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Abstract

Immune repertoires provide a unique fingerprint reflecting the immune history of individu-

als, with potential applications in precision medicine. However, the question of how per-

sonal that information is and how it can be used to identify individuals has not been

explored. Here, we show that individuals can be uniquely identified from repertoires of just

a few thousands lymphocytes. We present “Immprint,” a classifier using an information-

theoretic measure of repertoire similarity to distinguish pairs of repertoire samples coming

from the same versus different individuals. Using published T-cell receptor repertoires

and statistical modeling, we tested its ability to identify individuals with great accuracy,

including identical twins, by computing false positive and false negative rates < 10−6 from

samples composed of 10,000 T-cells. We verified through longitudinal datasets that

the method is robust to acute infections and that the immune fingerprint is stable for at

least three years. These results emphasize the private and personal nature of repertoire

data.

Author summary

Immune repertoires are a trove of personal information: unique to each individual, they

are also windows into their past and future health. Thanks to their potential for personal-

ized medicine and progress of sequencing technologies, these repertoires are now rou-

tinely sequenced. As a consequence they raise the question of identifiability of samples. In

this paper, we estimate the quantity of immune cells needed to associate two samples from

the same individual: as little as a finger prick worth of blood can serve as an immune fin-

gerprint that can distinguish even identical twins, without giving away genetic informa-

tion about non-consenting relatives. We show that this fingerprint is stable through time,

and is not erased during infections or vaccinations.
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1 Introduction

Personalized medicine is a frequent promise of next-generation sequencing. These high-

throughput and low-cost sequencing technologies hold the potential of tailored treatment for

each individual. However, progress comes with privacy concerns. Genome sequences cannot

be anonymized: a genetic fingerprint is in itself enough to fully identify an individual, with the

rare exception of monozygotic twins. The privacy risks brought by these pseudonymized

genomes have been highlighted by multiple studies [1–3], and the approach is now routinely

used by law enforcement. Sequencing experiments that focus on a limited number of expressed

genes should be less prone to these concerns. However, as we will show, B- and T-cell receptor

(BCR and TCR) genes are an exception to this rule.

BCR and TCR are randomly generated through somatic recombination [4], and the fate of

each B- or T-cell clone depends on the environment and immune history. The immune T-cell

repertoire, defined as the set of TCR expressed in an individual, has been hailed a faithful, per-

sonalized medical record, and repertoire sequencing (RepSeq) as a potential tool of choice in

personalized medicine [5–9]. In this report, we describe how, from small quantities of blood

(blood spot or heel prick), one can extract enough information to uniquely identify an individ-

ual, providing an immune fingerprint. The “Immprint” classifier analyzes this immune finger-

print to decide whether two samples were sampled from the same individual.

2 Results

Given two samples of peripheral blood containing respectively M1 and M2 T-cells, we want to

distinguish between two hypothetical scenarios: either the two samples come from the same

individual (“autologous” scenario), or they were obtained from two different individuals (“het-

erologous” scenario), see Fig 1A.

TCR are formed by two protein chains α and β. They each present a region of high somatic

variability, labeled CDR3α and CDR3β, randomly generated during the recombination pro-

cess. These regions are coded by short sequences (around 50 nucleotides), which are captured

by RepSeq experiments. The two chains are usually not sequenced together so that the pairing

information between α and β is lost. Most experiments focus on the β chain, and when not oth-

erwise specified, the term “receptor sequence” in this paper will refer only to the nucleotide

sequence of the TRB gene coding for this β chain (which include CDR3β). Similarly, as most

cells expressing the same beta chain are clonally related, we will be using the terms “clone” and

“clonotype” to refer to set of cells with the same nucleotide TRB sequence, even if they were

produced in separate generation events and are not real biological clones (since we have no

means of distinguishing the two cases). CDR3β sequences are very diverse, with more than

1040 possible sequences [10]. For comparison, the TCRβ repertoire of a given individual is

composed of 108 to 1010 unique clonotypes [11, 12]. As a result, most of the sequences found

in a repertoire are “private”.

