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Abstract

This study aimed to identify significant gene expression profiles of the human lung epithelial cells caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. We performed a comparative genomic analysis to show
genomic observations between SARS-CoV and SARS-CoV-2. A phylogenetic tree has been carried for genomic analysis that
confirmed the genomic variance between SARS-CoV and SARS-CoV-2. Transcriptomic analyses have been performed for
SARS-CoV-2 infection responses and pulmonary arterial hypertension (PAH) patients’ lungs as a number of patients have
been identified who faced PAH after being diagnosed with coronavirus disease 2019 (COVID-19). Gene expression profiling
showed significant expression levels for SARS-CoV-2 infection responses to human lung epithelial cells and PAH lungs as
well. Differentially expressed genes identification and integration showed concordant genes (SAA2, S100A9, S100A8, SAA1,
S100A12 and EDN1) for both SARS-CoV-2 and PAH samples, including S100A9 and S100A8 genes that showed significant
interaction in the protein–protein interactions network. Extensive analyses of gene ontology and signaling pathways
identification provided evidence of inflammatory responses regarding SARS-CoV-2 infections. The altered signaling and
ontology pathways that have emerged from this research may influence the development of effective drugs, especially for
the people with preexisting conditions. Identification of regulatory biomolecules revealed the presence of active promoter
gene of SARS-CoV-2 in Transferrin-micro Ribonucleic acid (TF-miRNA) co-regulatory network. Predictive drug analyses
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provided concordant drug compounds that are associated with SARS-CoV-2 infection responses and PAH lung samples, and
these compounds showed significant immune response against the RNA viruses like SARS-CoV-2, which is beneficial in
therapeutic development in the COVID-19 pandemic.
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Introduction
Coronavirus disease 2019 (COVID-19) is caused by a virus called
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
which belongs to the Coronaviridae family [1]. The widespread
behavior of this virus has immensely influenced the death rate
and proved it as the most internecine global epidemic of the 21st
century. Angiotensin-converting enzyme 2 (ACE2), which is used
by SARS-CoV-2, forms an entrance in host human cells and binds
with human ACE2 that eventually leads to the intense spread of
this lethal virus among human [2]. Spike protein is considered to
be a potential therapeutic target against SARS-CoV-2 [3, 4].

The first severe case of COVID-19 that led to death eventually
was indicated on 11 January 2020 [5]. As of 10 September 2020,
the number of confirmed COVID-19 cases all over the world
is 27 688 740, including 899 315 deaths (https://covid19.who.int/).
A large proportion of the total patients of COVID-19 are male
(54.3%), where the mortality rate of the elderly patients is higher
(15%), compare with younger patients [6]. Due to the rapid spread
of COVID-19, the pace of vaccine production has not been able
to keep pace with demand. The transference of lethal SARS-
CoV-2 from one person to another mostly occurs through res-
piratory droplet transmission [7]. The prevalence of SARS-CoV-
2 is increasing because presymptomatic infectious diseases are
difficult to detect [8].

Pulmonary arterial hypertension (PAH) is considered to be
a progressive disorder and causes right heart affliction and
the arteries of human lungs get affected by PAH as well [9].
Dyspnea, fatigue and chest pain are among the major symptoms
of PAH, which is significantly associated with lung vascular
scheme and causes premature death [10]. Although early diag-
nostic therapy can certainly reduce the death rate of PAH [11],
COVID-19 has caused many people to suffer from cardiac, age-
related and pulmonary diseases, including PAH [12]. Meanwhile,
researchers have produced results that demonstrate the activity
of SARS-CoV-2 in promoting pulmonary microthrombi, vascular
leak through different ways including inflammation, damage
of DNA and mitochondrial dysfunction [13, 14]. Based on these
studies, PAH can be considered as a major risk factor of COVID-
19. Due to the mentioned reasons, it is revealed that there may
be a number of pathological compatibility between COVID-19
and PAH. To get an idea of this compatibility, we have tried
to identify altered pathways that are common for SARS-CoV-
2 infections and PAH-affected samples. To accomplish these
tasks, large-scale transcriptomic datasets have been used in this
research.

Large-scale microarray datasets are important for uncov-
ering gene expression-based biological information [15]. High-
throughput sequencing has immensely influenced the advance-
ment of biomedical research by contributing to the rapidly grow-
ing genome sequencing field [16]. High-throughput sequencing-
based analysis has already been implemented on SARS-CoV,
which has also produce remarkable gene expression results [17].

The significance of the research is that we performed the
largest comparative and transcriptomic study against SARS-
CoV-2 infection responses to human lung epithelial cells.

The potential biomarkers we have been able to figure out
have proved the significance in terms of appropriate immune
responses. The following analyses attempt to find cell informa-
tive pathways and drug compounds based on the transcriptomic
analysis on SARS-CoV-2 and PAH. However, initially, the genomic
analysis was introduced to identify genomic differences of SARS-
CoV and SARS-CoV-2 effect on Homo sapiens. This genomic-
level study eventually allows the research to put emphasis
on SARS-CoV-2 and the major risk factors. As a result, two
datasets (GSE147507 and GSE117261) were selected for the
transcriptomic-level study. Hence, the research went through
the identification process of finding out differentially expressed
genes (DEGs) from GSE147507 and GSE117261. However, similar
DEGs were conducted as input data for a further molecular-level
study that includes gene ontology (GO) terms identification
and predictive analysis on cell informative pathways. The
visualization of the protein–protein interactions (PPIs) network
is regarded as the focal point of the analysis as hub nodes
and significant modules were identified from the PPIs. Herein,
transcriptional regulators are also traced based on the similar
DEGs of GSE147507 and GSE117261. Finally, potential drug
compounds are suggested. The experimental workflow of the
ongoing research is presented in Figure 1.

