut microbiota from control mice and prostate cancer-
bearing mice. The microbiota profiles are distinct between the two groups at all sampling
time points, i.e., 4th to 8th week after cancer inoculation. Our findings support the dynamic
alteration of the mice’s gut microbiota after bearing human cancer cells. Our dataset also
offers a resource for investigating the time-dependent alteration in gut microbiota for the
cancer-bearing mouse model.
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Appendix A

Table A1. Statistical summary of sequence preprocessing.

ID * Raw PE Filtered Tags Filtered Tags
(%) Merged Tags Merged Tags

(%)
Nonchimeric

Tags
Effective
Tags (%)

TF1.W4 123,903 79,394 64.08% 72,872 58.81% 64,776 52.28%

TF1.W5 86,941 55,172 63.46% 50,744 58.37% 45,633 52.49%

TF1.W6 101,821 65,428 64.26% 58,992 57.94% 54,234 53.26%

TF1.W7 138,003 88,307 63.99% 80,465 58.31% 73,880 53.54%

TF1.W8 98,923 61,695 62.37% 55,449 56.05% 50,946 51.50%

TF2.W4 117,882 75,321 63.90% 69,764 59.18% 62,166 52.74%

TF2.W5 112,773 66,447 58.92% 61,495 54.53% 55,681 49.37%

TF2.W6 105,421 65,833 62.45% 59,271 56.22% 54,147 51.36%

TF2.W7 118,204 76,548 64.76% 71,142 60.19% 66,869 56.57%

TF2.W8 88,600 55,839 63.02% 50,175 56.63% 45,956 51.87%
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Table A1. Cont.

ID * Raw PE Filtered Tags Filtered Tags
(%) Merged Tags Merged Tags

(%)
Nonchimeric

Tags
Effective
Tags (%)

TF3.W4 112,476 72,692 64.63% 66,330 58.97% 58,931 52.39%

TF3.W5 95,308 60,193 63.16% 55,567 58.30% 50,921 53.43%

TF3.W6 102,185 64,955 63.57% 58,532 57.28% 52,719 51.59%

TF3.W7 92,117 56,548 61.39% 51,256 55.64% 47,089 51.12%

TF3.W8 89,963 58,077 64.56% 52,419 58.27% 48,176 53.55%

T1.W4 302,001 205,657 68.10% 188,734 62.49% 165,859 54.92%

T1.W5 112,046 68,051 60.73% 62,878 56.12% 57,506 51.32%

T1.W6 118,202 77,451 65.52% 68,632 58.06% 61,049 51.65%

T1.W7 94,575 53,614 56.69% 48,405 51.18% 46,262 48.92%

T1.W8 107,927 67,024 62.10% 59,844 55.45% 56,116 51.99%

T2.W4 132,767 83,571 62.95% 76,393 57.54% 69,621 52.44%

T2.W5 126,506 80,552 63.67% 74,922 59.22% 71,227 56.30%

T2.W6 124,477 79,001 63.47% 70,664 56.77% 64,270 51.63%

T2.W7 79,886 52,599 65.84% 47,511 59.47% 44,677 55.93%

T2.W8 105,825 69,527 65.70% 62,486 59.05% 57,150 54.00%

T3.W4 128,444 84,426 65.73% 77,355 60.22% 71,235 55.46%

T3.W5 108,635 68,023 62.62% 62,412 57.45% 59,490 54.76%

T3.W6 128,206 83,377 65.03% 75,457 58.86% 68,640 53.54%

T3.W7 76,829 46,952 61.11% 42,923 55.87% 41,842 54.46%

T3.W8 94,509 60,704 64.23% 54,762 57.94% 50,392 53.32%

* Sample IDs consist of group, mouse ID, and sampling time. For example, TF1.W4 represents the sample collected from mouse #1 in the TF
group in the 4th week, and F3.W8 represents the sample collected from mouse #3 in the T group in the 8th week.
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