2.1 Immprint scores

To discriminate between the autologous and heterologous scenarios, one can simply count the

number of unique nucleotide receptor sequences shared between the two samples, which we

call S. Samples coming from the same individual should have more receptors in common

because T-cells are organized in clones of cells carrying the same TCR. By contrast, S should

be low in pairs of samples from different individuals, in which sharing is due to rare conver-

gent recombinations. Appropriately setting a threshold to jointly minimize the rates of false

positives and false negatives (Fig 1B), we can use S as a classifier to distinguish autologous
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Fig 1. A) The two samples A and B can either originate from the same individual (autologous) or two different individuals (heterologous). In both

scenarios, sequences can be shared between the two samples, but their quantity and quality vary. B) Schematic representation of the distribution of

the S or I scores for multiple pairs of samples extracted from the same individual (in the autologous scenario) or the same pair of individuals

(heterologous). The dashed vertical line represents the threshold value. C) Expected value of S and I for different pairs of samples, sampled from the

same individual (in blue) or different ones (yellow). Green dots represent samples extracted from pairs of identical twins. The dashed lines

represents the theoretical upper bound for heterologous repertoires (see Methods) for both S and I (γ = 12). D) Sampling distributions of S for 6

different patients (autologous case, each blue curve is one patient) or 6 different pairs of patients (heterologous, each yellow or green curve is a pair

of patients) for M = 5000. The y-axis scale on the left is adapted to the heterologous distributions while the scale on the right corresponds to the

(much wider) autologous ones. The 3 sampling distributions in green correspond to a pair of samples extracted from identical twins. E) Detection

Error Trade-off (DET) graph for both summary statistics and different sample sizes M. I (γ = 12) outperforms S in all scenarios. F) AUROC (Area

Under Receiver Operating Characteristic), as a function of M. The AUROC is a traditional measure of the quality of a binary classifier (a score closer

to one indicates a better classifier). The results are shown for S and I both in the default case (only the β chain considered) or for the full (α—β)

receptor.

https://doi.org/10.1371/journal.pgen.1009301.g001
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from heterologous samples. S is not normalized for sequencing depth and values of S should

not be compared between samples of different size.

The S score can be improved upon by exploiting the fact that some receptors are much

more likely than others to be generated during V(D)J-recombination, with variations in gener-

ation probability (Pgen, [13–15]) spanning 15 orders of magnitude. Public sequences (with

high Pgen) are likely to be found in multiple individuals [16], while rare sequences (low Pgen)

are unlikely to be shared by different individuals, and thus provide strong evidence for the

autologous scenario when found in both samples. To account for this information, we define

the score:

I ¼
X

shared s

½ ln ð1=PgenðsÞÞ � g�; ð1Þ

which accounts for Shannon’s “surprise” ln (1/Pgen)—a measure of unexpectedness—associ-

ated with each shared sequence s, so that rare shared sequences count more than public ones.

The constant γ depends on the repertoire’s clonal structure and is set to 12 in the following

(see Methods for an information-theoretic derivation). Pgen is computed using models previ-

ously trained on data from multiple individuals [14]. Small differences reported between the

Pgen of distinct individuals justify the use of a universal model [15].

2.2 Measuring error rates

We tested the classifiers based on the S and I scores on TCRβ RepSeq datasets from 656 indi-

viduals [17]—labeled according to their cytomegalovirus (CMV) serological status. Sequences

were downsampled to mimic experiments where M1 = M2 = M cells were sampled and their

receptors sequenced. The frequency of a particular clonotype in the sample (the proportion of

cells expressing a particular beta chain) was estimated using the read counts of unique TCRβ
sequences, and the mean values of S and I computed with a procedure designed to correct for

the limited diversity of the sampled repertoire relative to the full repertoire, see Methods 4.3.

Similar results may be obtained when M1 and M2 are different (see Methods). The clones most

often shared between two autologous samples are also the most clonally expanded—and hence

are probably antigen experienced. We verified that the sequence statistics of those expanded

clonotypes did not differ from generic ones (S1 Fig).

In Fig 1C, we plot the mean value of S (over many draws of M = 5000 cells) for each indi-

vidual (autologous scenario, in blue) and between pairs of different individuals (heterologous

scenario, in yellow). The two scenarios are clearly discernable under both scores. This result

holds for pairs of monozygotic twins obtained from a distinct dataset [18] (green dots), consis-

tent with previous reports that twins differ almost as much in their repertoires as unrelated

individuals [18–20]. Heterologous scores (yellow dots) vary little, and may be bounded from

above by a theoretical prediction (dashed line) based on a model of recombination [21] (see

Methods). On the other hand, autologous scores (blue dots) show several orders of magnitude

of variability across individuals. These variations stem from the clonal structure of the reper-

toire, and correlate with measures of diversity (S2 Fig), which is known to vary a lot between

individuals and correlates with age [22], serological status, and infectious disease history [23,

24]. To explore the worst case scenario of discriminability, hereafter we will focus on the indi-

vidual with the lowest autologous S found in the dataset.

