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Abstract

Aedes aegypti is the vector of some of the most important vector-borne diseases like den-

gue, chikungunya, zika and yellow fever, affecting millions of people worldwide. The cellular

processes that follow a blood meal in the mosquito midgut are directly associated with path-

ogen transmission. We studied the homeostatic response of the midgut against oxidative

stress, as well as bacterial and dengue virus (DENV) infections, focusing on the proliferative

ability of the intestinal stem cells (ISC). Inhibition of the peritrophic matrix (PM) formation

led to an increase in reactive oxygen species (ROS) production by the epithelial cells in

response to contact with the resident microbiota, suggesting that maintenance of low levels

of ROS in the intestinal lumen is key to keep ISCs division in balance. We show that dengue

virus infection induces midgut cell division in both DENV susceptible (Rockefeller) and

refractory (Orlando) mosquito strains. However, the susceptible strain delays the activation

of the regeneration process compared with the refractory strain. Impairment of the Delta/

Notch signaling, by silencing the Notch ligand Delta using RNAi, significantly increased the

susceptibility of the refractory strains to DENV infection of the midgut. We propose that this

cell replenishment is essential to control viral infection in the mosquito. Our study demon-

strates that the intestinal epithelium of the blood fed mosquito is able to respond and defend

against different challenges, including virus infection. In addition, we provide unprecedented

evidence that the activation of a cellular regenerative program in the midgut is important for

the determination of the mosquito vectorial competence.

Author summary

Aedes mosquitoes are important vectors of arboviruses, representing a major threat to

public health. While feeding on blood, mosquitoes address the challenges of digestion and
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preservation of midgut homeostasis. Damaged or senescent cells must be constantly

replaced by new cells to maintain midgut epithelial integrity. In this study, we show that

the intestinal stem cells (ISCs) of blood-fed mosquitoes are able to respond to abiotic and

biotic challenges. Exposing midgut cells to different types of stress, such as the inhibition

of the peritrophic matrix formation, changes in the midgut redox state, or infection with

entomopathogenic bacteria or viruses, resulted in an increased number of mitotic cells in

blood-fed mosquitoes. Mosquito strains with different susceptibilities to DENV infection

presented different time course of cell regeneration in response to viral infection. Knock-

down of the Notch pathway in a refractory mosquito strain limited cell division after

infection with DENV and resulted in increased mosquito susceptibility to the virus. Con-

versely, inducing midgut cell proliferation made a susceptible strain more resistant to

viral infection. Therefore, the effectiveness of midgut cellular renewal during viral infec-

tion proved to be an important factor in vector competence. These findings can contribute

to the understanding of virus-host interactions and help to develop more successful strate-

gies of vector control.

Introduction

The mosquito Aedes aegypti is a vector of several human pathogens, such as flaviviruses,

including yellow fever (YFV), dengue (DENV) and zika (ZIKV), and thus this mosquito exerts

an enormous public health burden worldwide [1,2]. During the transmission cycle, these

insects feed on volumes of blood that are 2–3 times their weight, and the digestion of this large

meal results in several potentially damaging conditions [3]. The digestion of blood meal

requires intense proteolytic activity in the midgut and results in the formation of potentially

toxic concentrations of heme, iron, amino acids and ammonia [4]. The midgut is also the first

site of interaction with potential pathogens, including viruses, and supports a dramatic

increase in intestinal microbiota after blood feeding [5,6]. To overcome these challenges, the

ingestion of a blood meal is followed by several physiological processes, such as formation of a

peritrophic matrix (PM) [7,8] and down-regulation of reactive oxygen species (ROS) produc-

tion. In addition, the midgut epithelium is the first barrier that viruses must cross in the mos-

quito to achieve a successful viral cycle (reviewed in [9]). Thus, in order to ensure epithelial

integrity and the maintenance of midgut homeostasis, the midgut epithelium must fine tune

key cellular mechanisms, including cell proliferation and differentiation.

In both vertebrate and invertebrate animals, the gut epithelia have a similar basic cellular

composition: absorptive enterocytes (ECs) that represent the majority of the differentiated

cells and are interspersed with hormone-producing enteroendocrine cells (ee). The intestinal

stem cells (ISCs) and enteroblasts (EB) account for the progenitor cells, responsible for replen-

ishing the differentiated cells that are lost due to damage or aging [10–14]. In A. aegypti,
description of the different cellular types and functions started with identification and basic

characterization of absorptive (ECs) and non-absorptive cells (ISC, EB, and enteroendocrine

cells) [15]. To date, the study of division properties of the ISCs in this vector species remains

limited to the description of the division process during metamorphosis [16].

Several conserved signaling pathways are known to be involved in midgut tissue renewal

and differentiation. Comparative genomic analysis of some of these pathways has been done

between Drosophila melanogaster and vector mosquitoes [17,18], but functional studies in

Aedes, under the context of tissue regeneration, are still necessary. Notably, the Notch signal-

ing pathway regulates cell differentiation in the midgut of both mammals and D. melanogaster.
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In this fruit fly, loss of function of Notch is attributed to the increase of intestinal cell prolifera-

tion and tumor formation [19]. However, it has already been shown that depletion of Notch in

D. melanogaster ISCs also leads to stem cell loss and premature ee cell formation [20]. Accord-

ingly, disruption of Notch signaling in mice has resulted in decreased cell proliferation coupled

with secretory cell hyperplasia, whereas hyperactivation of Notch signaling results in expanded

proliferation with increased numbers of absorptive enterocytes [21], as also observed in D.

melanogaster [20].

In the fruit fly, the ingestion of cytotoxic agents, such as dextran sodium sulfate (DSS), bleo-

mycin or paraquat, or infection by pathogenic bacteria can stimulates cell turnover, increasing

the midgut ISC mitotic index [18,22]. Similar to that, it has been recently shown that cell dam-

age produced by ingestion of several stressors also induced intestinal cell proliferation in

sugar-fed Aedes albopictus [23]. Likewise, viral infections can trigger cellular responses, such as

apoptosis or autophagy, in different infection models [24–27]. However, the interplay between

intestinal cell proliferation and pathogen transmission has been a neglected subject in the

literature.