Methodology
Comprehensive genomic-level phylogenetic study

Comparison between SARS-CoV and SARS-CoV-2 at the viral
genomic level is generated with the collection of a number
of genome sequences. The sequences were gathered from
the Virus Pathogen Database and Analysis Resource (https://
www.viprbrc.org/). A total of 32 sequences were analyzed
where SARS-CoV and SARS-CoV-2 both contain 16 sequences,
respectively. The sequences for SARS-CoV are as follows:
JN247391, JN247392, JN247393, JN247394, JN247395, JN247396,
JN247397, GU553363, GU553364, AY274119, MK062179, MK062180,
MK062181, MK062182, MK062183 and MK062184. Besides,
sequences for SARS-CoV-2 are as follows: MT008022, MT008023,
MN988668, MN988669, LC521925, LC522972, LC522973, LC522974,
LC522975, MN938385, MN938387, MN938384, MN938388,
MN938386, MN938389 and MN938390. According to the sequences,
a PHYLIP formatted comprehensive phylogenetic guided tree
was designed using Clustal Omega (https://www.ebi.ac.uk/Too
ls/msa/clustalo/). Clustal Omega contains significant features
and exploits comprehensive information based on sequence
alignments [18]. The phylogenetic tree was redesigned using the
interactive tree of life (iTOL) (https://itol.embl.de/). iTOL provides
graphical representations of numerous phylogenetic trees and
the representations can be customized [19].

Details information of the datasets

GSE147507 and GSE117261 datasets were assembled from the
Gene Expression Omnibus (GEO) database [20]. GEO database
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Figure 1. The workflow of current analysis. Genomic differences between SARS-CoV and SARS-CoV-2 are visualized through a phylogenetic analysis. Two datasets

GSE147507 and GSE117261 are collected according to SARS-CoV-2 infection in human lung epithelial cells and PAH lung, respectively. Differentially expressed genes

(DEGs) were identified using R programming language and similar DEGs were identified from total DEGs of both the datasets. Corresponding similar DEGs were used

to perform transcriptomic analyses. The gene expression profiling was performed for both the datasets, and gene ontology (GO) terms, cell informative pathways, PPIs

network, hub gene identification and TF–miRNA-based analyses were performed. According to the corresponding similar DEGs, drug compounds were predicted.

provides gene expression-based analysis, which is under the
platform of National Center for Biotechnology Information [21].
GSE147507 dataset interprets host responses to SARS-CoV-2 and
transcriptional responses in lung epithelium cells. GPL18573 Illu-
mina NextSeq 500 (H. sapiens) platform is utilized for GSE147507
to retrieve the analysis of RNA sequence. The contributor of
the GSE147507 dataset was Blanco-Melo et al. [22]. However, the
GSE117261 dataset represents transcriptomic analysis and sys-
tems biology representation on PAH lung. GPL6244 platform was
used for GSE117261 dataset, which is [HuGene-1_0-st] Affymetrix
Human Gene 1.0 ST Array [transcript (gene) version]. GSE117261
consists of a total of 83 samples that include PAH lung: 58
samples and control lung: 25 samples.

Data filtering and retrieval of DEGs, and identification
of common DEGs between SARS-CoV-2 and PAH

Transcriptomic datasets GSE147507 for SARS-CoV-2 infection
in human lung epithelial cells and GSE117261 for PAH lung is
used for this research. The initial preprocessing phase of the
research goes through the retrieval of DEGs for both datasets.
Identification of DEGs for the dataset GSE147507 is achieved
with the assistance of the R programming language. Herein,
limma [23] and DESeq2 [24] packages of R programming lan-
guage are used for obtaining DEGs for the GSE147507 dataset.
Absolute log2 fold change >1.0 and an adjusted P-value <0.05
were considered as cutoff criteria to determine significant DEGs
from the GSE147507 dataset. GEO2R (https://www.ncbi.nlm.nih.
gov/geo/geo2r/), which is a web-based platform for the analysis
of microarray datasets is used for the identification of DEGs
for the GSE117261 dataset. GEO2R performs the analysis in a

comparative manner by comparing infected samples versus con-
trolled samples, and the comparison is generated through limma
and GEOquery [25] packages from Bioconductor [26] project in
the platform of R programming language. Benjamini–Hochberg
methodology was implemented for GSE147507 and GSE117261
datasets with the purpose of the false discovery rate controlling
[27]. Similar DEGs were also acquired using the R programming
language.

GO and cell informative pathways analysis

Gene set enrichment analysis is generally a computational and
statistical methodology that defines whether a set of deter-
mined genes show statistical significance in different biologi-
cal conditions [28]. The resources of GO provide structural and
computational information considering the gene product-based
functions [29, 30]. GO can be categorized into three subsections
including molecular function, biological process and cellular
component for annotation of gene products [31]. GO terms for
the current study are obtained using Enrichr (https://amp.pha
rm.mssm.edu/Enrichr/) platform. Enrichr is a web-based pro-
gram that contains large gene sets consisting of 102 libraries
and performs experiments that are genome based [32]. For cell
informative pathway analysis, Kyoto Encyclopedia of Genes and
Genomes (KEGG) [33], Reactome [34], WikiPathways [35] and Bio-
Carta databases are employed. The results from the databases
are also implemented using the Enrichr platform.