The sampling process introduces an additional source of variability within each individual.

Two samples of blood from the same individual do not contain the exact same receptors, and

the values of S and I is expected to vary between replicates. Examples of these variations are

shown in Fig 1D. The blue (respectively yellow) curves correspond to the sample distributions
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in the autologous (heterologous) scenario for different individuals (pairs of individuals). The

distribution of S is well-approximated by a Poisson distribution, while I follows approxi-

mately a compound distribution of a normal and Poisson distributions (see Methods for

details). Armed with these statistical models of variations, we can predict upper bounds for the

false negative and false positive rates. As seen from the detection error trade-off (DET) graph

Fig 1E, the Immprint classifier performs very well for a few thousand receptors with an advan-

tage for I .

With 10, 000 cells, corresponding to *10 μL of blood, Immprint may simultaneously

achieve a false positive rate of< 10−16 and false negative rate of< 10−6, allowing for the near-

certain identification of an individual based on the I score in pairwise comparisons against

the world population *1010. When a large reference repertoire has been collected (M1 = 1,

000, 000, corresponding to *1mL of blood), an individual can be identified with just 100 cells

(S3 Fig).

The AUROC estimator (Area Under the Curve of the Receiver Operating Characteristic), a

typical measure of a binary classifier performance, can be used to score the quality of the classi-

fier with a number between 0.5 (chance) and 1 (perfect classification). The I score outper-

forms the S score (Fig 1F), particularly above moderate sample sizes (M� 5000). Both scores

can be readily generalized to the case of paired receptors, if the pairing of the two chains is

available through single-cell sequencing [25–27] or computational pairing [28], we can con-

sider the sequence of the full receptor TCRαβ, instead of just TCRβ. The generation probability

of the full TCR is then given by Pgen(α, β) = Pgen(α) × Pgen(β)[29]. Because coincidental sharing

of both chains is substantially rarer than with the β chain alone, using the paired chain infor-

mation greatly improves the classifier.

While this paper focuses on T-cells and TCR sequences, the structure of the B-cell receptors

(BCR) repertoire is very similar to the TCR repertoire and we expect to find qualitatively simi-

lar results. As an example we use the dataset obtained in Ref. [30] to measure S and I for IGH

chains (forming half of the BCR receptor), S4 Fig. We see that 5000 IgG+ memory B-cells are

enough to reliably identify the individuals in the study. However, B-cells are 5 times less com-

mon in peripheral blood than T-cells, and somatic hypermutation tends to distort the statistics

of receptors, reducing the reliability of our classifier. Hence, for practical applications, T-cells

are better means of identification.

2.3 Evolution with time

The previous results used samples obtained at the same time. However, immune repertoires

are not static: interaction with pathogens and natural aging modify their composition. The

evolution of clonal frequencies will decrease Immprint’s reliability with time, especially if the

individual has experienced immune challenges in the meantime.

To study the effect of short-term infections, we analyzed an experiment where 6 individuals

were vaccinated with the yellow fever vaccine, which is regarded as a good model of acute

infection, and their immune system was monitored regularly through blood draws [18]. We

observe an only moderate drop in I caused by vaccination (Fig 2A).

This is consistent with the fact that infections lead to the strong expansion of only a limited

number of clones, while the rest of the immune system stays stable [31–34]. While other types

of infections, auto-immune diseases, and cancers may affect Immprint in more substantial

ways, our result suggests that it is relatively robust to changes in condition.

We then asked how stable Immprint is over long times. Using longitudinal datasets [18, 22,

35], we show in Fig 2 that the Immprint score I is only slightly reduced for samples collected

at intervals of up to three years. For longer timescale, given the lack of longitudinal datasets,
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we turn to mathematical models [12, 36–39] to describe the dynamics of the repertoire. Fol-

lowing the model of fluctuating growth rate described in Ref. [38], we define two typical evolu-

tionary timescales for the immune system: τ, the typical turnover rate of T-cell clones, and θ,

which represents the typical time for a clonotype to grow or shrink by a factor two as its

growth rate fluctuates. The model predicts a power-law distribution for the clone-size distribu-

tion, with exponent −1 − τ/2θ. This exponent has been experimentally measured to be� − 2