In this study, we have characterized the dynamics of A. aegypti intestinal epithelium prolif-

eration during blood meal digestion in response to oxidative stress, bacterial infections, and

viral infections. We have also shown that two mosquito strains with different DENV suscepti-

bilities [28] presented differences in cell mitotic rates after viral infection. Finally, our results

indicate for the first time that the ability to replenish midgut cells by modulation of cell

renewal involves the Delta-Notch signaling and is a key factor that influences A. aegypti com-

petence to transmit DENV. We show that the cell proliferation rates influences mosquito

infection and vector competence for DENV.

Results

Aedes aegypti adult females acquire DENV and other arboviruses during the blood feedings

that are needed to complete the reproductive cycle of the mosquito. To characterize the epithe-

lial adaptation to this event, we first evaluated the cellular response to the blood meal itself.

Upon ingestion, the blood induces dramatic changes in the Red strain mosquito midgut at a

chemical, microbiological and physiological level. We attempted to dissect each of these chal-

lenges, to understand the delicate balance of the factors that play a role in the intestinal micro-

environment in which the arbovirus has to thrive in order to pass to the salivary gland and be

transmitted.

Characterization of the adult intestinal cells and their regenerative capacity

in A. aegypti adult midgut epithelium

The tissue homeostasis of the midgut depends on the ability to replenish the damaged cells,

and this depends on the presence of ISCs. Due to the lack of specific markers for progenitor

cells for A. aegypti, we used morphological and physiological parameters to define the presence

of ISCs in the adult females. Progenitor cells are well characterized for their basal positioning

and being diploid, different to the apical localization of differentiated cells and the polyploidy

of enterocytes. Both cell types were clearly distinctive, as well as the peritrophic matrix, in the

midgut epithelium of blood-fed adult females (Fig 1A). The further characterization of ISC’s

was performed with phospho-histone 3 antibodies, to specifically mark cells undergoing mito-

sis. In Fig 1B, it can be observed the two monolayers of the A. aegypti midgut, where ECs are

clearly distinguishable and the PH3+ cell is found, with nuclei corresponding to the diploid

size, located basally. Clearly, not every ISC present in the tissue is going to be found undergo-

ing mitosis, but the presence of PH3+ cells, undoubtedly characterizes such cells as ISCs.

Mosquito midgut cell proliferation impacts vector competence
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To evaluate the homeostatic cell proliferation of the Aedes aegypti midgut, we observed the

number of cells undergoing mitosis in adult females. After a blood meal, the midgut epithe-

lium showed a lower number of cells undergoing mitosis (phospho-histone 3 positive; PH3+)

compared with that of sugar-fed insects (Fig 1C and 1D). To test if this decrease in mitotic

cells was due to progenitor cell impairment, we fed insects with blood supplemented with the

pro-oxidant compound paraquat. The midgut epithelium responded to an oxidative challenge

by increasing mitosis (Fig 1C and 1D), indicating that the intestinal stem cells maintained the

ability to divide and replenish damage cells after an insult at blood-fed conditions.

Peritrophic matrix reduces cell proliferation induced by microbial

infection

A hallmark of blood digestion is the formation of the peritrophic matrix (PM), a chitin and

protein-rich non-cellular layer secreted by the midgut epithelium [7,8]. The mosquito type-I

PM surrounds the blood bolus, limiting a direct contact between the epithelium, the blood

meal and the indigenous microbiota, thereby playing a similar function as the vertebrate diges-

tive mucous layer. Ingestion of blood contaminated with bacteria allows close contact of these

microorganisms to the midgut epithelium before PM formation, which is completed formed

only a few hours (14 to 24 hours) after a blood meal [7]. In fact, oral infection with sub-lethal

concentrations of the non-pathogenic Serratia marcescens or the entomopathogenic Pseudo-
monas entomophila bacteria resulted in a significant increase in mitosis of the epithelium cells

(Fig 2A and 2B). The increased cell turnover was also observed when heat-killed P. entomo-
phila was provided through the blood, indicating that molecules derived from these entomo-

pathogenic bacteria are sufficient to trigger the cell proliferation program, not necessarily

requiring tissue infection (Fig 2B). In this case, tissue damage may at least partially be attrib-

uted to the lack of cell membrane integrity promoted by Monalysin, a pore-forming protein

produced by P. entomophila [29].

Supplementation of blood with diflubenzuron (DFB), a chitin synthesis inhibitor [30], leads

to the inhibition of PM production, exposing the gut epithelium directly to the luminal content

(S1 Fig). Consequently, DFB administration resulted in elevated numbers of mitotic cells (Fig

2C). The co-ingestion of antibiotics completely abolished this effect of DFB on cell prolifera-

tion (Fig 2C), demonstrating that in the absence of the microbiota, the lack of the peritrophic

matrix did not result in elevated mitosis. These results indicate that not only oral infection

with pathogenic bacteria, but also the proliferation of the resident microbiota (by inhibition of

PM in this case), in contact with the epithelium, can trigger the midgut proliferative program.

Exposure of D. melanogaster enterocytes to bacteria results in ROS production as a micro-

biota control mechanism. However, the oxidative species produced as a result of bacterial pres-

ence can also cause damage to the midgut cells [31–34]. When mosquitoes were fed with blood

Fig 1. General structure of the midgut epithelium of Aedes aegypti and modulation of cell proliferation upon blood meal. The midgut

epithelia from a blood-fed A. aegypti females were fixed in PFA and in (A) sections of 0.14 μm were stained with WGA-FITC (green), red

phalloidin (red) and DAPI (blue). The peritrophic matrix (PM), intestinal lumen (Lumen), polyploid enterocytes (EC) and basally localized–

putative proliferative cells (�)–are visible. In (B), confocal image (z-stack of 0.7 μm slides (20X)) of the two monolayers of the midgut of a blood-

fed female, 5 days post feeding, stained with PH3 mouse antibody (green), DAPI (blue), and phalloidin (red)–Inset (2x): polyploid enterocytes