Designing of PPIs network

Prominent information about the functions of protein is
achieved with the analysis of protein interactions, which is

https://www.ncbi.nlm.nih.gov/geo/geo2r/
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Figure 2. Phylogram of SARS-CoV and SARS-CoV-2, which provides genomic differences between human coronaviruses of 2003–2018 (SARS-CoV) and 2019–2020 (SARS-

CoV-2). Two colors are implemented to differentiate SARS-CoV (purple) and SARS-CoV-2 (green).

regarded as the primary step in drug discovery and systems
biology [36]. The number of complex biological processes
is determined with the advanced study of PPIs networks
[37, 38]. Identified similar DEGs for SARS-CoV-2 and PAH
lung were provided as an input in InnateDB [39] using the
NetworkAnalyst (https://www.networkanalyst.ca/) web-based
platform. Numerous omics data analysis is achieved through
a visual representation of NetworkAnalyst platform including
complex PPIs network [40]. The network was further designed
using Cytoscape (https://cytoscape.org/). Cytoscape software
can be regarded as a prominent source in integrating protein
interactions and genetic interactions [41].

Establishment of the topological algorithm on the PPIs
network and detection of hub nodes

Hub nodes generally defined by the highly interconnected nodes
in a large-scale complex PPIs network [42]. The hub nodes for the
current research are determined by the degree topological algo-
rithm. The degree algorithm is applied to the PPIs network using
a plugin of Cytoscape software, which is cytoHubba (http://apps.
cytoscape.org/apps/cytohubba). cytoHubba is a comprehensive
plugin of Cytoscape software that consists of 11 topological
algorithms to rank the nodes in a specific network [43]. In the
areas where the hub genes are highly interconnected, these
areas are regarded as prominent modules from the PPIs network.
Distinguishing the modules from the PPIs network will provide
better visualization of the hub nodes in separated modules. For
specific module analyses for the corresponding PPIs network is

generated by ClusterViz (http://apps.cytoscape.org/apps/cluste
rviz), which is also a Cytoscape plugin. Cluster identification and
detection of functional modules from a number of networks,
including PPIs network, metabolic network and gene network,
are determined by ClusterViz plugin [44].

Analysis of TF–miRNA co-regulatory network

RegNetwork repository was used to generate the analysis of the
TF–miRNA co-regulatory network [45]. The miRNAs and TFs are
identified from the co-regulatory network, which is responsi-
ble for the regulation of DEGs at transcriptional and posttran-
scriptional levels. The visualization of the network was pro-
vided using NetworkAnalyst web-based platform. For system-
level data understanding, NetworkAnalyst has been used as a
leading bioinformatics tool as a demand of immensely growing
gene expression-based datasets [46, 47].

Therapeutic drug compounds prediction

According to similar DEGs, a number of drug compounds are
predicted from the Drug Signatures Database (DSigDB) using
the Enrichr platform. DSigDB consists of gene sets: 22 527, gene:
19 531 and unique compound: 17 389 [48]. DSigDB predominantly
predicts drugs on gene expression-based datasets and each set
of the gene are regarded as targeted genes considering a com-
pound [48]. Performing genome-based characterization includ-
ing RNA, DNA and protein-based biomedical, pharmacological

https://www.networkanalyst.ca/
https://cytoscape.org/
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Figure 3. Gene expression profiling of SARS-CoV-2 infection in human lung epithelial cells for the top 20 genes and selected 24 samples from the GSE147507 dataset.

and biological information can be gathered with more accuracy
and at an inexpensive post using the Enrichr web-platform [49].

Results
Genomic and phylogram differences between
SARS-CoV and SARS-CoV-2

Genomic differences are observed through phylogenetic analysis
of SARS-CoV and SARS-CoV-2. The 16 genome sequences for
SARS-CoV are the sequences from the year 2003 to 2018 and the
host responses were for humans. However, another 16 genome
sequence sample for SARS-CoV-2 are the sequences from the
year 2019 to 2020 and host responses were for humans as well.
The result of the phylogenetic analysis shows that SARS-CoV
and SARS-CoV-2 do not produce any clade between them, but
the samples share ancestral origin among themselves. This dis-
tinguishes SARS-CoV and SARS-CoV-2 at the genomic level. Phy-
logenetic visualization of SARS-CoV and SARS-CoV-2 genome
sequences are displayed in Figure 2.

Gene expression analysis of PAH patients
and SARS-CoV-2 infected human lung epithelial
and associative cells

Form the GSE147507 dataset, 24 samples were filtered, and those
samples were involved with SARS-CoV-2 infection to primary
human bronchial epithelial cells, lung adenocarcinoma and lung
biopsy cells. The gene expression of the top 20 genes from the
selected samples has been visualized in Figure 3, which provides

the report of the high expression profile of S100A9 and KRT5
gene. Besides, among all 83 samples of PAH lung and healthy
controls, characterization of gene expression is presented for
20 samples including three healthy controls (GSM3290083,
GSM3290086 and GSM3290085), and the remaining of them are
PAH samples. Differentiating PAH samples and healthy controls
provide evidence of distinct groups of PAH samples according to
hierarchical clustering and comparing both samples at RNA level
provides different infection response of PAH sample compared
with healthy controls (Figure 4A). A volcano plot is visualized
and the adjusted P-value <0.05 is considered, which showed the
upregulated and downregulated genes that have been identified
through a comparative analysis between PAH samples and
normal samples for the GSE117261 dataset (Figure 4B).

Common DEGs identifications for further molecular
analysis and ensuring the efficiency of predictive drugs

For SARS-CoV-2 infection responses to human lung epithelial
cells observation, the DEGs of dataset GSE147507 is identified.
Regarding the analysis, a total of 108 DEGs were found. Notably,
93 DEGs show upregulation and the remaining 15 DEGs show
downregulation. However, comparison analysis between PAH
lung and healthy controls for GSE117261 shows a total of 59
DEGs, of which 27 DEGs show upregulation and another 32
DEGs show downregulation. Comparing SARS-CoV-2 infection
responses and PAH samples, six DEGs (SAA2, S100A9, S100A8,
SAA1, S100A12 and EDN1) manifest concordance, which is used
for identifying GO terms and pathway results, PPIs network, hub
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Figure 4. (A) Gene expression visualization of healthy controls (GSM3290083, GSM3290086 and GSM3290085) and PAH samples. (B) Volcano plot shows the regulation

of genes (upregulated and downregulated) for GSE117261.