[10], which leaves us with a single parameter τ, and θ = τ/2. An example of simulated evolution

of Immprint with time is shown in Fig 2B The highlighted histogram represents a data point at

two years obtained from [18]. While a fit is possible for this specific individual (τ = 0.66 in Fig

2B), the τ parameter is not universal, and we expect it to vary between individuals, especially as

a function of age. In Fig 2C we explore the effect on the stability of Immprint for a range of rea-

sonable values for the clone turn-over rate τ, from 6 months to 10 years, encompassing both

previous estimates of the parameter [38] and measured turnover rates for different types of T-

cells [40]. While Fig 2 focuses on I , the behaviour is similar for S (see S5 Fig). We observe that

under this model, for most individuals and bar exceptional events, Immprint should conserve

its accuracy for years or even decades.

Fig 2. A) Evolution of I (M = 5000) during vaccination, between a sample taken at day 0 (vaccination date) and at a later timepoint. Each color

represents a different individual. Each pair timepoint/individual has two biological replicates. The dashed line represents the threshold value. B)

Evolution of I between a sample taken at year 0 and a later timepoint. The red histogram corresponds to one of the individuals sampled in [18] and

the blue curves show theoretical estimates, fitted to match (τ = 0.66). C) Evolution of the (normalized) mean of I (M = 5000) as a function of time

for different values of the turnover rate τ. The dashed line represents the threshold value divided by the smallest value of I t = 0 (M = 5000) in the

data. The data points were obtained from the datasets [35] (yellow), [18] (green) and [22] (orange). Different markers indicate different individuals.

https://doi.org/10.1371/journal.pgen.1009301.g002
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3 Discussion

In summary, the T-cells present in small blood samples provide a somatic and long-lived bar-

code of human individuality, which is robust to immune challenges and stable over time.

While the uniqueness of the repertoire was a well known fact, we demonstrated that the most

common T-cells clones are still diverse enough to uniquely define an individual and frequent

enough to be reliably sampled multiple times. Unlike genome sequencing, repertoire sequenc-

ing can discriminate monozygotic twins with the same accuracy as unrelated individuals.

Additionally, a person’s unique immune fingerprint can be completely wiped out by a hemato-

poietic stem cell transplant [41].

A potential complication in applying Immprint is the convergent evolution of repertoires:

individuals who encounter similar pathogenic environments could share many receptors.

While this phenomenon occurs [17, 42], its influence on the immune repertoire is low. For

example, in the context of cytomegalovirus infection, shared TCR clones are only slightly

more common in co-infected individuals [17], and the result of Immprint does not seem to be

affected (S6 Fig). The possibility to discriminate between twins—who shared a common envi-

ronment for part of their lives—also hints that in most cases the effects of environment-driven

convergence is small. Nonetheless we cannot reject the possibility that this effect is stronger for

some specific pathogens, or long and strongly overlapping infection histories with pathogens

that severely modify immune repertoires. A limit case study to quantitatively investigate this

effect would require looking at data from mice living in otherwise sterile environments that

are exposed in a controlled way to the same pathogens at the same time, bearing in mind that

the diversity of mice repertoires is smaller than that of humans.

The different datasets used cover a range of different sequencing methods (see 4.1), but dif-

ferent approaches may lead to slightly different threshold choices. In particular, in practical

implementations, sequencing depth is an important concern. One needs enough coverage to

sequence TCRβ genes from as many as possible of the T-cells present in the sample, in order to

measure a more precise immune fingerprint. In addition, the specific calculations presented

here only apply to peripheral blood cells. Specific cell types or cells extracted from tissue sam-

ples may have different clonal distributions and potentially different receptor statistics. For

example the value of S in the autologous case varies between CD4+ and CD8+ T-cells (S7 Fig),

although different individuals remain distinguishable using each subset.

Immprint is implemented in a python package and webapp (see Methods) allowing the

user to determine the autologous or heterologous origin of a pair of repertoires. Beyond identi-

fying individuals, the tool could be used to check for contamination or labelling errors between

samples containing TCR information. The repertoire information used by Immprint can be

garnered not only from RepSeq experiments, but also from RNA-Seq experiments, which con-

tain thousands of immune receptor transcripts [43, 44]. Relatively small samples of immune

repertoires are enough to uniquely identify an individual even among twins, with potential

forensics applications. At the same time, unlike genetic data from genomic or mRNA sequenc-

ing, Immprint provides no information about kin relationships, very much like classical fin-

gerprints, and avoids privacy concerns about disclosing genetic information shared with non

consenting relatives.