(EC) are PH3-positive ISC (ISC) are visible. (C) Mosquitoes were fed on a sugar solution (10% sucrose), blood or blood supplemented with

100μM of the pro-oxidant paraquat. The insect midguts were dissected 24 hours after feeding and immunostained for PH3. Representative

images of mitotic (PH3-labeled) cells (red) in the epithelial midgut of animals fed on sugar, blood or blood supplemented with paraquat are

shown. The nuclei are stained with DAPI (blue). The arrowheads indicate PH3+ cells. (D) Quantification of PH3-positive cells per midgut of

sugar, blood or blood plus paraquat-fed mosquitoes for sugar and blood and 18 for blood-paraquat fed midguts. The experiments were performed

on Red Eye mosquito strain. The medians of at least three independent experiments are shown (n = 40 for sugar and blood and n = 18 for

paraquat supplemented blood). The asterisks indicate significantly different values, ���� P<0.0001 (Student’s t-test).

https://doi.org/10.1371/journal.pntd.0006498.g001
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supplemented with DFB together with the antioxidant ascorbate (ASC), the mitosis levels

dropped significantly (Fig 2C). The ROS production by the midgut epithelium was assessed by

fluorescence microscopy using the fluorescent oxidant-sensing probe dihydroethidium

(DHE). As shown in Fig 2D and 2E, the midguts of DFB-fed mosquitoes exhibited a high fluo-

rescence signal, indicating an intense production of ROS. The intensity of the fluorescence sig-

nal of the DFB-treated midguts was significantly reduced upon ascorbate supplementation of

the blood meal. Similarly, the suppression of microbiota with antibiotics dramatically reduced

ROS levels. These results suggest a mechanism linking PM impairment to ISC proliferation,

indicating that the direct exposure of the midgut epithelium to microbiota activates the pro-

duction of ROS as part of an immune response.

Infection with dengue virus affects midgut epithelia regeneration

The role of epithelial tissue regeneration of the midgut upon viral infection has not been inves-

tigated in mosquitoes. Thus, we decided to evaluate the gut regeneration pattern of two mos-

quito strains that are known to exhibit different susceptibilities to DENV infection [28]. In

basal conditions, i.e. sugar fed, all the strains used in this study presented no difference in the

number of cells under mitosis (S2 Fig). However, after 24 hours of taking a non-infected

blood meal (day 1), the DENV refractory Orlando (Orl) strain presented a higher number of

mitotic cells compared with the susceptible Rockefeller (Rock) strain (Fig 3A and 3B), indicat-

ing that the refractory strain is naturally more proliferative than the susceptible one under

these conditions. In the following days, both strains showed similar time course profiles of

mitotic activity. Upon ingestion of DENV-infected blood, the refractory Orlando strain

showed an increase of mitotic cells, peaking at the second day post blood meal (Fig 3C). Subse-

quently, these midguts showed low numbers of cells in mitosis throughout the remaining

course of infection, reaching a similar number as non-infected midguts. In contrast, the sus-

ceptible Rockefeller strain showed a delayed regenerative response, only reaching the maxi-

mum rate at five days after infection (Fig 3C). These results suggest that the midgut cells of

refractory mosquitoes are able to respond more promptly to the early events of infection.

To test whether the differences in gut homeostatic responses between the two strains could

be a determinant of refractoriness/susceptibility, we disturbed the homeostatic condition of

ISCs by silencing delta expression. The Notch ligand Delta (Dl) is an upstream component of

the Notch pathway that is involved in cell division and differentiation. The delta gene is

expressed in adult ISC cells. Thus, accumulation of Delta is used as a marker of ISCs in D. mel-
anogaster [19]. Furthermore, Delta expression is induced by infection in the D. melanogaster
midgut [35]. The efficiency and duration of Delta silencing by RNAi are shown in Fig 4A and

S3 Fig, respectively. Silencing delta led to a significant reduction in mitosis in both mosquito

Fig 2. The peritrophic matrix shapes intestinal homeostasis by limiting contact of the gut epithelium with the microbiota and preventing ROS

production. Red strain mosquitoes were fed on normal blood or blood infected with non-pathogenic S. marcescens or entomopathogenic P.

entomophila bacteria. Another group of mosquitoes was fed blood supplemented with heat-killed P. entomophila. The midguts were dissected 24

hours after feeding and immunostained for PH3. (A) Representative images of PH3-labeled mitotic cells (green) of the midgut epithelium 24 h after a

naïve blood meal or blood infected with P. entomophila. The nuclei are stained with DAPI (blue). The arrowheads indicate PH3+ cells. Scale

bar = 100 μm (B) Total PH3-positive cells were quantified from the midguts of mosquitoes fed on naïve and bacteria-infected blood (n = 25) or heat-

inactivated P. entomophila. (n = 12). The medians of three independent experiments are shown. The asterisks indicate significantly different values ���

P<0.001 and ���� P<0.0001 (Student’s t-test). (C) Inhibition of PM formation results in a significant increase of progenitors cells under mitosis. The

mosquitoes were fed blood or blood supplemented with diflubenzuron (DFB), DFB plus an antibiotic cocktail (AB) or DFB plus 50 mM ascorbate

(ASC). The midguts were dissected 24 hours after feeding, and the mitotic indices were quantified by counting PH3+ cells. The medians of at least

three independent experiments are shown (n = 30). The asterisks indicate significantly different values ��� P<0.001 and ���� P<0.0001 (Student’s t-

test). (D) Assessments of reactive oxygen species in the midguts were conducted by incubating midguts of insects fed as in (C) with a 50 μM

concentration of the oxidant-sensitive fluorophore DHE. (E) Quantitative analysis of the fluorescence images shown in (D) were performed using

ImageJ 1.45s software (n = 7–9 insects).

https://doi.org/10.1371/journal.pntd.0006498.g002
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strains (Fig 4B and 4C). Interestingly, silencing of delta did not have an effect on infection sus-

ceptibility in the Rockefeller strain (Fig 4D). In contrast, it significantly increased susceptibil-

ity of the Orlando strain to DENV infection, as observed by the increased viral titers in the

delta–silenced refractory strain compared with the dsGFP-injected group (Fig 4D). Con-

versely, when the susceptible strain was pre-treated with DSS, a known inducer of midgut cell

damage, and thereby ISC proliferation [18] and S4 Fig, a significant reduction was seen in

both DENV infection intensity (Fig 4E) and prevalence (Fig 4F) in the midgut, compared

with non-treated mosquitoes. Similar results were observed when DSS-treated Rock mosqui-

toes were infected with DENV4 isolates (S5 Fig). These data clearly indicate that the ability of

midguts to respond at the cellular level, via regeneration of epithelial cells, modulates the suc-

cess of viral infection of A. aegypti. Furthermore, these results show for the first time that the

mosquito processes required to replenish damaged cells and control tissue homeostasis are

determinants of vector competence.