Figure 5. (A) Concordant gene identification between GSE147507 and GSE117261 dataset that provide evidence of six common differentially expressed genes in between

108 genes of GSE147507 (COVID-19) and 59 genes of GSE117261 (PAH) dataset. (B) Heat map according to the log fold changes for the shared common DEGs between

COVID-19 dataset and PAH dataset.

nodes and module identification and TF–miRNA regulation and
prediction of drug compounds. The concordance produced from
the comparison between these two datasets is visualized using
a Venn diagram (Figure 5A). The heat map regarding the log
fold change for the shared common genes between SARS-CoV-2
and PAH showed unparalleled transcriptional signature impelled
upon SARS-CoV-2 infection (Figure 5B). The gene validation is
provided according to the risk groups of the genes in a heat map
that provides information regarding S100A9 and S100A8 that are
highly prone to inflammation (Figure 6A). The boxplot of the risk
group comparison also indicates that S100A9 and S100A8 are
highly risked prone (Figure 6B).

GO and pathway analysis based on the similar DEGs

After the identification of unique DEGs aligned with SARS-CoV-2
infection profile to lung epithelial cells, a number of databases

(KEGG, Reactome, WikiPathways, BioCarta and The GO) were
utilized to identify GO terms and cell informative pathways.
Among all the GO terms, the top 10 biological processes, cellular
components and molecular functions were predicted (Table 1).
Analysis of biological processes provides neutrophil chemotaxis,
granulocyte chemotaxis and regulation of inflammatory
responses to SARS-CoV-2 infections according to the number
of genes interaction. Molecular function regarding studies show
enrichment of calcium ion binding, zinc ion binding, transition
metal ion binding and metal ion binding factors. Cytoplasmic
vesicle lumen cellular component factor is significantly involved
with the corresponding identified DEGs, which eventually refer
to SARS-CoV-2 infection responses to the human lung. Notably,
top pathways based on the DEGs were allied in the current study
(Table 2). IL-17 signaling pathway, TNF signaling pathway and
Vitamin B12 metabolism are among the top pathways that were
identified through the analysis of the curated databases. The
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Figure 6. (A) Heat map for the identification of highly risk prone nature of S100A9 and S100A8 genes. (B) Risk group comparisons between the shared common genes

of SARS-CoV-2 and PAH.

Table 1. The association of concordant genes in GO terms and GO pathways and the proportional P-values

Category GO ID Term P-value Genes

GO biological
process

GO:0030593 Neutrophil Chemotaxis 6.563(e-10) SAA1, S100A12, S100A9,
S100A8

GO:0071621 Granulocyte Chemotaxis 8.230(e-10) SAA1, S100A12, S100A9,
S100A8

GO:1990266 Neutrophil Migration 9.506(e-10) SAA1, S100A12, S100A9,
S100A8

GO:0050832 Defense response to fungus 1.018(e-8) S100A12, S100A9, S100A8
GO:0050727 Regulation of inflammatory response 6.777(e-8) SAA1, S100A12, S100A9,

S100A8
GO:0051091 Positive regulation of sequence-specific

DNA-binding transcription factor activity
1.915(e-7) EDN1, S100A12, S100A9,

S100A8
GO:0050729 Positive regulation of inflammatory response 9.257(e-7) S100A12, S100A9, S100A8
GO:0031349 Positive regulation of defense response 9.647(e-7) S100A12, S100A9, S100A8
GO:0070486 Leukocyte aggregation 0.000001574 S100A9, S100A8
GO:0032103 Positive regulation of response to external stimulus 0.000001745 S100A12, S100A9, S100A8

GO molecular
function

GO:0050786 RAGE receptor binding 1.259(e-9) S100A12, S100A9, S100A8
GO:0035325 Toll-like receptor binding 0.000002697 S100A9, S100A8
GO:0005509 Calcium ion binding 0.00005490 S100A12, S100A9, S100A8
GO:0008270 Zinc ion binding 0.00006592 S100A12, S100A9, S100A8
GO:0046914 Transition metal ion binding 0.0001507 S100A12, S100A9, S100A8
GO:0046872 Metal ion binding 0.0002040 S100A12, S100A9, S100A8
GO:0008017 Microtubule binding 0.001383 S100A9, S100A8
GO:0015631 Tubulin binding 0.002348 S100A9, S100A8
GO:0005507 Copper ion binding 0.01224 S100A12

GO cellular
component

GO:0060205 Cytoplasmic vesicle lumen 2.453(e-8) SAA1, S100A12, S100A9,
S100A8

GO:0071682 Endocytic vesicle lumen 0.005388 SAA1
GO:0005881 Cytoplasmic microtubule 0.01135 SAA1
GO:0034774 Secretory granule lumen 0.00007614 S100A12, S100A9, S100A8
GO:0045111 Intermediate filament cytoskeleton 0.02111 S100A8
GO:0005856 Cytoskeleton 0.0003296 S100A12, S100A9, S100A8
GO:0030139 Endocytic vesicle 0.03197 SAA1
GO:0005874 Microtubule 0.06138 SAA1



8 Taz et al.

Table 2. The association of concordant genes in KEGG, WikiPathways, Reactome and BioCarta databases and the proportional P-values