4 Methods

4.1 Datasets & pre-processing

We use five independant RepSeq datasets in this study: (i) genomic DNA from Peripheral

blood mononuclear cells (PBMCs) from 656 healthy donors [17]; (ii) cDNA of PBMCs
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sampled from three pairs of twins, before and after a yellow-fever vaccination [18]; (iii), (iv)
two longitudinal studies of healthy adults [22, 35];(v) cDNA dataset of IGH genes (B-cells)

from 9 individuals, with multiple replicates [30].

CDR3 nucleotide sequences were extracted with MIGEC [45] (for the second dataset) cou-

pled with MiXCR [46]. We also extract the frequency of reads from the three datasets. The

non-productive sequences were discarded (out-of-frame, non-functional V gene, or presence

of a stop codon). The generation probability (Pgen) was computed using OLGA [47], with the

default TCRβmodel. The frequency of each clone was estimated by summing the frequencies

of all reads that shared the same nucleotide CDR3 sequence and identical V,J genes.

The preprocessing code is distributed on the Git repository associated with the paper. We

also developed a command-line tool (https://github.com/statbiophys/immprint) that discrimi-

nates between sample origins, and a companion webapp (https://immprint.herokuapp.com).

4.2 Discrimination scores

To discriminate between the autologous and heterologous scenarios, we introduce a log-likeli-

hood ratio test between the two possibilities:

I ¼
X

s

ln
Pðy1ðsÞ; y2ðsÞjautologousÞ
Pðy1ðsÞ; y2ðsÞjheterologousÞ

; ð2Þ

where y1(s) = 1 if the sequence s is found in sample 1, and 0 otherwise; likewise y2(s) = 1 if s is

in sample 2. The sum runs over all potential sequences s, including unseen ones. To be present

in a sample, a sequence s first has to be present in the repertoire. This occurs with probability

1 � ð1 � pðsÞÞNc , where Nc is the total number of clonotypes in the repertoire, and p(s) is the

probability of occurence of sequence s (resulting from generation and selection, see below).

Second, it must be picked in a sample of size M, with probability 1 − (1 − f )M�Mf (assuming

Mf� 1) depending on its frequency f, which is distributed according to the clone size distribu-

tion ρ(f ). We checked that f(s) and Pgen(s) were not correlated (S1 Fig) and that the effects of a

shared infection between different individuals were limited to a handful of clones (S8 Fig).

Then one can write

Pðy1ðsÞ ¼ 1; y2ðsÞ ¼ 1 j autologousÞ � ð1 � e� NcpðsÞÞM1M2

Z

df rðf Þ f 2; ð3Þ

Pðy1ðsÞ ¼ 1; y2ðsÞ ¼ 0 j autologousÞ � 1 � e� NcpðsÞð Þ
M1

Nc
and 1$ 2; ð4Þ

Pðy1ðsÞ ¼ 0; y2ðsÞ ¼ 0 j autologousÞ � 1 � 1 � e� NcpðsÞð Þ
M1 þM2

Nc
; ð5Þ

where we’ve used
R
df rðf Þ f ¼ 1=Nc. For the heterologous case the probability factorizes as:

Pðy1ðsÞ; y2ðsÞ j heterologousÞ ¼ P1ðy1ðsÞÞP2ðy2ðsÞÞ; ð6Þ

with

PaðyaðsÞ ¼ 1Þ � 1 � e� NcpðsÞð Þ
Ma

Nc
; a ¼ 1; 2: ð7Þ
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Since only the term y1(s) = y2(s) = 1 (shared sequences) is different between the autologous

and heterologous cases, we obtain:

I ¼
X

shared s

½ ln ðN2

c hf
2iÞ � ln ð1 � e� NcpðsÞÞ�: ð8Þ

Further assuming Nc p(s)� 1, and p(s) = Pgen(s)q−1 (where q accounts for selection [21]

and Pgen(s) is the probability of sequence generation [14]), the score simplifies to Eq 1, with

γ = −ln(qNchf 2i) = ln(q−1hf i/hf 2i). The factor γ depends on unknown parameters of the

model, but can be estimated assuming a power-law for the clone size distribution [48], ρ(f )/

f −2 extending from f = 10−11 to f = 0.01, and q = 0.01 [21], yielding γ� 12.24. Alternatively we

optimized γ to minimize the AUROC, yielding γ� 15 (S9 Fig). Since performance degrades

quickly for larger values, we conservatively set γ = 12.