Discussion

Cell renewal is known to be the basis of midgut epithelial integrity in model animals such as

fly and mice [12]. Given the importance of the midgut epithelium in mosquitoes, where this

tissue is effectively the first barrier that arboviruses affront to complete the transmission cycle

[9], we decided to address the question of how this epithelium replenish its cells during the dif-

ferent challenges of blood feeding and infection. Previous descriptive reports of epithelial cell

structure, function and midgut remodeling during metamorphosis [15,16,36] have shed some

light on this process in mosquitoes, suggesting that the cell types described in other organisms,

such as D. melanogaster, are also found in A. aegypti. Amongst the fully differentiated cells, the

enterocytes were clearly distinguishable by their large nuclei size, abundance and localization

[10,11]. However, due to the current lack of mosquito specific markers for other differentiated

and progenitor cells, like ee’s and EB’s, only recently these cells were identified in mosquitoes

larvae [37]. Nonetheless, ISC hallmark capacity is to undergo mitosis, which can be marked

using antibodies for phosphorylated histone 3. This allowed us to successfully identify the pres-

ence of ISC in the epithelium, and to quantify the number or cells dividing in the different con-

ditions evaluated (Fig 1A and 1B).

In the life history of mosquitoes, blood feeding represents a dramatic change from a sugar

diet to ingestion of a large protein-rich meal. This transition imposes challenges to midgut

homeostasis that are not faced by non-hematophagous insects. Knowledge about the mecha-

nisms involved in the maintenance of midgut cellular integrity and homeostasis upon blood

feeding or stress conditions is limited not only for A. aegypti, but also for other important vec-

tors. In this study, we show unique properties of the mosquito midgut, suggesting that the reg-

ulation of epithelial cell proliferation is tightly regulated to allow proper handling of both

chemical and biological sources of stress, including DENV infection, that occur during and

Fig 3. Dengue virus infection impacts midgut homeostasis in a strain specific manner. (A) Blood feeding induces

different levels of PH3 positive cells in the midgut of the susceptible (Rock) and refractory (Orl) strains 24 hours after

the meal. Representative images of PH3 labeling in both strains 24 hours after the blood meal. The nuclei are stained

with DAPI. The arrowheads indicate PH3+ cells. Scale bar = 100 μm. (B) Mosquitoes from the two strains were blood

fed and at day zero (non blood-fed) or at different days after feeding, the midguts were dissected and immunostained

for PH3. The red arrows indicate the time of blood feeding and the time in which the digestion is completed (after

blood bolus excretion). In (C) the mosquitoes were fed on DENV2-infected blood and mitotic-cell counting was

performed at different days after infection. The red arrow indicates the time of DENV escape from the midgut to

hemocoel. The medians of at least three independent experiments are shown (n = 30). The asterisks indicate

significantly different values � P<0.05 �� P<0.01 and ��� P<0.001 (Student’s t-test).

https://doi.org/10.1371/journal.pntd.0006498.g003
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Fig 4. Interference in gut homeostatic response impacts vector competence. (A). The midguts of dsRNA-injected Rockefeller and Orlando mosquitoes

were dissected 24 days after a blood meal for silencing quantification of Delta, the ligand of Notch. Total PH3-positive cells were quantified from midguts

of silenced Delta or control (GFP) mosquitoes from the Rockefeller (B) or Orlando (C) strains, both 1 and 5 days after blood meal. (D) dsRNA-Injected

mosquitoes were fed DENV2-infected blood, and 5 days after the infection, the midguts were dissected for the plaque assay. (E) The susceptible

(Rockefeller) mosquitoes were pre-treated with the tissue-damaging dextran sulfate sodium (DSS) accordingly to material and methods section. Twelve

hours after the end of the DSS treatment, the mosquitoes were fed with DENV-2-infected blood. After 5 days, the midguts were dissected for the plaque

assay. (F) The percentage of infected midguts (infection prevalence) was scored from the same set of data as in (E). The medians of at least three

independent experiments are shown. n = 20–25 in (A), (B) and (C); n = 20–26 in (D) and n = 40 in (E). Statistical analyzes used were: Student’s t-test for

(A), (B) and (C); Mann-Whitney U-tests were used for infection intensity (D and E); and chi-square tests were performed to determine the significance of

infection prevalence analysis (F). �P<0.05, �� P<0.01, ���� P<0.0001.

https://doi.org/10.1371/journal.pntd.0006498.g004
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after blood digestion. Based on these findings, we suggest that this regulation of midgut

homeostasis is an important determinant of viral infection dynamics in the vector gut.

In A. aegypti, the maximal digestion rate is attained 24 hours after a blood meal [38].