Databases Pathways P-value Genes

KEGG Interleukin 17 (IL-17) signaling pathway 0.0003170 S100A9, S100A8
Renin secretion 0.02052 EDN1
Hypertrophic cardiomyopathy (HCM) 0.02523 EDN1
AGE–RAGE signaling pathway in diabetic complications 0.02963 EDN1
HIF-1 signaling pathway 0.02963 EDN1
Melanogenesis 0.02992 EDN1
Tumor necrosis factor (TNF) signaling pathway 0.03255 EDN1
Relaxin signaling pathway 0.03838 EDN1
Vascular smooth muscle contraction 0.03896 EDN1
Fluid shear stress and atherosclerosis 0.04099 EDN1

WikiPathways Vitamin B12 metabolism WP1533 0.00009129 SAA1, SAA2
Folate metabolism WP176 0.0001595 SAA1, SAA2
IL1 and megakaryocytes in obesity WP2865 0.007179 S100A9
Physiological and pathological hypertrophy of the heart WP1528 0.007477 EDN1
Selenium micronutrient network WP15 0.0002711 SAA1, SAA2
Endothelin pathways WP2197 0.009860 EDN1
Photodynamic therapy-induced HIF-1 survival signaling WP3614 0.01105 EDN1
Melatonin metabolism and effects WP3298 0.01105 EDN1
Prostaglandin synthesis and regulation WP98 0.01343 EDN1
Vitamin D receptor pathway WP2877 0.001206 S100A9, S100A8

Reactome Advanced glycosylation endproduct receptor signaling H. sapiens
R-HSA-879415

0.000005841 SAA1, S100A12

DEx/H-box helicases activate type I IFN and inflammatory
cytokines production H. sapiens R-HSA-3134963

0.000005841 SAA1, S100A12

Scavenging by Class B receptors H. sapiens R-HSA-3000471 0.001499 SAA1
RIP-mediated NFkB activation via ZBP1 H. sapiens R-HSA-1810476 0.00001571 SAA1, S100A12
TRAF6-mediated NF-kB activation H. sapiens R-HSA-933542 0.00002064 SAA1, S100A12
ZBP1(DAI)-mediated induction of type I IFNs H. sapiens
R-HSA-1606322

0.00002430 SAA1, S100A12

TAK1 activates NFkB by phosphorylation and activation of IKKs
complex H. sapiens R-HSA-445989

0.00002430 SAA1, S100A12

Formyl peptide receptors bind formyl peptides and many other
ligands H. sapiens R-HSA-444473

0.002398 SAA1

Cytosolic sensors of pathogen-associated DNA H. sapiens
R-HSA-1834949

0.0001595 SAA1, S100A12

TRAF6-mediated induction of proinflammatory cytokines H.
sapiens R-HSA-168180

0.0001899 SAA1, S100A12

BioCarta G-protein signaling through tubby proteins H. sapiens h
tubbyPathway

0.002997 EDN1

Activation of PKC through G-protein-coupled receptors H.
sapiens h pkcPathway

0.003296 EDN1

Hypoxia-inducible factor in the cardiovascular system H. sapiens
h hifPathway

0.004791 EDN1

Cystic fibrosis transmembrane conductance regulator (CFTR)
and beta 2 adrenergic receptor (b2AR) pathway H. sapiens h
cftrPathway

0.005986 EDN1

Corticosteroids and cardioprotection H. sapiens h gcrPathway 0.007477 EDN1
Beta-arrestins in GPCR desensitization H. sapiens h
bArrestinPathway

0.008372 EDN1

Activation of cAMP-dependent protein kinase, PKA H. sapiens h
gsPathway

0.008670 EDN1

Role of beta-arrestins in the activation and targeting of MAP
kinases H. sapiens h barr-mapkPathway

0.008967 EDN1

Role of EGF receptor transactivation by GPCRs in cardiac
hypertrophy H. sapiens h cardiacegfPathway

0.009860 EDN1

Roles of beta-arrestin-dependent recruitment of Src kinases in
GPCR signaling H. sapiens h bArrestin-srcPathway

0.01016 EDN1
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Figure 7. (A) GO terms regarding biological process, molecular function and cellular component according to the associative P-values. (B) Cell informative pathways

(KEGG, BioCarta, Reactome and WikiPathways) analysis result regarding associative P-values.

comparison of GO terms is represented in Figure 7A, and the
comparison of pathways from numerous databases is provided
in Figure 7B.

PPIs network construction to perceive hub nodes

Using the NetworkAnalyst platform, six DEGs (SAA2, S100A9,
S100A8, SAA1, S100A12 and EDN1) were provided as input and
the generated network file was further customized in Cytoscape.
The representation of the PPIs network shows immense interac-
tion of S100A9 and S100A8 genes, and the interaction reveals the

evidence of enrichment of S100A9 and S100A8 genes to SARS-
CoV-2 responses in the human lung. Hub gene identification,
module analysis and prediction of effective drug compounds
are mainly concerned with the corresponding PPIs network.
The PPIs network is represented in Figure 8, with customized
visualization that contains 125 nodes and 136 edges.

Hub nodes identification based on the topological
analyses and module detection from the PPIs network

Among the similar DEGs, hub nodes from the PPIs network are
identified using cytoHubba. The identified top three hub nodes
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Figure 8. PPIs network for identified common DEGs that refers to SARS-CoV-2 infections in human lung and PAH lung. The common genes are highlighted with purple

node (SAA2, S100A9, S100A8, SAA1 and S100A12). The network consists of 125 nodes and 136 edges.

are S100A9, S100A8 and SAA1. The degree algorithm was used
for the identification purpose and the degree algorithm shows
the highest number of interaction in a specific network. The
highlighted hub genes in a hub node identification network
are presented in Figure 9, and the network consists of 124
nodes and 135 edges. The regions where the hub nodes
are established in the PPIs network are considered as the
prominent modules. Module analysis network is represented in
Figure 10, which consists of 13 nodes and 13 edges. Topological
analysis results for the top three hub genes are presented in
Table 3.