4.3 Estimating mean scores from RepSeq datasets

The sampling of M cells from blood is simulated using large repertoire datasets. In a bulk reper-

toire sequencing dataset, the absolute number of cells for each clonotype (cells with a specific

receptor) is unknown, but the fraction of each clonotype can be estimated using the proportion

of reads that are associated with this specific receptor. To estimate the autologous S and I of two

samples of size M1 and M2 in the absence of true replicates, we computed their expected values

from a single dataset containing N reads, from which two random subsamples of sizes M1 and

M2 were taken. The mean value of S is equal to hSi ¼
P

sð1 � ð1 � f ðsÞÞM1Þð1 � ð1 � f ðsÞÞM2Þ,

where f(s) is the true (and unknown) frequency of sequence s. A naive estimate of hmSi
may be obtained by repeatly resampling subsets of sizes M1 and M2 from the observed reper-

toire, calculate S for each draw, and average. One get the same result by replacing f(s) by

f̂ s ¼ nðsÞ=N in the previous formula, where n(s) is the number of s reads in the full dataset,

and N = ∑s n(s). However, this naive estimate leads to a systematic overestimate of the shar-

ing (visible when compared with biological replicates, see S10 Fig), simply because this pro-

cedure overestimates the probability of resampling rare sequences, in particular singletons

whose true frequency may be much lower that 1/N. A similar bias occurs when computing I .

To correct for this bias, we look for a function h(n) that satisfies for all f:

hhðnÞi �
X

n

N
n

� �

f nð1 � f ÞN� nhðnÞ ¼ ð1 � ð1 � f ÞM1Þ ð1 � ð1 � f ÞM2Þ; ð9Þ

so that hSi and hIi can be well approximated by:

hSi �
X

s

hðnðsÞÞ; ð10Þ

hIi � �
X

s

hðnðsÞÞ½ ln ð1=PgenðsÞÞ � g�: ð11Þ

Expanding the right-hand side of Eq 9 into 4 terms, we find that hðnÞ ¼ 1 � gM1
ðnÞ �

gM2
ðnÞ þ gM1þM2

ðnÞ satisfies Eq 9 provided that:

X

n

N
n

� �

f nð1 � f ÞN� ngMðnÞ ¼ ð1 � f ÞM: ð12Þ
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Under the change of variable x = f/(1−f), the expression becomes:

X

n

N

n

 !

xngMðnÞ ¼ ð1þ xÞN� M ¼
X

n

N � M

n

 !

xn: ð13Þ

Identifying the polynomial coefficients in xn on both sides yields:

gMðnÞ ¼
N � M

n

 !� N

n

 !

: ð14Þ

These corrected estimates agree with the direct estimates using biological replicates (S10

Fig).

Similarly, hSi and hIi in heterologous samples can be estimated using:

hSi �
X

s

½1 � gM1
ðnðsÞÞ�½1 � gM2

ðn0ðsÞÞ�; ð15Þ

hIi �
X

s

½1 � gM1
ðnðsÞÞ�½1 � gM2

ðn0ðsÞÞ�½ ln ð1=PgenðsÞÞ � g�: ð16Þ

where n(s) and n0(s) are the empirical counts of sequence s in the two samples.

4.4 Theoretical upper bound on heterologous scores

When the two samples were extracted from two different individuals (heterologous scenario),

we can use the universality of the recombination process to give upper bounds on the values

of S and I . These bounds are represented by the dashed lines in Fig 1C). If two samples of

respectively M1 and M2 cells, containing T1�M1 and T2�M2 unique sequences are extracted

from two different individuals, the number of shared sequences between them is given by [21]:

hSiheterologous �
X

s

1 � ð1 � pðsÞÞT1
� �

1 � ð1 � pðsÞÞT2
� �

ð17Þ

⪅T1T2

X

s

pðsÞ2 ¼ T1T2hpðsÞi � M1M2hpðsÞi: ð18Þ

p(s) is the probability of finding a sequence s in the blood. Following [21], we make the

approximation p(s) = Pgen(s)q−1, where the q = 0.01 factor is the probability that a generated

sequence passes selection. Then hp(s)i can be estimated from the mean over generated

sequences. Similarly, we can estimate I as

hIiheterologous ⪅T1T2

X

s

pðsÞ2½ ln ð1=PgenðsÞÞ � g� ð19Þ

¼ � T1T2hpðsÞ½gþ ln ðqpðsÞÞ�i � � M1M2hpðsÞ½gþ ln ðqpðsÞÞ�i; ð20Þ

which is also estimated from the mean over generated sequences.