Despite the dramatic increase of the microbiota, approximately 1000 times the levels before a

meal [5], mosquitoes seem to maintain midgut epithelial cell turnover controlled (Fig 1C and

1D). One explanation for this is the physical separation between the bolus and the epithelium

by the PM. The PM is a thick extracellular layer composed mostly of chitin fibrils and glyco-

proteins that is gradually formed from 12–24 hours after a blood meal and surrounds the

blood bolus, creating a physical separation from the midgut epithelium [7,8]. To preserve

homeostasis, the PM establishes a selective barrier, permeable to nutrients and digestive

enzymes but acting as a first line of defense against harmful agents. We show here that when

the midgut epithelium was exposed to pathogenic bacteria ingested with the blood meal, thus

before PM formation, there was a marked increase of mitosis (Fig 2B). More importantly,

inhibition of the PM formation also resulted in elevated mitotic cell counts (Fig 2C). Treating

insects with antibiotics abolished the mitosis upregulation promoted by chitin synthesis inhi-

bition, further demonstrating that the contact of the blood bolus itself was not the determining

factor to the increase mitotic cell numbers, but instead, the consequent exposure of the gut epi-

thelium to the indigenous bacterial microbiota present in the lumen was the predominant

event that elicited this response. In this way, the compartmentalization of the bolus may allow

the enterocytes to minimize their exposure to deleterious agents, and it results in reduced need

to shed and replenish damaged cells.

ROS production by midgut cells represents a major innate immunity effector mechanism

that is involved in the control of the microbiota. However, ROS can also damage host cells,

and thus, a proper balance between ROS production and microbial suppression is essential for

the health of the host itself [31–34,39]. Here, we show that production of ROS was activated

when PM formation was blocked and that this effect can be prevented by antibiotics (Fig 2D).

Therefore, we propose that the signaling mechanism that leads to increased mitosis after expo-

sure to indigenous bacteria is the production of ROS by the intestinal cells, as a defensive, yet

possibly damaging, response (Fig 2).

The midgut epithelial cells are the first to support viral replication within the mosquito vec-

tor and several studies have addressed the immune response of the mosquito to the virus [40].

Additionally, it is well-established that changes in ROS production in the midgut impact not

only innate immunity responses against bacteria, but can also affect the mosquito ability to

transmit human pathogens [5,41–44]. Despite this comprehensive knowledge about infection-

related processes that occur within midgut cells, little is known about the cell turnover prior to

and after infection. It was our intention to evaluate if this natural process of the midgut epithe-

lium was different between mosquito strains with different degrees of susceptibility to DENV.

Rockefeller (Rock) and Orlando (Orl) strains are susceptible and refractory strains respec-

tively; however, under normal (sugar fed) conditions, they possess similar levels of mitotic

cells (S2 Fig). Interestingly, the Orl strain possesses higher levels of mitosis than the Rock

strain 24 hours after the blood meal (Fig 3A and 3B). This increased number of mitotic cells,

is restricted to this specific time window, as 48 hours after the feeding, the numbers are no lon-

ger significantly different. This fact becomes relevant when the timeline is superposed to the

timeline of the initial viral infection [45]. This becomes more apparent, when the numbers of

mitotic cells on the susceptible Rock strain increase after 5 days, in a consistent timeline to the

establishment of a successful infection with higher levels of infected cells, which is not

observed in Orl strain that constrains the infection. In day 7, when the viruses normally leave

the midgut to infect other tissues [45], the mitotic rate is reduced to levels compared of non-

infected sugar-fed midguts in both strains (Fig 3C). Transcriptomic analyses of mosquito
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strains with different degrees of susceptibility to DENV revealed that some genes associated

with cellular proliferation, growth and death are differentially expressed in refractory strains,

upon DENV infection [46–49]. However, this has not been directly associated to midgut

regeneration in these studies. In addition, the increased expression and activation of a variety

of apoptotic cascade components in the midgut after viral infections implicate apoptosis as

part of the A. aegypti defense against arboviruses [24,25,27]. Altogether, these studies pointed

to the significant importance of cell replenishing in the midgut epithelium to vector compe-

tence. Because of that, we decided to target the Notch pathway through RNAi; to disturb the

normal regenerative process of the epithelium. Amongst the proteins involved in this pathway,

the ligand Delta was an excellent candidate for RNAi because it is upstream of the Notch sig-

naling pathway and is considered a marker of ISC [19]. Induction of RNAi by injection of

dsDelta in adult females led to the silencing of the Notch ligand Delta and resulted on reduced

cell division (Fig 4B and 4C), as previously reported by Guo and Ohlstein (2015) in D. melano-
gaster and by VanDussen et al (2012), in mice. As knockdown of Delta resulted on increased

DENV2 viral titers in refractory strain (Fig 4D), this suggested that cell regeneration is also a

contributing factor to the modulation of viral infection and consequently to refractoriness. In

addition to this result, we pre-treated mosquitoes of the susceptible strain (Rockefeller) with

DSS, to induce cell division. Likewise, we found that the increase in mitosis was able to expand

refractoriness of these mosquitoes. Our data shows for the first time that the ability to replenish

the epithelial differentiated cells, by ISC engagement in tissue regeneration, is an important

aspect of the mosquito’s antiviral response in these strains. Furthermore, these results revealed

that the involvement of the Notch signaling pathway in midgut cell proliferation is also con-

served in A. aegypti. Additional work is required to further determine the involvement of the

other cell types and to detail the mechanism by which Delta-Notch signaling interferes in mid-

gut cell proliferation in the midgut of A. aegypti. Very recently, it has been shown that both

Delta and Notch transcriptions were induced in midgut of DENV2-primered mosquitoes [50],

suggesting that this pathway is important to the vector defense against DENV infection. The

role of other pathways previously shown to regulate progenitor cell and differentiation in D.

melanogaster and mammalians, such as the Hippo, JAK-STAT and other pathways, may also

reveal key connections between intestinal cell replenishment and vectorial competence. The

development of specific markers for each A. aegypti epithelial cell type would allow the evalua-

tion of the fate of the new cells produced after ISC division, which could also give important

insights on the entire process of midgut regeneration.