Analysis of TF–miRNA co-regulatory network

TFs and miRNAs interaction with the DEGs can be regarded as
a reason for the regulation of expression of the DEGs. The co-
regulatory network of TF–miRNA interaction is generated using
the NetworkAnalyst platform, and the network is reintroduced
in Cytoscape software for better visualization. TF–miRNA co-
regulatory network includes 69 nodes and 77 edges. Of the 69

Table 3. Exploration of topological results for top three hub genes

Hub gene Degree Stress Closeness
centrality

Betweenness
centrality

S100A9 83 14 008 102.66667 13 258
S100A8 45 7370 82.75 7117
SAA1 4 738 41.5 732

genes, six are similar DEGs, 35 are TF genes and 28 are miRNAs.
The customized representation of the TF–miRNA co-regulatory
network is presented in Figure 11.

Predictive drug compounds

The drug compounds were proposed from the DSigDB database
using the Enrichr web platform. The drug compounds were pre-
dicted according to identified six DEGs (SAA2, S100A9, S100A8,
SAA1, S100A12 and EDN1). The results were accomplished based
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Figure 9. Hub gene detection from the similar DEGs based on the PPIs network. The highlighted nodes S100A9 (red), S100A8 (orange) and SAA1 (yellow) are regarded

as highly interconnected nodes, considered as hub nodes. The network is made up of 124 nodes and 135 edges.

on adjusted P-value and P-value scores. MIGLITOL CTD 00002031
and metoprolol HL60 UP are the two prominent drug com-
pounds with which a significant amount of genes are con-
nected. Besides, among the top hub genes, S100A9 is intercon-
nected with both the drug compounds, which makes the drug
compounds even more eminent in terms of the efficiency of
the drugs. The predictive drug compounds are presented in
Table 4.

Discussion
Recent studies have demonstrated the effect of SARS-CoV-2
in human lungs and create complexity in the functioning of
the human lungs that eventually leads to diseases like PAH.
The following study attempts to identify genomic differences
between SARS-CoV and SARS-CoV-2 and also signify transcrip-
tomic effects of SARS-CoV-2 to the PAH through a number of
bioinformatics approaches. As SARS-CoV-2 is having a lethal
effect on humankind, the current research can be regarded as
the most comprehensive transcriptomic and genomic research
on novel coronavirus to date.

According to the GO terms, inflammatory responses are
detected that dominate infection responses to SARS-CoV-2.
In the biological process, neutrophil chemotaxis, granulocyte
chemotaxis, neutrophil migration and regulation of inflamma-
tory responses are among the top GO terms. During the infection
of SARS-CoV-2 in the human lung, neutrophil chemotaxis
term induces uncontrolled inflammation due to proinflam-
matory cytokine [50]. The term granulocyte chemotaxis show
immensely upregulated inflammatory response in human lung
epithelial cell [51]. After molecular function identification,
receptor for advanced glycation end products (RAGE) receptor
binding, calcium ion binding and zinc ion binding can be
considered as the most significant terms. RAGE performs as a
mediator and biomarker in terms of inflammatory illness during
SARS-CoV-2 [52]. The top cellular components are cytoplasmic
vesicle lumen, secretory granule lumen and cytoskeleton.
Cell informative pathway identification with the screening of
unbiased database methodology shows inflammatory responses
to SARS-CoV-2. IL-17 signaling pathway is identified from
the KEGG database. IL-17 is a member of a cytokine family
that shows correlation and cytokine storm with SARS-CoV-2
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Table 4. Predictive drug compounds according to the concordant genes of SARS-CoV-2 and PAH samples

Name of drugs P-value Adjusted P-value Genes

MIGLITOL CTD 00002031 0.000004943 0.01990 S100A12, S100A9
Bosentan CTD 00003071 0.003296 0.5529 EDN1
Coenzyme Q10 CTD
00001167

0.003595 0.5789 EDN1

Metoprolol HL60 UP 0.00007383 0.04954 S100A12, S100A9
9-(2-
Phosphonomethoxypropyl)adenine
CTD 00003259

0.004193 0.5821 EDN1

(+)-Chelidonine HL60
DOWN

0.00009129 0.05250 S100A9, S100A8

Sildenafil CTD 00003367 0.004492 0.6028 EDN1
Norepinephrine CTD
00006417

0.00009879 0.04972 S100A9, S100A8

Dydrogesterone CTD
00005882

0.004791 0.6028 EDN1

1,3-Dimethylthiourea CTD
00001818

0.004791 0.5845 EDN1

Figure 10. Highly interconnected regions (module) identification network that

consists of 13 nodes and 13 edges. The hub genes S100A9 (orange) and S100A8

(orange) are visualized in the corresponding module network.

[53, 54]. In molecules of PAH, highly expressed and meaningful
hypomethylation of IL-17 responses were identified [55]. A recent
study found that the TNF signaling pathway was found in the
infection of SARS-CoV-2 in the lung epithelial cells of the human
[56].

PPIs network designing reveals the proteomic information
regarding SARS-CoV-2 and PAH. The PPIs network shows 136
interactions among 125 genes. The analysis was generated
for six common DEGs (SAA2, S100A9, S100A8, SAA1, S100A12
and EDN1), and the highly interconnected nodes and regions
show effective prediction on S100A9 and S100A8. S100 calcium-
binding protein A9 (S100A9) and S100 calcium-binding protein
A8 (S100A8), both genes are associated with the respiratory
disorder or lung diseases [57]. Studies have found a number
of immunocytochemical responses of S100A9 and S100A8 in
PAH lung samples [58]. According to the hub nodes, highly
interconnected modules were also identified from the PPIs
network.