4.5 Error rate estimates

To make the quantitative predictions shown in Fig 1, we need to constrain the tail behavior of

the distributions of S and I , for the two scenarios.

The S statistic can be rewritten as a sum of Bernouilli variables over all possible sequences,

each with a parameter corresponding to its probability of being present in both samples, either
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in the autologous or the heterologous case. Therefore S is a Poisson binomial distribution, a

sum of independent Bernouilli variables with potentially different parameters. The variance

and tails of that distribution are bounded by those of the Poisson distribution with the same

mean, denoted by ma for the autologous case, and mh for the heterologous case (S11 Fig).

Thanks to that inequality, the rates of false negatives and false positives for a given threshold

r are bounded by:

PðS < rjautologousÞ � Qðr þ 1;maÞ; PðS > rjheterologousÞ � 1 � Qðr þ 1;mhÞ; ð21Þ

where Q is the regularized gamma function, which appears in the cumulative distribution

function of the Poisson distribution. The mean autologous score ma is estimated from experi-

mental data: we use the smallest value of hSi in the Emerson dataset and Eq 10. To compute

mh, we use the semi-theoretical prediction made using the universality of the recombination

process, Eq 17.

Similarly, I can be viewed as a sum of S independent random variables, all following the

distribution of ln(1/Pgen)−γ. However, this distribution differs in the two scenarios. Sequences

shared between more than one donor have an higher probability of being generated, their

ln(Pgen) distribution has higher mean and smaller variance (S12 Fig).

The sum is composed of a relatively large number of variables in most realistic scenarios.

Hence, we rely on the central limit theorem to approximate it by a normal distribution, of

mean and variance proportional to S. Explicitly:

P I < rjautologousð Þ ¼
1

2

X1

S¼0

ðmaÞ
Se� ma

S!
1þ erf

r � Shln½1=PgenÞ � gi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SVarhlnð1=PgenÞ � gi

q

0

B
@

1

C
A

0

B
@

1

C
A ð22Þ

PðI > rjheterologousÞ ¼
1

2

X1

S¼0

ðmhÞ
Se� mh

S!
1 � erf

r � Shlnð1=PgenÞ � gishared
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SVarhlnð1=PgenÞ � gishared

q

0

B
@

1

C
A

0

B
@

1

C
A: ð23Þ

The AUROC are computed based on these estimates, by numerically integrating the

true positive rate PðS; I < rjheterologousÞ with respect to the false negative rate

PðS; I < rjautologousÞ as the threshold r is varied.

4.6 Modeling the evolution of autologous scores

We use the model of Ref. [38] to describe the dynamics of individual T-cell clone frequencies f
under a fluctuating growth rate reflecting the changing state of the environment and the ran-

dom nature of immune stimuli:

df
dt
¼ �

1

t
þ

1

2y
þ

1
ffiffiffi
y
p ZðtÞ

� �

f ðtÞ; ð24Þ

where η(t) is a Gaussian white noise with hη(t)i = 0 and hη(t)η(t0)i = δ(t−t0).
With the change of variable x = ln(f ), these dynamics simplify to a simple Brownian motion

in log-frequency: @t x = −τ−1+ θ−1/2 η(t). In that equation, τ appears as the decay rate of the fre-

quency, while θ is the timescale of the noise, interpreted as the typical time it takes for the fre-

quency to rise or fall by a logarithmic unit owing to fluctuations. Considering a large

population of clones, each with their independent frequency evolving according to Eq 24, and

a source term at small f corresponding to thymic exports, one can show that the steady-

state probability density function of f follows a power-law [38], ρ(f )/ f −α, with exponent
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α = 1+ 2θ/τ. α was empirically found to be�2 in a wide variety of immune repertoires [10, 48–

50], implying 2θ� τ. The turn-over time τ is unknown, and was varied from 0.5 years to 10

years in the simulations.

We simulated the evolution of human TRB repertoires by starting with the empirical values

of the frequencies of each observed clones, f ðs; 0Þ ¼ f̂ ðs; 0Þ ¼ nðs; 0Þ=N from the analysed

datasets. A sample of size M was randomly selected with respect to these frequencies, and the

frequencies of the clones captured in that sample were then evolved with a time-step of 2 days

using Euler-Maruyama’s method, which is exact in the case of Brownian motion. Clones with

frequencies falling below 10−11 (corresponding to a single cell in the organism) were removed.