The first 24–48 h after ingestion of virus infected blood are considered the most critical for

determining vector competence of a given mosquito (reviewed in [51]). Accordingly, we pro-

pose that the mitotic events in the early stages of infection (e.g., 24 h after viral ingestion)

occur when the number of infected cells is still low and the capacity to eliminate damaged cells

prevents viral spreading, and therefore must be effective to limit the infection. The number of

mitotic cells of the refractory strain midgut at this initial time point is higher than in the sus-

ceptible strain, implicating this as a likely determinant for refractoriness (Fig 4A and 4B). The

differences observed in the total number of mitotic cells and in the pattern of recovery between

Rockefeller and Orlando strains may suggest more extensive damage in the midgut of the sus-

ceptible mosquitoes caused by virus infection. However, the correlation between viral infection

progression, cell damage and regenerative responses in the early infection remains to be inves-

tigated. In addition, it is also of great importance to investigate the impact of midgut cell

renewal on the cellular mechanisms that have been associated with the overcoming of the mid-

gut escape barrier, leading to the dissemination of arboviruses and impacting the vector com-

petence, such as disassembly of basal lamina [52], apoptosis [53] or midgut conduits [54].
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In conclusion, our data suggest that the midgut infection by DENV is favored by delayed

midgut renewal in a permissive mosquito strain and that refractoriness would be supported, at

least partly, by the capacity to promptly activate the ISC division program. At the present time,

dengue, chikungunya and zika viruses are widespread across the globe, and the understanding

of the multiple factors affecting virus infection within the mosquito is crucial. The fact that

faster cell renewal could be related to refractoriness adds up a new factor to be considered

among the many determinants of vector competence and opens up the spectrum of the vector

physiological events that are important when studying viral transmission. Future research is

required to test if other DENV refractory field strains also possess differential tissue homeo-

static properties and if a similar mechanism will occur in other arboviral infections. These

findings reveal a new path towards a better understanding of vector competence, and may sup-

port the development of alternative strategies of virus transmission control.

Finally, these results highlight that the rate of midgut cell renewal should be taken into

account when choosing mosquito strains for vector control strategies that use population

replacement, such as SIT or Wolbachia based methodologies.

Materials and methods

Ethics statement

All experimental protocols and animal care were carried out in accordance to the institutional

care and use committee (Comitê para Experimentação e Uso de Animais da Universidade Fed-

eral do Rio de Janeiro/CEUA-UFRJ) and the NIH Guide for the Care and Use of Laboratory

Animals (ISBN 0–309-05377-3). The protocols were approved under the registry CEUA-UFRJ

#155/13. All animal work at JHU was conducted in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health (NIH), USA. The protocols and procedures used in this study were approved by the

Animal Care and Use Committee of the Johns Hopkins University (Permit Number:

M006H300) and the Johns Hopkins School of Public Health Ethics Committee.

Rearing of Aedes aegyptimosquitoes

The Aedes aegypti (Red Eye strain) were raised at the insectary of UFRJ under a 12-hour light/

dark cycle at 28˚C and 70–80% relative humidity. The adults were maintained in a cage and

given a solution of 10% sucrose ad libitum unless specified otherwise. The A. aegypti (Rockefel-

ler and Orlando strains) were raised at the insectary of JHU under a 12-hourlight/dark cycle,

at 27˚C and 95% humidity. The adults were maintained in a cage and given a solution of 10%

sucrose ad libitum. The adult females were dissected at different times after blood feeding for

the experiments.

Mosquito antibiotic treatment

The mosquitoes were rendered free of cultivable bacteria by maintaining them on a 10%

sucrose solution with penicillin (100 u/mL), and, streptomycin (100 μg/mL) from the first day

post-eclosion until the time of dissection post blood feeding.

Mosquito meals

The A. aegypti mosquitoes from the Red Eye strain (four- to seven-days-old) were artificially

fed with heparinized rabbit blood. The feeding was performed using water-jacketed artificial

feeders maintained at 37˚C and sealed with parafilm membranes. The insects were starved for
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4–8 hours prior to the feeding. Unfed mosquitoes were removed from the cages in all the

experiments.

The oxidative challenge was provided by addition of 500 μM of paraquat (ChemService,

West Chester, PA, USA) to the blood meal. As an antioxidant treatment, 50mM of ascorbic

acid (neutralized to pH 7.0 with NaOH) was also added to blood. The mosquitoes were orally

infected by Serratia marcescens BS 303 strain or Pseudomonas entomophila L48 strain at a con-

centration of 105 bacteria/mL of blood. Briefly, overnight cultures were used either live or after

heat inactivation. Inactivation of P. entomophila was done by heating at 98˚C for 1 hour. Live

and heat-killed bacteria were all pelleted after OD600 measurements to achieve final concen-

tration of 105 bacteria/mL of blood. The media supernatant was discarded and the cell pellet

was resuspended in blood previous to the mosquito feeding. The compound diflubenzuron

(DFB) (0.4 g/L), a well-known chitin synthesis inhibitor, was added to the blood meal to pre-

vent the peritrophic matrix establishment [30].

To stimulate ISC proliferation and midgut regeneration [18], the mosquitoes were fed with

1% DSS (dextran sulfate sodium salt 6.5–10 kDa, Sigma, St. Louis, MO, USA) dissolved in 10%

sucrose for 2 days before infection. Twelve hours prior to infection, the DSS-sucrose solution

was substituted with a 10% sucrose solution to remove residual DSS from the midgut content.

The control mosquitoes were fed with 10% sucrose only. The infection with DENV was carried

out as described in the following sections.

Proliferation and mitotic cells quantification

The quantification of mitosis in whole midgut tissues was performed by PH3 labeling as

described elsewhere [55]. Briefly, female adult mosquitoes were dissected in PBS. Midguts

were fixed in PBS with 4% paraformaldehyde for 30 minutes at room temperature. Samples

were washed in PBS for 2 times of 10 minutes each. Then the tissues were permeabilized in

PBS with 0.1% X-100 (for 15 min at room temperature) and blocked in a blocking solution

containing PBS, 0.1% Tween 20, 2.5% BSA and 10% normal goat serum for at least 30 min at

room temperature. All samples were incubated with primary antibody mouse anti-PH3 (1:500,

Merck Millipore, Darmstadt, Germany). After washing 3 times of 20 minutes each in washing

solution (PBS, 0.1% Tween 20, 0.25% BSA), samples were incubated with secondary goat anti-

mouse antibody conjugated with Alexa Fluor 488 or 546 (Thermo Fisher Scientific, MA, USA)

for at least 1 hour at room temperature at a dilution of 1:2000. DNA was visualized with DAPI

(1mg/ml, Sigma), diluted 1:1000. The gut images were acquired in a Zeiss Observer Z1 with a

Zeiss Axio Cam MrM Zeiss, and the data were analyzed using the AxioVision version 4.8 soft-

ware (Carl Zeiss AG, Germany). Representative images were acquired using a Leica SP5 confo-

cal laser-scanning inverted microscope with a 20X objective lens. Images were processes using

Las X software.