In a number of solutions to complex diseases, regulatory
biomolecules perform as potential biological markers. The regu-
lation regarding six common DEGs is justified with the analysis
of the TF–miRNA co-regulatory network by measuring the per-
formance of TF-genes and miRNAs in that specific network. A
total of 28 miRNAs and 35 TF-genes interactions are visualized
with the six common DEGs. The analysis of TF-genes shows
androgen receptor (AR) has the most interaction comparing with
other TF-genes. TMPRSS2 gene is considered to be an active
promoter for spike protein of SARS-CoV-2, and AR is used as a
required factor for transcription of the TMPRSS2 gene [59].

Drug compounds are suggested for six common DEGs from
the prediction of the DSigDB database. Significantly, prominent
top 10 drugs were identified for the following study. MIGLITOL
CTD 00002031, Bosentan CTD 00003071, Coenzyme Q10 CTD
00001167, metoprolol HL60 UP, chelidonine HL60 DOWN, silde-
nafil CTD 00003367, norepinephrine CTD 00006417, dydroges-
terone CTD 00005882 and 1,3-Dimethylthiourea CTD 00001818
are among the significant candidate drugs form the current
prediction. Recent studies have presented the efficient activity
of MIGLITOL against RNA viruses. MIGLITOL showed significant
performance as an inhibitor against the spike protein (S1) of the
SARS-CoV-2 virus. This result was identified using the study of
molecular dynamics and virtual screening of MIGLITOL and also
a number of approved drugs [60]. The effect of the coenzyme
Q10 drug compound can be supportive for COVID-19 patients as
it increases energy level, immunity and reduce oxidative stress
among patients. One of the major symptoms of COVID-19 is
fatigue, and coenzyme Q10 has shown significant potential to
reduce the fatigue and pain in fibromyalgia patients [61]. Recent
studies have predicted that sildenafil is suitable for COVID-19
infected patients as the principal role of sildenafil is to inhibit
the neointimal formation and aggregation of platelet [62]. Adult
persons are more at risk due to COVID-19 disease, and nore-
pinephrine is suggested for infected adult persons with shock
[63].

The identified DEGs show inflammatory and cytokine
responses and association with a number of pathways and
which generally refers to SARS-CoV-2 infection in human lung
epithelial cells and PAH affected lungs. The transcriptomic result
produced in this research is for limited samples regarding both
SARS-CoV-2 and PAH. The larger number of samples would
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Figure 11. TF–miRNA co-regulatory network visualization. The network includes 69 nodes and 77 edges. According to the network, there exist 35 TF genes (blue) and

28 are miRNAs (red) and they are interacted with six common DEGs (green).

produce a significant amount of concordant genes, which will
definitely produce a large transcriptomic response in near
future.

Conclusions
In this study, biological domains, regulatory elements and iden-
tified biomarkers had been discussed in brief that is expected
to accelerate the pace of therapeutics development against the
ongoing COVID-19 pandemic. The superiority of our study can be
considered as it is by far the largest genomic and transcriptomic
study on SARS-CoV-2. We provided multiple ways of analyses
including comparative genomic differences of SARS-CoV and
SARS-CoV-2, and the difference has been made to look for tran-
scriptomic analyses on SARS-CoV-2 and its PAH comorbidity
condition. Phylogenetic analyses of this research have produced
genomic differences between SARS-CoV and SARS-CoV-2. We
have identified the concordant genes between SARS-CoV-2 and
PAH that produce further molecular results and show the asso-
ciation of the DEGs in SARS-CoV-2 affected human lung epithe-
lial cells and PAH patients’ lung. A different type of transcrip-
tional response was found due to the SARS-CoV-2 infection in
human lung epithelial cells, which is enriched in inflammatory
responses and neutrophil chemotaxis. The predicted drug com-
pounds show activity against inflammatory responses against
RNA viruses.

Key Points
• Phylogenetic analysis showed genomic differences

between SARS-CoV and SARS-CoV-2.
• Transcriptomic gene expression provided inflamma-

tory responses in SARS-CoV-2-infected human lung
epithelial cells and PAH patients.

• The development of the PPIs network detected the
interactions for the identified shared genes between
the COVID-19 and PAH.

• Topological analysis of the PPIs network showed the
highly interconnected nodes and extracted specific
genes from the concordant genes.

• The predictive drug compounds highlighted activity
against inflammatory responses that are identified
with SARS-CoV-2 infection responses and the path-
ways indicate molecular information for both SARS-
CoV-2 and PAH.
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36. Šikić M, Tomić S, Vlahoviček K. Prediction of protein–protein
interaction sites in sequences and 3D structures by random
forests. PLoS Comput Biol 2009;5(1):e1000278.

37. Pagel P, Kovac S, Oesterheld M, et al. The MIPS mam-
malian protein–protein interaction database. Bioinformatics
2005;21(6):832–4.

https://doi.org/10.1093/bib/bbaa173
https://doi.org/10.1093/bib/bbaa173
https://doi.org/10.1007/978-1-4939-3578-9_5


Identification of biomarkers and pathways for the SARS-CoV-2 infections 15

38. Chowdhury UN, Islam MB, Ahmad S, et al. Network-based
identification of genetic factors in ageing, lifestyle and type
2 diabetes that influence to the progression of Alzheimer’s
disease. Inform Med Unlocked 2020;19:100309.

39. Breuer K, Foroushani AK, Laird MR, et al. InnateDB:
systems biology of innate immunity and beyond—
recent updates and continuing curation. Nucleic Acids
Res 2013;41(D1):D1228–33.

40. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical,
visual and network-based meta-analysis of gene expression
data. Nat Protoc 2015;10(6):823–44.

41. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a soft-
ware environment for integrated models of biomolecular
interaction networks. Genome Res 2003;13(11):2498–504.

42. Hsing M, Byler KG, Cherkasov A. The use of gene ontol-
ogy terms for predicting highly-connected ’hub’ nodes
in protein-protein interaction networks. BMC Syst Biol
2008;2(1):80.

43. Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub
objects and sub-networks from complex interactome. BMC
Syst Biol 2014;8(S4):S11.

44. Wang J, Zhong J, Chen G, et al. ClusterViz: a cytoscape APP
for cluster analysis of biological network. IEEE/ACM Trans
Comput Biol Bioinform 2014;12(4):815–22.

45. Liu ZP, Wu C, et al. RegNetwork: an integrated database
of transcriptional and post-transcriptional regulatory net-
works in human and mouse. Database 2015;2015:bav095.

46. Zhou G, Soufan O, Ewald J, et al. NetworkAnalyst 3.0:
a visual analytics platform for comprehensive gene
expression profiling and meta-analysis. Nucleic Acids
Res 2019;47(W1):W234–41.

47. Al Mustanjid M, Mahmud SH, Royel MRI, et al. Detection of
molecular signatures and pathways shared in inflammatory
bowel disease and colorectal cancer: a bioinformatics and
systems biology approach. Genomics 2020;112(5):3416–26.

48. Yoo M, Shin J, Kim J, et al. DSigDB: drug signatures
database for gene set analysis. Bioinformatics 2015;31(18):
3069–71.

49. Chen EY, Tan CM, Kou Y, et al. Enrichr: interactive and
collaborative HTML5 gene list enrichment analysis tool. BMC
Bioinformatics 2013;14(1):128.

50. Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sep-
sis: observations and hypotheses. Lancet 2020;395(10235):
1517–20.

51. Jang Y, Seo SH. Gene expression pattern differences in
primary human pulmonary epithelial cells infected with
MERS-CoV or SARS-CoV-2. Arch Virol 2020;165(10):2205–11.

52. Kerkeni M, Gharbi J. RAGE receptor: may be a
potential inflammatory mediator for SARS-COV-
2 infection? Med Hypotheses 2020;144:109950. doi:
10.1016/j.mehy.2020.109950.

53. Pacha O, Sallman MA, Evans SE. COVID-19: a case for inhibit-
ing IL-17? Nat Rev Immunol 2020;20(6):345–6.

54. Taz TA, Ahmed K, Paul BK, et al. Network-based identifica-
tion genetic effect of SARS-CoV-2 infections to idiopathic
pulmonary fibrosis (IPF) patients. Brief Bioinform 2020. doi:
10.1093/bib/bbaa235.

55. Hautefort A, Girerd B, Montani D, et al. T-helper 17 cell
polarization in pulmonary arterial hypertension. Chest
2015;147(6):1610–20.

56. Moni MA, Quinn JM, Sinmaz N, et al. Gene expression pro-
filing of SARS-CoV-2 infections reveal distinct primary lung
cell and systemic immune infection responses that identify
pathways relevant in COVID-19 disease. Brief Bioinform 2020.
doi: 10.1093/bib/bbaa376.

57. Chandrashekar DS, Manne U, Varambally S. Comparative
transcriptome analyses reveal genes associated with SARS-
CoV-2 infection of human lung epithelial cells. bioRxiv
2020.06.24.169268. doi: 10.1101/2020.06.24.169268.

58. Nakamura K, Sakaguchi M, Matsubara H, et al. Crucial role
of RAGE in inappropriate increase of smooth muscle cells
from patients with pulmonary arterial hypertension. PLoS
One 2018;13(9):e0203046.

59. Wambier CG, Goren A. Severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection is likely to be androgen
mediated. J Am Acad Dermatol 2020;83(1):308–9.

60. Prajapat M, Shekhar N, Sarma P, et al. Virtual screening and
molecular dynamics study of approved drugs as inhibitors
of spike protein S1 domain and ACE2 interaction in SARS-
CoV-2. J Mol Graph Model 2020;101:107716.

61. Gvozdjakova A, Klauco F, Kucharska J, et al. Is mitochon-
drial bioenergetics and coenzyme Q10 the target of a virus
causing COVID-19? Bratisl Lek Listy 2020;121(11):775–8.

62. Isidori AM, Giannetta E, Pofi R, et al. Targeting the NO-cGMP-
PDE5 pathway in COVID-19 infection. The DEDALO project.
Andrology 2020;9(1):33–8

63. Poston JT, Patel BK, Davis AM. Management of critically ill
adults with COVID-19. JAMA 2020;323(18):1839–41.

https://doi.org/10.1016/j.mehy.2020.109950
https://doi.org/10.1093/bib/bbaa235
https://doi.org/10.1093/bib/bbaa376
https://doi.org/10.1101/2020.06.24.169268

	Identification of biomarkers and pathways for the SARS-CoV-2infections that make complexities in pulmonary arterial hypertension patients
	Introduction
	Methodology
	Comprehensive genomic-level phylogenetic study
	Details information of the datasets
	Data filtering and retrieval of DEGs, and identification of common DEGs between SARS-CoV-2 and PAH
	GO and cell informative pathways analysis
	Designing of PPIs network
	Establishment of the topological algorithm on the PPIs network and detection of hub nodes
	Analysis of TF--miRNA co-regulatory network
	Therapeutic drug compounds prediction

	Results
	Genomic and phylogram differences between SARS-CoV and SARS-CoV-2
	Gene expression analysis of PAH patients and SARS-CoV-2 infected human lung epithelial and associative cells
	Common DEGs identifications for further molecular analysis and ensuring the efficiency of predictive drugs
	GO and pathway analysis based on the similar DEGs
	P&#x200C;PIs network construction to perceive hub nodes
	Hub nodes identification based on the topological analyses and module detection from the PPIs network
	Analysis of TF--miRNA co-regulatory network
	Predictive drug compounds

	Discussion
	Conclusions
	Key Points
	Funding
	Conflict of Interest