At each time t> 0, we measured the mean value of S with the formula ∑s(1 − (1 − f(s, t))M)

where the sum runs over the sequences captured in the initial sample.

Supporting information

S1 Fig. Mean value of log Pgen as a function of the rank of the clonotype (from most abun-

dant to least abundant) from [17]. The black line represents the mean of log Pgen for naive

clones. The statistic for the top-clones (low rank) is similar to the one for the naive clones.

(TIF)

S2 Fig. Comparison between the mean of S (autologous case), and three common diversity

measures. The number of unique sequences found in the dataset (top left), the Shannon index,

�
P

f̂ s ln f̂ s (top right), the Simpson index (bottom left), and the total number of reads in each

datasets (bottom right). All the diversity measures show a strong correlation with S, but the

correlation with the sequencing depth is low.

(TIF)

S3 Fig. Detection Error Trade-off (DET) graph for both summary statistics, between a

large sample (full dataset, M1 = 106) and a smaller one, of size M2 = M.

(TIF)

S4 Fig. Mean value of S (left) and I (right) for the IGH chain (part of the B-cell receptor)

for sample sizes M = 5000. The IGH sequences used are restricted to IgG+ B-cells (selected

according to their CH gene). The sequences were obtained from 8 different individuals (6 bio-

logical replicates each) in the dataset from [30]. Autologous (blue) and heterologous (yellow)

are well separated.

(TIF)

S5 Fig. Longitudinal evolution of S. A) Evolution of S (M = 5000) during vaccination,

between a sample taken at day 0 (vaccination date) and at a later timepoint. Each color repre-

sents a different individual. Each pair timepoint/individual has two biological replicates. The

dashed line represents the threshold value. B) Evolution of S between a sample taken at year 0

and a later timepoint. The red histogram corresponds to one of the individuals sampled in [18]

and the blue curves show theoretical estimates, fitted to match (τ = 0.66). C) Evolution of the

(normalized) mean of S (M = 5000) as a function of time for different values of the turnover

rate τ. The dashed line represents the threshold value divided by the smallest value of St¼0

(M = 5000) in the data. The data points were obtained from the datasets [35] (yellow), [18]

(green) and [22] (orange). Different markers indicate different individuals.

(TIF)

S6 Fig. For each pair of different individuals from the detaset [17], the values of S (blue)

and I (yellow) are shown as a function of the serological status of the two individuals—

CMV+/CMV+ (resp. CMV-/CMV-) if both are positive (negative) to cytomegalovirus and
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CMV+/CMV- if one is positive while the other one is not. Co-infection with cytomegalovi-

rus does not hamper the capacity of Immprint to distinguish between different people.

(TIF)

S7 Fig. Distribution of S (left) and I (right) for CD4+ and CD8+ T-cells in the dataset

from [18] (6 individuals). In the autologous case (blue), there is a significant difference

between the two cell types, caused by the differences between their clonal distributions.

(TIF)

S8 Fig. Left: Mean value of Pgen as a function of the rank of the clonotype, for generic

sequences (blue) and sequences shared between more than two donors (orange). The mean

stays flat indicating that the probability of being generated does not generally depend on the

clonotype size. There is an exception (black rectangle), shown as a close-up on the right panel.

The top twenty clones, when shared between donors, have a smaller probability of being gener-

ated than expected by chance. This difference is likely to be driven by convergent selection

against common pathogens, since CMV positive donors show a more prononced effect than

CMV negative ones.

(TIF)

S9 Fig. Left panel: AUROC (Area Under Receiver Operating Characteristic) of I , as a func-

tion of γ (M = M1 = M2 = 5000). We observe an optimum near γ = 15. Right panel: AUROC

as a function of M, for S, Iðg ¼ 0Þ, and Iðg ¼ 15Þ.

(TIF)

S10 Fig. Naive and corrected estimates of the autologous S from single datasets, versus its

values computed using true biological replicates from Ref. [18].

(TIF)

S11 Fig. Comparison between the distribution of S obtained by computationally and

repeatedly downsampling a single repertoire from Ref. [17] with M = 5, 000 (histogram),

and a Poisson distribution of the same mean (full line).

(TIF)

S12 Fig. Distribution of ln(Pgen) for generic sequences, and for sequences shared between

heterologous samples.

(TIF)
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