WGA and phalloidin staining

Midguts from insects that were fed on naive blood or blood with DFB were dissected 24 h after

feeding and fixed in 4% paraformaldehyde for 3 h. All of the midguts were kept on PBS-15% of

sucrose for 12 h and then in 30% sucrose for 30 h. After a 24-h infiltration in OCT, serial

microtome 14-lm-thick transverse sections were obtained and collected on slides that were

subsequently labeled with the lectin WGA (Wheat Germ Agglutinin; a lectin that is highly spe-

cific for N-acetylglucosamine polymers) coupled to fluorescein isothiocyanate (FITC). The

slides were washed 3 times in PBS buffer containing 2 mg/mL BSA (PBSB). The samples were

then incubated in 50mM NH4Cl/PBS for 30 min; in 3% BSA, 0.3% Triton X-100 PBS for 1 h;

and in PBSB solution with 100 mg/mL WGA-FITC (EY Laboratories) for 40 min. The slides
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were then washed three times with PBSB and mounted with Vectrashield with DAPI mounting

medium (Vector laboratories). The sections were acquired in an Olympus IX81 microscope

and a CellR MT20E Imaging Station equipped with an IX2-UCB controller and an ORCAR2

C10600 CCD camera (Hammamatsu). Image processing was performed with the Xcellence RT

version 1.2 Software.

Midguts from insects that were fed on blood alone or blood with DENV-2 were dissected 5

days after feeding and fixed in 4% paraformaldehyde using the same protocol as for mitotic

cell quantification. After the secondary antibody incubation washes, 30 min incubation with

phalloidin 1:100 (1uL) in 98uL blocking solution, along with the DAPI (1:100) was done at

room temperature protected from light. Samples were washed twice, for 5 minutes (stationary,

room temperature, protected from light) in 0.5mL washing solution and then onto slides with

VectaShield. Images (z-stack of 0.7 μm slides) were taken on a Zeiss LSM700 laser scanning

confocal microscope at the Department of Cell Biology at JHU with a 20X objective lens and

processed using Zeiss Zen Black Edition software.

ROS detection in the midgut

The mosquito midguts were dissected in PBS 24h after feeding and incubated with 50μM of

dihydroethidium (hydroethidine; DHE; Invitrogen) diluted in Leibovitz-15 media supple-

mented with 5% fetal bovine serum for 20 min at room temperature in the dark. The incuba-

tion media was gently removed and replaced with a fresh dye-free media. The midguts were

positioned on a glass slide, and the oxidized DHE-fluorescence was observed by a Zeiss

Observer Z1 with a Zeiss Axio Cam MrM Zeiss using a Zeiss-15 filter set (excitation BP 546/

12; beam splitter FT 580; emission LP 590) (Carl Zeiss AG, Germany) [5,56].

RNA extraction and qPCR analysis

For the qPCR assays, the RNA was extracted from the midgut using TRIzol (Invitrogen, CA,

USA) according to the manufacturer’s protocol. The complementary DNA was synthesized

using the High-Capacity cDNA Reverse transcription kit (Applied Biosystems, CA, USA). The

qPCR was performed with the StepOnePlus Real Time PCR System (Applied Biosystems, CA,

USA) using the Power SYBR-green PCR master MIX (Applied Biosystems, CA, USA). The

Comparative Ct method [57,58] was used to compare the changes in the gene expression lev-

els. The A. aegypti ribosomal S7 gene was used as an endogenous control [59]. The oligonucle-

otide sequences used in the qPCR assays were S7 (AAEL009496-RA): S7_F: GGGACAAATC

GGCCAGGCTATC and S7_R: TCGTGGACGCTTCTGCTTGTTG; Delta (AAEL011396),

Delta_Fwd: AAGGCAACTGTATCGGAGCG and Delta_Rev: TATGACATCGCCAAACG

TGC.

Gene silencing

Two- to three-day old mosquito females (Rockefeller and Orlando) were cold anesthetized and

69 nL of 3 μg/μL dsRNA solution was injected into the thorax. Three days after injection, the

mosquitoes were infected with DENV. Mosquito midguts were collected after 24h for real time

PCR and after 5 days for mitosis assay or DENV infection analysis. The HiScribe T7 in vitro tran-

scription kit (New England Biolabs) was used to synthesize the dsRNA. The unrelated dsGFP

was used as a control, and the silencing efficiency was confirmed through qPCR. To generate

dsDelta, the following oligonucleotides (containing the T7 polymerase-binding site) were used:

dsDelta_Fwd: GTAATACGACTCACTATAGGGAGCAAGCCTAACGAGTGCAT

dsDelta_Rev: GTAATACGACTCACTATAGGGTTCCTTCTCACAGTGCGTCC
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Dengue virus propagation and mosquito infections

The DENV-2 (New Guinea C strain) was propagated for 6 days in C6/36 cells maintained in

complete MEM media supplemented with 10% fetal bovine serum, 1% penicillin/streptomy-

cin, 1% non-essential amino acids and 1% L-glutamine. The virus titer was determined by pla-

que assay as 107 PFU/mL [60]. The females were infected through a blood meal containing:

one volume of virus, one volume of human red blood cells (commercial human blood was cen-

trifuged and the plasma removed), 10% human serum and 10% 10 mM ATP. Unfed mosqui-

toes were removed from the cages. The midguts were dissected at 5 days post-blood meal and

stored individually in DMEM at -80˚C until used.

For DENV-4 (Boa Vista 1981 strain) propagation, the virus was cultivated 6 days in C6/36

cells maintained in Leibovitz-15 media supplemented with 5% fetal bovine serum, 1% non-

essential amino acids,1% penicillin/streptomycin and triptose (2.9 g/L) [61]. The virus titer

was determined by plaque assay as 107 PFU/mL. The females that were pre-treated with DSS

or regular sucrose (control) were infected using one volume of rabbit red blood cells and one

volume of DENV-4. The midguts were dissected at 7 days after infection and stored individu-

ally in DMEM at -80˚C until used.

Plaque assay

The plaque assay was performed as previously described [28]. The BHK-21 cells were cultured

in complete DMEM media, supplemented with 10% fetal bovine serum, 1% penicillin/strepto-

mycin and 1% L-glutamine. One day before the assay, the cells were plated into 24 wells plates

at 70–80% confluence. The midguts were homogenized using a homogenizer (Bullet Blender,

Next, Advance) with 0.5mm glass beads. Serial dilutions (10 folds) were performed, and each

one was inoculated in a single well. The plates were gently rocked for 15 min at RT and then

incubated for 45 min at 37˚C and 5% CO2. Finally, an overlay of DMEM containing 0.8%

methylcellulose and 2% FBS, was added in each well, and the plates were incubated for 5 days.

To fix and stain the plates, the culture media was discarded and a solution of 1:1 (v:v) methanol

and acetone and 1% crystal violet was used. The plaque-forming units (PFU) was counted and

corrected by the dilution factor.

Statistical analysis

Unpaired Student’s t-tests were applied where comparisons were made between two treat-

ments or two different mosquito strains, as indicated in the figure legends. Mann-Whitney U-

tests were used for infection intensity and chi-square tests were performed to determine the

significance of infection prevalence analysis. All statistical analyses were performed using

GraphPad 5 Prism Software (La Jolla, United States).

Supporting information

S1 Fig. Peritrophic matrix formation after a meal. Midguts of females that were fed on

blood alone or blood with DFB. Insects were dissected and fixed, and sections 0.14 μm were

stained with WGA-FITC (green) and DAPI (blue). The peritrophic matrix is indicated by a

white arrow. (L) indicates the luminal side where the PM forms.

(TIF)

S2 Fig. Comparison of sugar Aedes aegypti fed strains. A. aegypti Red-eye, Rockefeller and

Orlando strains were collected 5 days after emergence. All PH3 positive cells in the anterior

midgut were counted. No significant difference was observed between the groups. Klustal-
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Wallis test.

(TIF)

S3 Fig. Duration of the silencing effect after Delta dsRNA injection. Midguts of females that

were injected with dsRNA for the Delta gene were dissected at 3 and 5 days after blood feeding

and the RNA extracted for gene expression analysis. dsLacZ was used as experimental control

of non- related dsRNA.

(TIF)

S4 Fig. DSS treatment increases migdut mitosis. Rockefeller mosquitoes were pre-treated

with the tissue-damaging dextran sulfate sodium (DSS) for 3 (three) days and blood fed. After

24 hours, total PH3-positive cells were quantified from midguts of Control (sugar fed) or DSS

(1% DSS in the sugar solution) mosquitoes.

(TIF)

S5 Fig. DSS treatment decreases both DENV4 infection intensity and prevalence. (A)

Rockefeller mosquitoes were pre-treated with the tissue-damaging dextran sulfate sodium

(DSS) and infected with DENV-4. After 5 days, the midguts were dissected for the plaque

assay. (B) The percentage of infected midguts (infection prevalence) was scored from the same

set of data as in A. Statistical analyzes used were Mann-Whitney U-tests for infection intensity

(A) and chi-square tests for the infection prevalence analysis (B). �� P<0.01.

(TIF)
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triz Walter-Nuno, José Henrique M. Oliveira, Pedro L. Oliveira, Gabriela O. Paiva-Silva.

Funding acquisition: George Dimopoulos, Pedro L. Oliveira, Gabriela O. Paiva-Silva.

Investigation: Mabel L. Taracena, Vanessa Bottino-Rojas, Octavio A. C. Talyuli, Ana Beatriz
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Ana Beatriz Walter-Nuno, José Henrique M. Oliveira, Michael B. Wells, George Dimopou-

los, Pedro L. Oliveira, Gabriela O. Paiva-Silva.

References
1. Lounibos LP. Invasions by insect vectors of human disease. Annu Rev Entomol. 2002; 47: 233–66.

https://doi.org/10.1146/annurev.ento.47.091201.145206 PMID: 11729075

2. Patterson J, Sammon M, Garg M. Dengue, Zika and Chikungunya: Emerging Arboviruses in the New

World. West J Emerg Med. 2016; 17: 671–679. https://doi.org/10.5811/westjem.2016.9.30904 PMID:

27833670

3. Graça-Souza A V., Maya-Monteiro C, Paiva-Silva GO, Braz GRC, Paes MC, Sorgine MHF, et al. Adap-

tations against heme toxicity in blood-feeding arthropods. Insect Biochem Mol Biol. 2006; 36: 322–335.

https://doi.org/10.1016/j.ibmb.2006.01.009 PMID: 16551546

4. Sterkel M, Oliveira JHM, Bottino-Rojas V, Paiva-Silva GO, Oliveira PL. The Dose Makes the Poison:

Nutritional Overload Determines the Life Traits of Blood-Feeding Arthropods. Trends Parasitol. 2017;

xx: 1–12. https://doi.org/10.1016/j.pt.2017.04.008
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and the 2-ÄÄCT method. Methods. 2001; 25: 402–408. https://doi.org/10.1006/meth.2001.1262 PMID:

11846609

59. Sim S, Dimopoulos G. Dengue virus inhibits immune responses in Aedes aegypti cells. PLoS One.

2010; 5. https://doi.org/10.1371/journal.pone.0010678 PMID: 20502529

60. Das S, Garver L, Ramirez JR, Xi Z, Dimopoulos G. Protocol for Dengue Infections in Mosquitoes (A.

aegypti) and Infection Phenotype Determination. J Vis Exp. 2007; 4–5. https://doi.org/10.3791/220

PMID: 18979018
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